Skip to main content
Journal of Cancer Research and Clinical Oncology logoLink to Journal of Cancer Research and Clinical Oncology
. 1981 Aug;101(1):149–164. doi: 10.1007/BF00405075

Fibroblastic and dendritic reticulum cells of lymphoid tissue

Ultrastructural, histochemical, and 3H-thymidine labeling studies

H K Müller-Hermelink 1,2,, B v Gaudecker 1,2, D Drenckhahn 1,2, K Jaworsky 1,2, C Feldmann 1,2
PMCID: PMC12252725  PMID: 7276068

Abstract

Fibroblastic reticulum cells of different lymphoid organs were investigated to clarify their relationship to other stationary cells of the lymphoid tissue and to fibroblasts of the connective tissue.

Fibroblastic reticulum cells have many ultrastructural characteristics of fibroblasts but differ from them in containing prominent bundles of microfilaments and in reacting strongly with antibodies to smooth muscle type myosin and actin. The fibroblastic reticulum cell may be thus classified as a myofibroblast. Enzyme-histochemical studies showed that fibroblastic reticulum cells contain a definite alkaline phosphatase isoenzyme. During ontogeny fibroblastic and dendritic reticulum cells are derived from the local mesenchyme and may be considered as primary stationary reticulum cells. During the formation of the follicle in the splenic white pulp in young rats fibroblastic and dendritic reticulum cells show a different turnover which speaks in favor of a proliferation of dendritic reticulum cells or their precursors in follicle formation.

Key words: Lymphoid tissue, Reticulum cells, Histochemistry, Ultrastructure

Footnotes

Supported by the DFG, SFB 111, CN1, Dr 91/2

References

  1. Ahmed Z, Reis JL (1958) The activation and inhibition of 5-nucleotidase. Biochem J 69:386–387 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bahr M, Wilkinson JH (1967) Urea as a selective inhibitor of human tissue alkaline phosphatases. Clin Chim Acta 17:367–370 [DOI] [PubMed] [Google Scholar]
  3. Borgers M (1973) The cytochemical application of new potent inhibitors of alkaline phosphatases. J Histochem Cytochem 21:812–824 [DOI] [PubMed] [Google Scholar]
  4. Burke JS, Simon GT (1970) Electron microscopy of the spleen. I. Anatomy and microcirculation. Am J Pathol 58:127–155 [PMC free article] [PubMed] [Google Scholar]
  5. Chan AWL, Kellen JA (1975) Resistance to levamisole (R 12,458) in heat-stable alkaline phosphatases. Clin Chim Acta 60:91–96 [DOI] [PubMed] [Google Scholar]
  6. Conyers RAJ, Birkett DJ, Neale FC, Posen S, Brudenell-Woods J (1967) The action of EDTA on human alkaline phosphatases. Biochim Biophys Acta 139:363–371 [DOI] [PubMed] [Google Scholar]
  7. Drenckhahn D (1980) Untersuchungen über den zellulären Aufbau und die Innervation des kontraktilen Apparates der Milz von Mensch und Ratte. Zusammenfassungen der 2. Arbeitstagung der Anatomischen Ges. in Würzburg, 8.-10. Okt. 1980. Anat Anz (im Druck)
  8. Drenckhahn D, Unsicker K, Griesser G-H, Schumacher U, Gröschel-Stewart U (1978) Different myosins in myoid and entodermal reticular epithelial cells of the thymus. An immunocytochemical study using specific antibodies against striated and smooth muscle myosin. Cell Tiss Res 187:97–103 [DOI] [PubMed] [Google Scholar]
  9. Fliedner TM, Haas RJ, Stehle H, Adams A (1968) Complete labeling of all cell nuclei in newborn rats with H3-thymidine. A tool for the evaluation of rapidly and slowly proliferation cell systems. Lab Invest 18:249–259 [PubMed] [Google Scholar]
  10. Fishman WH, Sie H-G (1971) Organ-specific inhibition of human alkaline phosphatase isoenzymes of liver, bone, intestine, and placenta. L-phenylalanine, L-tryptophan, L-homoarginine. Enzymologia 41:141–167 [PubMed] [Google Scholar]
  11. v. Furth R (1980) Mononuclear phagocytes. North Holland Publ Comp
  12. Gabbiani G, Montesano D (1977) Reparative processes in mammalian wound healing: The role of contractile phenomena. Internat Rev Cytol 48:187–219 [DOI] [PubMed] [Google Scholar]
  13. Gabbiani G, Chaponnier Ch, Hüttner I (1978) Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 76:561–568 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gröschel-Stewart U (1980) Immunochemistry of cytoplasmic contractile proteins. Internat Rev Cytol 65:193–254 [DOI] [PubMed] [Google Scholar]
  15. Haas RJ, Bohne F, Fliedner TM (1969) On the development of slowly-turning-over cell types in neonatal rat bone marrow. (Studies utilizing the complete tritiated thymidine labeling method complemented by C-14 thymidine administration). Blood 34:791–806 [PubMed] [Google Scholar]
  16. Hendricks HR, Eestermans IL, Hoefsmit ECM (1980) Depletion of macrophages and disappearance of postcapillary high endothelial venules in lymph nodes deprived of afferent lymphatic vessels. Cell Tiss Res 211:375–389 [DOI] [PubMed] [Google Scholar]
  17. Heusermann U, Zurborn K-H, Schroeder L, Stutte HJ (1980) The origin of the dendritic reticulum cell. An experimental enzyme-histochemical and electron microscopic study on the rabbit spleen. Cell Tiss Res 209:279–294 [DOI] [PubMed] [Google Scholar]
  18. Horne M, Cornish CJ, Posen S (1968) Use of urea denaturation in the identification of human alkaline phosphatases. J Lab Clin Med 72:905–915 [PubMed] [Google Scholar]
  19. Izard J, de Harven E (1968) Increased numbers of characteristic type of reticular cell in the thymus and lymphnodes of leukemic mice: An electron-microscope study. Cancer Res 28:421–433 [PubMed] [Google Scholar]
  20. Kaiserling E (1977) Non-Hodgkin-Lymphome. Ultrastruktur und Cytogenese. In: Veröffentilichungen aus der Pathologie (ed. W. Büngeler et al.) No. 105. Gustav Fischer-Verlag, Stuttgart [PubMed] [Google Scholar]
  21. Kapanci Y, Assimacopoulos A, Irle C, Zwahlen A, Gabbiani G (1974) “Contractile interstitial cells” in pulmonary alveolar septa: a possible regulation of ventilation/perfusion ratio? J Cell Biol 60:375–392 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kapanci Y, Mo Costabella P, Cerutti P, Assimacopoulos A (1979) Distribution and function of cytoskeletal proteins in lung cells with particular reference to “contractile interstitial cells”. Methods Achiev Exp Pathol 9:147–168 [PubMed] [Google Scholar]
  23. Kaplan MM (1972) Alkaline phosphatase. Gastroenterology 62:452–469 [PubMed] [Google Scholar]
  24. Kaplow LS (1955) A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity insmears of blood and marrow. Blood 10:1023–1029 [PubMed] [Google Scholar]
  25. Leder L-D, Stutte HJ (1975) Seminar für hämatologisch-zytochemische Techniken. Verh Dtsch Ges Pathol 59:503–509 [PubMed] [Google Scholar]
  26. Lennert K, Löffler H, Leder L-D (1961) Fermenthistochemische Untersuchungen des Lymphknotens. I. Mitt. Alkalische Phoasphatase in Schnitt und Ausstrich. Virchows Arch [Pathol Anat] 334:399–418 [PubMed] [Google Scholar]
  27. Lennert K, Müller-Hermelink HK (1975) Lymphocyten und ihre Funktionsformen. Morphologie, Organisation und immunologische Bedeutung. Verh Anat Ges 69:19–62 [PubMed] [Google Scholar]
  28. Lennert K, Kaiserling E, Müller-Hermelink HK (1978) Malignant lymphomas: Models of differentiation and cooperation of lymphoreticular cells. In: Differentiation of normal an neoplastic hematopoietic cells. Cold Spring Harbor Laboratory
  29. Lin CW, Sie HG, Fishman WH (1971) L-tryptophan. A non-allosteric organ-specific uncompetive inhibitor of human placental alkaline phosphatase. Biochem J 124:509–516 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Stratkov PR (1971) Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173:548–550 [DOI] [PubMed] [Google Scholar]
  31. Majno G (1979) The story of the myofibroblasts. Am J Surg Pathol 3:535–542 [DOI] [PubMed] [Google Scholar]
  32. Mayahara H, Hirano H, Saito T, Ogawa K (1967) The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie 11:88–96 [DOI] [PubMed] [Google Scholar]
  33. Mühlbach H (1977) Histochemische Darstellung der alkalischen Phosphatase und der 5′-Nukleotidase in der menschlichen Gaumentonsille. Kiel: Inaug Diss [Google Scholar]
  34. Mühlbach and Müller-Hermelink 1981 (in preparation)
  35. Müller-Hermelink HK (1974) Characterization of the B-cell and T-cell regions of human lymphatic tissue through enzyme histochemical demonstration of ATPase and 5′-nucleotidase activities. Virchows Arch [Cell Pathol] 16:371–378 [DOI] [PubMed] [Google Scholar]
  36. Müller-Hermelink HK, Heusermann U, Stutte HJ (1974) Enzyme histochemical observations in the localization and structure of the T-cell and B-cell regions in the human spleen. Cell Tiss Res 154:167–179 [DOI] [PubMed] [Google Scholar]
  37. Müller-Hermelink HK, Heusermann U, Kaiserling E, Stutte HJ (1976) Human lymphatic microecology — Specificity, characterization, and ontogeny of different reticulum cells in the B-cell and T-cell regions. In: Immune reactivity of lymphocytes. Adv Exp Med Biol 66:177–182 [DOI] [PubMed]
  38. Müller-Hermelink HK, Lennert K (1978) The cytologic, histologic, and functional bases for a modern classification of lymphomas. In: Lennert K: Malignant lymphomas other than Hodgkin's disease. (Handb spez path Anat u Histol, Vol 1/3B:1–82, Uehlinger E, Hrsg, Springer, Berlin Heidelberg New York) [Google Scholar]
  39. Müller-Hermelink HK, Kaiserling E (1975) Seminar für elektronenmikroskopisch-histochemische Techniken. Verh Dtsch Ges Pathol 59:522–527 [PubMed] [Google Scholar]
  40. Müller-Hermelink HK, Kaiserling E (1980) Different reticulum cells of the lymph node: microecological concept of lymphoid tissue organization. In: v.d. Tweel (ed) Malignant lymphoproliferative diseases. Martinus Nijhoff Publ., The Hague Boston London, pp 57–70 [Google Scholar]
  41. Nanba K, Jaffe ES, Braylan RC, Soban ES Berard CW (1977) Alkaline phosphatase-positive malignant lymphoma. A subtype of B-cell lymphomas. Am J Clin Pathol 68:535–543 [DOI] [PubMed] [Google Scholar]
  42. Nathanson L, Fishman WH (1971) New observations on the Regan isoenzyme of alkaline phosphatase in cancer patients. Cancer 27:1388–1397 [DOI] [PubMed] [Google Scholar]
  43. Neale FC, Clubb JS, Hotchkis D, Posen S (1965) Heat stability of human placental alkaline phosphatase. J Clin Pathol 18:359–363 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pictet R, Orci L, Forssmann WG, Girardier L (1969) An electron microscope study of the perfusion-fixed spleen. I. The splenic circulation and the RES concept. Z Zellforsch 96:372–399 [DOI] [PubMed] [Google Scholar]
  45. Posen S, Neale C, Clubb JS (1965) Heat inactivation in the study of human alkaline phosphatases. Ann Intern Med 52:1234–1243 [DOI] [PubMed] [Google Scholar]
  46. Rufo MB, Fishman WH (1977) L-homoarginine a specific inhibitor of liver-type alkaline phosphatase, applied to the recognition of liver-type enzyme activity in rat intestine. J Histochem Cytochem 20:338–343 [DOI] [PubMed] [Google Scholar]
  47. Veldman JE, Kaiserling E (1980) Interdigitating cells. In: Carr J, Daems WT (eds) The reticulo-endothelial system. Plenum Publ Comp, New York, pp 381–415 [Google Scholar]
  48. Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases at a physiologic pH. Am J Clin Pathol 27:13–23 [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cancer Research and Clinical Oncology are provided here courtesy of Springer

RESOURCES