Abstract
The voltage-dependent inhibition of single N-type Ca(2+) channels by noradrenaline (NA) and the delta-opioid agonist D-Pen(2)-D-Pen (5)-enkephalin (DPDPE) was investigated in cell-attached patches of human neuroblastoma IMR32 cells with 100 mM Ba(2+) and 5 microM nifedipine to block L-type channels. In 70% of patches, addition of 20 microM NA + 1 microM DPDPE delayed markedly the first channel openings, causing a four- to fivefold increase of the first latency at +20 mV. The two agonists or NA alone decreased also by 35% the open probability (P(o)), prolonged partially the mean closed time, and increased the number of null sweeps. In contrast, NA + DPDPE had little action on the single-channel conductance (19 versus 19.2 pS) and minor effects on the mean open time. Similarly to macroscopic Ba(2+) currents, the ensemble currents were fast activating at control but slowly activating and depressed with the two agonists. Inhibition of single N-type channels was effectively removed (facilitated) by short and large depolarizations. Facilitatory pre-pulses increased P(o) significantly and decreased fourfold the first latency. Ensemble currents were small and slowly activating before pre-pulses and became threefold larger and fast decaying after facilitation. Our data suggest that slowdown of Ca(2+) channel activation by transmitters is mostly due to delayed transitions from a modified to a normal (facilitated) gating mode. This single-channel gating modulation could be well simulated by a Monte Carlo method using previously proposed kinetic models predicting marked prolongation of first channel openings.
Full text
PDF![2144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/fc04ef45db5a/biophysj00047-0106.png)
![2145](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/dda94f688ada/biophysj00047-0107.png)
![2146](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/a6d2272344f2/biophysj00047-0108.png)
![2147](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/f1e99c144f21/biophysj00047-0109.png)
![2148](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/30f50f0ca735/biophysj00047-0110.png)
![2149](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/ecc462edcb28/biophysj00047-0111.png)
![2150](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/b7adc955238b/biophysj00047-0112.png)
![2151](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/0c959abc5173/biophysj00047-0113.png)
![2152](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/bc8961fe106b/biophysj00047-0114.png)
![2153](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/2dba0ab52be3/biophysj00047-0115.png)
![2154](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e3b/1225189/0fc1b3cfce13/biophysj00047-0116.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bean B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature. 1989 Jul 13;340(6229):153–156. doi: 10.1038/340153a0. [DOI] [PubMed] [Google Scholar]
- Boland L. M., Bean B. P. Modulation of N-type calcium channels in bullfrog sympathetic neurons by luteinizing hormone-releasing hormone: kinetics and voltage dependence. J Neurosci. 1993 Feb;13(2):516–533. doi: 10.1523/JNEUROSCI.13-02-00516.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. M., Lux H. D., Wilson D. L. Activation and inactivation of single calcium channels in snail neurons. J Gen Physiol. 1984 May;83(5):751–769. doi: 10.1085/jgp.83.5.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbone E., Lux H. D. Single low-voltage-activated calcium channels in chick and rat sensory neurones. J Physiol. 1987 May;386:571–601. doi: 10.1113/jphysiol.1987.sp016552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbone E., Sher E., Clementi F. Ca currents in human neuroblastoma IMR32 cells: kinetics, permeability and pharmacology. Pflugers Arch. 1990 Apr;416(1-2):170–179. doi: 10.1007/BF00370239. [DOI] [PubMed] [Google Scholar]
- Delcour A. H., Lipscombe D., Tsien R. W. Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. J Neurosci. 1993 Jan;13(1):181–194. doi: 10.1523/JNEUROSCI.13-01-00181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delcour A. H., Tsien R. W. Altered prevalence of gating modes in neurotransmitter inhibition of N-type calcium channels. Science. 1993 Feb 12;259(5097):980–984. doi: 10.1126/science.8094902. [DOI] [PubMed] [Google Scholar]
- Diversé-Pierluissi M., Goldsmith P. K., Dunlap K. Transmitter-mediated inhibition of N-type calcium channels in sensory neurons involves multiple GTP-binding proteins and subunits. Neuron. 1995 Jan;14(1):191–200. doi: 10.1016/0896-6273(95)90254-6. [DOI] [PubMed] [Google Scholar]
- Dolphin A. C. Regulation of calcium channel activity by GTP binding proteins and second messengers. Biochim Biophys Acta. 1991 Jan 10;1091(1):68–80. doi: 10.1016/0167-4889(91)90224-l. [DOI] [PubMed] [Google Scholar]
- Elmslie K. S., Kammermeier P. J., Jones S. W. Reevaluation of Ca2+ channel types and their modulation in bullfrog sympathetic neurons. Neuron. 1994 Jul;13(1):217–228. doi: 10.1016/0896-6273(94)90471-5. [DOI] [PubMed] [Google Scholar]
- Elmslie K. S., Zhou W., Jones S. W. LHRH and GTP-gamma-S modify calcium current activation in bullfrog sympathetic neurons. Neuron. 1990 Jul;5(1):75–80. doi: 10.1016/0896-6273(90)90035-e. [DOI] [PubMed] [Google Scholar]
- Formenti A., Arrigoni E., Mancia M. Two distinct modulatory effects on calcium channels in adult rat sensory neurons. Biophys J. 1993 Apr;64(4):1029–1037. doi: 10.1016/S0006-3495(93)81468-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox J. A. Irreversible and reversible blockade of IMR32 calcium channel currents by synthetic MVIIA and iodinated MVIIC omega-conopeptides. Pflugers Arch. 1995 Apr;429(6):873–875. doi: 10.1007/BF00374813. [DOI] [PubMed] [Google Scholar]
- Golard A., Siegelbaum S. A. Kinetic basis for the voltage-dependent inhibition of N-type calcium current by somatostatin and norepinephrine in chick sympathetic neurons. J Neurosci. 1993 Sep;13(9):3884–3894. doi: 10.1523/JNEUROSCI.13-09-03884.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grassi F., Lux H. D. Voltage-dependent GABA-induced modulation of calcium currents in chick sensory neurons. Neurosci Lett. 1989 Oct 23;105(1-2):113–119. doi: 10.1016/0304-3940(89)90021-9. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci. 1994 Dec;17(12):531–536. doi: 10.1016/0166-2236(94)90157-0. [DOI] [PubMed] [Google Scholar]
- Hirning L. D., Fox A. P., McCleskey E. W., Olivera B. M., Thayer S. A., Miller R. J., Tsien R. W. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988 Jan 1;239(4835):57–61. doi: 10.1126/science.2447647. [DOI] [PubMed] [Google Scholar]
- Kasai H. Voltage- and time-dependent inhibition of neuronal calcium channels by a GTP-binding protein in a mammalian cell line. J Physiol. 1992 Mar;448:189–209. doi: 10.1113/jphysiol.1992.sp019036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Bean B. P. G-protein modulation of ion permeation through N-type calcium channels. Nature. 1993 Sep 16;365(6443):258–262. doi: 10.1038/365258a0. [DOI] [PubMed] [Google Scholar]
- Kuo C. C., Hess P. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. J Physiol. 1993 Jul;466:657–682. [PMC free article] [PubMed] [Google Scholar]
- Lipscombe D., Kongsamut S., Tsien R. W. Alpha-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature. 1989 Aug 24;340(6235):639–642. doi: 10.1038/340639a0. [DOI] [PubMed] [Google Scholar]
- Lopez H. S., Brown A. M. Correlation between G protein activation and reblocking kinetics of Ca2+ channel currents in rat sensory neurons. Neuron. 1991 Dec;7(6):1061–1068. doi: 10.1016/0896-6273(91)90350-9. [DOI] [PubMed] [Google Scholar]
- Luebke J. I., Dunlap K. Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflugers Arch. 1994 Oct;428(5-6):499–507. doi: 10.1007/BF00374571. [DOI] [PubMed] [Google Scholar]
- Magnelli V., Avaltroni A., Carbone E. A single non-L-, non-N-type Ca2+ channel in rat insulin-secreting RINm5F cells. Pflugers Arch. 1996 Jan;431(3):341–352. doi: 10.1007/BF02207271. [DOI] [PubMed] [Google Scholar]
- Marchetti C., Carbone E., Lux H. D. Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch. 1986 Feb;406(2):104–111. doi: 10.1007/BF00586670. [DOI] [PubMed] [Google Scholar]
- Meriney S. D., Gray D. B., Pilar G. R. Somatostatin-induced inhibition of neuronal Ca2+ current modulated by cGMP-dependent protein kinase. Nature. 1994 May 26;369(6478):336–339. doi: 10.1038/369336a0. [DOI] [PubMed] [Google Scholar]
- Plummer M. R., Logothetis D. E., Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron. 1989 May;2(5):1453–1463. doi: 10.1016/0896-6273(89)90191-8. [DOI] [PubMed] [Google Scholar]
- Pollo A., Lovallo M., Sher E., Carbone E. Voltage-dependent noradrenergic modulation of omega-conotoxin-sensitive Ca2+ channels in human neuroblastoma IMR32 cells. Pflugers Arch. 1992 Oct;422(1):75–83. doi: 10.1007/BF00381516. [DOI] [PubMed] [Google Scholar]
- Shen K. Z., Surprenant A. Noradrenaline, somatostatin and opioids inhibit activity of single HVA/N-type calcium channels in excised neuronal membranes. Pflugers Arch. 1991 Jul;418(6):614–616. doi: 10.1007/BF00370580. [DOI] [PubMed] [Google Scholar]
- Swandulla D., Carbone E., Lux H. D. Do calcium channel classifications account for neuronal calcium channel diversity? Trends Neurosci. 1991 Feb;14(2):46–51. doi: 10.1016/0166-2236(91)90018-p. [DOI] [PubMed] [Google Scholar]
- Toselli M., Taglietti V. Muscarinic inhibition of high-voltage-activated calcium channels in excised membranes of rat hippocampal neurons. Eur Biophys J. 1994;22(6):391–398. doi: 10.1007/BF00180160. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Ellinor P. T., Horne W. A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci. 1991 Sep;12(9):349–354. doi: 10.1016/0165-6147(91)90595-j. [DOI] [PubMed] [Google Scholar]