Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982 Sep;330:69–80. doi: 10.1113/jphysiol.1982.sp014329

Metabolic inter-relationships of intracellular pH measured by double-barrelled micro-electrodes in perfused rat liver.

R D Cohen, R M Henderson, R A Iles, J A Smith
PMCID: PMC1225286  PMID: 6816922

Abstract

1. Intracellular pH (pHi) was measured under differing conditions in the functionally isolated, perfused rat liver using double-barrelled recessed-tip micro-electrodes. 2. Under normal acid-base conditions mean hepatic pHi was 7.18. 3. Over the range studied, hepatic pHi was negatively and linearly related to the logarithm of perfusate PCO2. 4. Measurement of pHi together with measurement of pHe and intracellular and extracellular lactate concentrations suggested a non-equilibrium distribution of lactate and lactic acid across the hepatic cell membrane requiring an active transport process for entry of lactate to the cell. 5. Upon addition of D-fructose (10 mM) to the perfusate there was a rapid fall in pHi of between 0.2 and 0.54 units, which was substantially greater than observed in earlier similar experiments in which 31P-nuclear magnetic resonance was used to measure pHi. Reasons for this discrepancy are considered.

Full text

PDF
69

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron P. G., Iles R. A., Cohen R. D. Effect of varying PCO2 on intracellular pH and lactate consumption in the isolated perfused rat liver. Clin Sci Mol Med. 1978 Aug;55(2):175–181. doi: 10.1042/cs0550175. [DOI] [PubMed] [Google Scholar]
  2. Bessou P., Joffroy M., Pagès B. Efferents and afferents in an intact muscle nerve: background activity and effects of sural nerve stimulation in the cat. J Physiol. 1981 Nov;320:81–102. doi: 10.1113/jphysiol.1981.sp013936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen R. D., Henderson R. M., Iles R. A., Monson J. P., Smith J. A. The techniques and uses of intracellular pH measurements. Ciba Found Symp. 1982;87:20–35. doi: 10.1002/9780470720691.ch2. [DOI] [PubMed] [Google Scholar]
  4. Cohen R. D., Iles R. A., Barnett D., Howell M. E., Strunin J. The effect of changes in lactate uptake on the intracellular pH of the perfused rat liver. Clin Sci. 1971 Aug;41(2):159–170. doi: 10.1042/cs0410159. [DOI] [PubMed] [Google Scholar]
  5. Cohen R. D., Iles R. A. Intracellular pH: measurement, control, and metabolic interrelationships. CRC Crit Rev Clin Lab Sci. 1975 Sep;6(2):101–143. doi: 10.3109/10408367509151567. [DOI] [PubMed] [Google Scholar]
  6. Dubinsky W. P., Racker E. The mechanism of lactate transport in human erythrocytes. J Membr Biol. 1978 Dec 8;44(1):25–36. doi: 10.1007/BF01940571. [DOI] [PubMed] [Google Scholar]
  7. Graf J., Petersen O. H. Cell membrane potential and resistance in liver. J Physiol. 1978 Nov;284:105–126. doi: 10.1113/jphysiol.1978.sp012530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guder W. G., Schmidt U. Liver cell heterogeneity. The distribution of pyruvate kinase and phosphoenolpyruvate carboxykinase (GTP) in the liver lobule of fed and starved rats. Hoppe Seylers Z Physiol Chem. 1976 Dec;357(12):1793–1800. doi: 10.1515/bchm2.1976.357.2.1793. [DOI] [PubMed] [Google Scholar]
  9. HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
  10. Iles R. A., Baron P. G., Cohen R. D. Mechanism of the effect of varying PCO2 on gluconeogenesis from lactate in the perfused rat liver. Clin Sci Mol Med. 1978 Aug;55(2):183–188. doi: 10.1042/cs0550183. [DOI] [PubMed] [Google Scholar]
  11. Iles R. A., Cohen R. D., Rist A. H., Baron P. G. The mechanism of inhibition by acidosis of gluconeogenesis from lactate in rat liver. Biochem J. 1977 Apr 15;164(1):185–191. doi: 10.1042/bj1640185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iles R. A., Griffiths J. R., Stevens A. N., Gadian D. G., Porteous R. Effects of fructose on the energy metabolism and acid-base status of the perfused starved-rat liver. A 31phosphorus nuclear magnetic resonance study. Biochem J. 1980 Oct 15;192(1):191–202. doi: 10.1042/bj1920191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iles R. Measurement of intracellular pH. Biosci Rep. 1981 Sep;1(9):687–699. doi: 10.1007/BF01116466. [DOI] [PubMed] [Google Scholar]
  14. Lloyd M. H., Iles R. A., Simpson B. R., Strunin J. M., Layton J. M., Cohen R. D. The effect of simulated metabolic acidosis on intracellular pH and lactate metabolism in the isolated perfused rat liver. Clin Sci Mol Med. 1973 Oct;45(4):543–549. doi: 10.1042/cs0450543. [DOI] [PubMed] [Google Scholar]
  15. Monson J. P., Smith J. A., Cohen R. D., Iles R. A. Evidence for a lactate transporter in the plasma membrane of the rat hepatocyte. Clin Sci (Lond) 1982 Apr;62(4):411–420. doi: 10.1042/cs0620411. [DOI] [PubMed] [Google Scholar]
  16. NOVIKOFF A. B. Cell heterogeneity within the hepatic lobule of the rat: staining reactions. J Histochem Cytochem. 1959 Jul;7(4):240–244. doi: 10.1177/7.4.240. [DOI] [PubMed] [Google Scholar]
  17. Paillard M. Direct intracellular pH measurement in rat and crab muscle. J Physiol. 1972 Jun;223(2):297–319. doi: 10.1113/jphysiol.1972.sp009848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Radda G. K., Gadian D. G., Ross B. D. Energy metabolism and cellular pH in normal and pathological conditions. A new look through 31phosphorus nuclear magnetic resonance. Ciba Found Symp. 1982;87:36–57. doi: 10.1002/9780470720691.ch3. [DOI] [PubMed] [Google Scholar]
  19. Raivio K. O., Kekomäki M. P., Mäenpä P. H. Depletion of liver adenine nucleotides induced by D-fructose. Dose-dependence and specificity of the fructose effect. Biochem Pharmacol. 1969 Oct;18(10):2615–2624. doi: 10.1016/0006-2952(69)90192-0. [DOI] [PubMed] [Google Scholar]
  20. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  21. Roos A. Intracellular pH and buffering power of rat muscle. Am J Physiol. 1971 Jul;221(1):182–188. doi: 10.1152/ajplegacy.1971.221.1.182. [DOI] [PubMed] [Google Scholar]
  22. Shulman R. G., Brown T. R., Ugurbil K., Ogawa S., Cohen S. M., den Hollander J. A. Cellular applications of 31P and 13C nuclear magnetic resonance. Science. 1979 Jul 13;205(4402):160–166. doi: 10.1126/science.36664. [DOI] [PubMed] [Google Scholar]
  23. Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thomas R. C. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol. 1977 Dec;273(1):317–338. doi: 10.1113/jphysiol.1977.sp012096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Woods H. F., Eggleston L. V., Krebs H. A. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J. 1970 Sep;119(3):501–510. doi: 10.1042/bj1190501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. de Hemptinne A. A double-barrel pH micro-electrode for intracellular use [proceedings]. J Physiol. 1979 Oct;295:5P–6P. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES