Abstract
The development of the oxazaphosphorine cytostatics, cyclophosphamide, ifosfamide and trofosfamide was based on the idea of extending the transport from/active from principle to the highly reactive nitrogen mustard group. In a critical analysis and synopsis of the available findings and knowledge, the question of the extent to which the hypotheses on which this concept is based have been confirmed in experiments and in clinical practice is investigated.
From the chemical and synthetic viewpoint, the intended conversion of the reactive nitrogen mustard into an inactive transport from (latentiation) has been achieved.
The requirement of enzymatic activation of the transport form in the target organ (the cancer cell) has been achieved by a sequential series of various metabolic reactions and has been proven.
The objective of a substantial increase in the therapeutic range of alkylating agents has been achieved with the development of the oxazaphosphorine cytostatics. The high cancerotoxic selectivity of these compounds is closely linked with the cytostatic specificity of their activated primary metabolites.
A further increase in the cancerotoxic selectivity of oxazaphosphorines has been achieved by the development of mesna as a regional uroprotector. Mesna eliminates the danger of therapy-limiting urotoxic side effects of oxazaphosphorines. Under mesna protection oxazaphosphorines can be used at higher dosages and with greater safety and their therapeutic efficacy can be increased.
Key words: Oxazaphosphorine cytostatics, Cyclophosphamide, Ifosfamide, Trofosfamide, Transport form/active form principle, Cancerotoxic selectivity/cytostatic specificity, Mesna, Regional detoxification, Organspecific detoxification
Footnotes
The “Journal of Cancer Research and Clinical Oncology” publishes in loose succession “Editorials” and “Guest Editorials” on current and/or controversial problems in experimental and clinical oncology. These contributions represent exclusively the personal opinion of the author. The Editors
With the support of the Bundesministerium für Forschung und Technologie, Bonn
References
- Arnold H, Bourseaux F (1958) Synthese und Abbau zytostatisch wirksamer zyklischer N-Phosphamidester des Bis-(β-chloräthyl)-amins. Angew Chemie 70:539–544 [Google Scholar]
- Arnold H, Bourseaux F, Brock N (1961) Über Beziehungen zwischen chemischer Konstitution und cancerotoxischer Wirkung in der Reihe der Phosphamidester des Bis-(β-chloräthyl)-amins. Arzneimittelforsch (Drug Res) 11:143–15813684379 [Google Scholar]
- Bielicki L, Voelcker G, Hohorst HJ (1984) Activated cyclophosphamide: an enzyme-mechanism-based suicide inactivator of DNA polymerase/3′-5′-exonuclease. J Cancer Res Clin Oncol 108:195–198 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock N (1958) Zur pharmakologischen Charakterisierung zyklischer N-Lost-Phosphamidester als Krebs-Chemotherapeutika. Arzneimittelforsch (Drug Res) 1–9 [PubMed]
- Brock N (1972) Pharmacological studies with ifosfamide, a new oxazaphosphorine compound. In: Semonsky M, Hijzlar M, Masak S (eds) Advances in antimicrobial amd antineoplastic chemotherapy. Urban & Schwarzenberg, München Berlin Wien, pp 759–761 [Google Scholar]
- Brock N (1976a) Experimental Basis of Cancer Chemotherapy. In: Hellman K, Connors TA (eds) Chemotherapy vol. 7 Plenum Publishing Corporation, New York [Google Scholar]
- Brock N (1976b) Comparative pharmacologic study in vitro and in vivo with cyclophosphamide (NSC-26271), cyclophosphamide metabolites, and plain nitrogen mustard compounds. Cancer Treat Rep 60:301–307 [PubMed] [Google Scholar]
- Brock N (1980) Konzeption und Wirkmechanismus von Uromitexan (Mesna). Beiträge zur Onkologie 5. S. Karger, Basel München Paris London New York Sydney, pp 1–11 [Google Scholar]
- Brock N (1983) Oxazaphosphorine cytostatics: structure-activity relationships, selectivity and metabolism, regional detoxification. In: Reinhoudt DN, Connors TA, Pinedo HM, Van de Poll KW (eds) Structure-activity relationships of anti-tumour agents. Martinus Nijhoff Publ., The Hague, Boston London, pp 239–267 [Google Scholar]
- Brock N, Hohorst HJ (1962) Über die Aktivierung von Cyclophosphamid im Warmblüterorganismus. Naturwissenschaften 49:610–611 [Google Scholar]
- Brock N, Hohorst HJ (1977) The problem of specificity and selectivity of alkylating cytostatics: studies on N-2-chloroethyl-amido-oxazaphosphorines. Z Krebsforsch 88:185–215 [Google Scholar]
- Brock N, Habs M, Pohl J, Schmähl D, Stekar J (1982b) Mesna (Natrium-2-Mercaptoethansulfonat). Prophylaxe der akuten urotoxischen Nebenwirkungen sowie der kanzerogenen Spätfolgen von Cyclophosphamid und Ifosfamid. Therapiewoche 32:4975–4996 [Google Scholar]
- Brock N, Hilgard P, Pohl J, Ormstadt K, Orrenius S (1984) Pharmacokinetics and mechanism of action of detoxifying low-molecular-weight thiols. J Cancer Res Clin Oncol 108:87–97 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock N, Pohl J, Stekar J (1981a) Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention. I. Experimental studies on the urotoxicity of alkylating compounds. Eur J Cancer Clin Oncol 17:595–607 [DOI] [PubMed] [Google Scholar]
- Brock N, Pohl J, Stekar J (1981b) Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention. 2. Comparative study on the uroprotective efficacy of thiols and other sulfur compounds. Eur J Cancer Clin Oncol 17:1155–1168 [PubMed] [Google Scholar]
- Brock N, Pohl J, Stekar J, Scheef W (1982a) Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention—III. Profile of action of sodium 2-mercaptoethane sulfonate (Mesna) Eur J Cancer Clin Oncol 18:1377–1387 [DOI] [PubMed] [Google Scholar]
- Burkert H, Nagel GA (eds) (1981) New experience with oxazaphosphorines with special reference to the uroprotector Uromitexan. S. Karger, Basel München Paris London New York Sidney [Google Scholar]
- Carl PL, Chakravarty PK, Katzenellenbogen JA, Weber MJ (1980) Protease-activated “prodrugs” for cancer chemotherapy. Proc Natl Acad Sci USA 77:2224–2228 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connors TA, Whisson ME (1966) Cure of mice bearing advanced plasma cell tumours with aniline mustard: Relationship between glucuronidase activity and tumour sensitivity. Nature 210:866 [DOI] [PubMed] [Google Scholar]
- Cox PJ, Phillips BJ, Thomas P (1975) The enzymatic basis of the selective action of cyclophosphamide. Cancer Res 35:3755–3761 [PubMed] [Google Scholar]
- Cox PJ, Phillips BJ, Thomas P (1976) Studies on the selective action of cyclophosphamide (NSC-26271): inactivation of the hydroxylated metabolite by tissue-soluble enzymes. Cancer Treat Rep 60:321–326 [PubMed] [Google Scholar]
- Druckrey H (1952) Experimentelle Grundlagen der Chemotherapie des Krebses. Dtsch Med Wochenschr 77:1534–1537 [DOI] [PubMed] [Google Scholar]
- Druckrey H, Steinhoff F, Nakayama M, Preussmann R, Anger K (1963) Experimentelle Beiträge zum Dosis-Problem in der Krebs-Chemotherapie und zur Wirkungsweise von Endoxan. Dtsch Med Wochenschr 88:651 [Google Scholar]
- Elion GB (1985) Selectivity-Key to chemotherapy: Presidential Address. Cancer Res 45:2943–2950 [PubMed] [Google Scholar]
- Friedman OM, Seligman AM (1954) Preparation of N-phosphorylated derivatives of bis-β-chloroethylamine. J Am Chem Soc 76:655–658 [Google Scholar]
- Goldin A, Serpick AA, Mantel N (1966) Experimental screening procedures and clinical predictability value. Cancer Chemother Rep 50:173–218 [PubMed] [Google Scholar]
- Gros L, Ringsdorf H, Schupp H (1981) Polymere Antitumormittel auf molekularer und zellulärer Basis? Angew Chemie 93:311–332 [Google Scholar]
- Heubner W (1956) Einfall und Zufall bei der Auffindung von Arzneimitteln. Pharmazie 101:378 [Google Scholar]
- Hill DL (1975) A review of cyclophosphamide. Charles C. Thomas, Springfield IL [Google Scholar]
- Hitchings GH, Burchall JJ (1965) Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv Enzymol 27:417–468 [DOI] [PubMed] [Google Scholar]
- Hohorst HJ, Draeger U, Peter G, Voelcker G (1976) The problem of oncostatic specificity of cyclophosphamide (NSC-26271): studies on reactions that control the alkylating and cytotoxic activity. Cancer Treat Rep 60:309–315 [PubMed] [Google Scholar]
- Hohorst HJ, Bielicki L, Voelcker G (1986) The enzymatic basis of cyclophosphamide specificity. In: Weber G (ed) Advances in enzyme regulation. Pergamon Press Oxford [DOI] [PubMed] [Google Scholar]
- Ishidate M, Sakurai Y, Yoshida T, Sato H, Sato H, Matsui E (1953) Experimental studies on chemotherapy of malignant growth employing Yoshida sarcoma animals. Gann 44:342–346 [PubMed] [Google Scholar]
- Klein HO, Christian E, Coerper C et al. (1982) High-dose ifosfamide (IFO) and mesna as continuous infusion over five days—A phase I/II trial. 13th Int Cancer Congr Seattle [DOI] [PubMed]
- Klein HO, Wickramanayake PD, Coerper C, Christian E, Pohl J, Brock N (1983) High-dose ifosfamide and mesna as continuous infusion over five days—a phase I/II trial. Cancer Treat Rev 10 (Suppl A):167–173 [DOI] [PubMed] [Google Scholar]
- Kohn FR, Sladek NE (1984) Aldehyde dehydrogenase activity as the basis for the differential sensitivity of murine pluripotent and progenitor hematopoietic cells to oxazaphosphorines in vitro. Proc Am Assoc Cancer Res 25:689 [Google Scholar]
- Larionov LF (1965) Cancer chemotherapy. Pergamon Press, Oxford London Edinburgh New York Paris Frankfurt [Google Scholar]
- Manson MM, Legg RF, Watson JV, Green JA, Neal GE (1981) An examination of the relative resistance to aflatoxin B1 and susceptibilities to gamma-glutamyl p-phenylene diamine mustard of gamma-glutamyl transferase negative and positive cell lines. Carcinogenesis 2:661–670 [DOI] [PubMed] [Google Scholar]
- Norpoth K (1977) A Contribution to the metabolism of ifosfamide in the rat and man. Proc Int Holoxan Symposium Düsseldorf, pp 40–45
- Popper KR (1982) Logik der Forschung. 7. Aufl. J.C.B. Mohr (Paul Siebeck), Tübingen
- Ross WCJ (1953) The chemistry of cytotoxic alkylating agents. Adv Cancer Res 1:397 [DOI] [PubMed] [Google Scholar]
- Ross WCJ (1974) Rational design of alkylating agents. In: Heffter-Heubner (eds) Handbuch der experimentellen Pharmakologie Vol XXXVIII. Springer Verlag, Berlin Heidelberg New York [Google Scholar]
- Scheef W (1981) Clinical experience with mesna (Uromitexan) Abstr 173 12th Int Congr Chemother, Florence, p 85
- Scheulen ME, Bremer K, Niederle N et al. (1982) Ifosfamide in refractory malignant diseases. Results of clinical phase II-study of 144 patients with the demonstration of the uroprotective effect of mesna. 13th Int Cancer Congress, Seattle
- Schmähl D, Druckrey H (1956) Beiträge zum Wirkungsmechanismus von N-Oxyd-Lost. Naturwissenschaften 43:199 [Google Scholar]
- Schneider B (1984) Modelle und Realitätsbezug in der empirischen, insbesondere biomedizinischen Forschung. In: Köhler CO, Tautu P, Wagner G: Der Beitrag der Information zur Arbeit zum Fortschritt der Medizin Springer-Verlag Berlin Heidelberg New York Tokyo, pp 57–65 [Google Scholar]
- Schnitker J, Brock N, Burkert H, Fichtner E (1976) Evaluation of a cooperative clinical study of the cytostatic agent ifosfamide. Arzneimittelforsch (Drug Res) 26:1783–1793 [PubMed] [Google Scholar]
- Sladek NE (1973) Bioassay and relative cytotoxic potency of cyclophosphamide metabolites generated in vitro and in vivo. Cancer Res 33:1150–1158 [PubMed] [Google Scholar]
- Spitzy KH, Karrer K (eds) (1983) Oxazaphosphorine—safety and therapeutic potential. Proc 13th International Congr of Chemotherapy, Vienna, Symposium 83
- Stachowiak H (1973) Allgemeine Modelltheorie. Springer Verlag Wien New York [Google Scholar]
- Sugiura K, Schmid FA, Schmid MM (1961) Antitumor activity of cytoxan. Cancer Res 21:1412–1420 [PubMed] [Google Scholar]
- Uadia P, Blair AH, Ghose T (1983) Uptake of methotrexate linked to an anti-EL4-lymphoma antibody by EL4 cells. Cancer Immunol Immonother 16:127–129 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Oosterom AT, Einhorn LH (eds) (1986) Recent experience with ifosfamide-mesna in solid tumors. 3rd European Conference on Clinical Oncology and Cancer Nursing. Satellite Symposium, Stockholm
- Voelcker G, Bielicki L, Hohorst HJ (1981) Evidence for enzymatic toxification of “activated” cyclophosphamide (4-hydroxycyclophosphamide). J Cancer Res Clin Oncol 99A:58–59 [Google Scholar]
- Whisson ME, Connors TA (1965) Cure of mice bearing advanced plasma cell tumours with aniline mustard. Nature 206:689 [DOI] [PubMed] [Google Scholar]
- Wiltshaw E, Stuart-Harris R (1982) Single agent ifosfamide plus mesna for metastatic soft tissue sarcoma. 13th Int Cancer Congr Seattle
