Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Sep;67(3):1052–1059. doi: 10.1016/S0006-3495(94)80570-3

Ca-mediated and independent effects of arachidonic acid on gap junctions and Ca-independent effects of oleic acid and halothane.

A Lazrak 1, A Peres 1, S Giovannardi 1, C Peracchia 1
PMCID: PMC1225457  PMID: 7811915

Abstract

In Novikoff hepatoma cell pairs studied by double perforated patch clamp (DPPC), brief (20 s) exposure to 20 microM arachidonic acid (AA) induced a rapid and reversible uncoupling. In pairs studied by double whole-cell clamp (DWCC), uncoupling was completely prevented by effective buffering of Cai2+ with BAPTA. Similarly, AA (20 s) had no effect on coupling in cells perfused with solutions containing no added Ca2+ (SES-no-Ca) and studied by DPPC, suggesting that Ca2+ influx plays an important role. Parallel experiments monitoring [Ca2+]i with fura-2 showed that [Ca2+]i increases with AA to 0.7-1.5 microM in normal [Ca2+]o, and to approximately 400 nM in SES-no-Ca solutions. The rate of [Ca2+]i increase matched that of Gj decrease, but [Ca2+]i recovery was faster. In cells studied by DWCC with 2 mM BAPTA in the pipette solution and superfused with SES-no-Ca, long exposure (1 min) to 20 microM AA caused a slow and virtually irreversible uncoupling. This result suggests that AA has a dual mechanism of uncoupling: one dominant, fast, reversible, and Ca(2+)-dependent, the other slow, poorly reversible, and Ca(2+)-independent. In contrast, uncoupling by oleic acid (OA) or halothane was insensitive to internal buffering with BAPTA, suggesting a Ca(2+)-independent mechanism only.

Full text

PDF
1052

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler E. M., Augustine G. J., Duffy S. N., Charlton M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci. 1991 Jun;11(6):1496–1507. doi: 10.1523/JNEUROSCI.11-06-01496.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelrod J., Burch R. M., Jelsema C. L. Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci. 1988 Mar;11(3):117–123. doi: 10.1016/0166-2236(88)90157-9. [DOI] [PubMed] [Google Scholar]
  3. Burt J. M., Massey K. D., Minnich B. N. Uncoupling of cardiac cells by fatty acids: structure-activity relationships. Am J Physiol. 1991 Mar;260(3 Pt 1):C439–C448. doi: 10.1152/ajpcell.1991.260.3.C439. [DOI] [PubMed] [Google Scholar]
  4. Damron D. S., Bond M. Modulation of Ca2+ cycling in cardiac myocytes by arachidonic acid. Circ Res. 1993 Feb;72(2):376–386. doi: 10.1161/01.res.72.2.376. [DOI] [PubMed] [Google Scholar]
  5. Dorn G. W., 2nd, Becker M. W. Thromboxane A2 stimulated signal transduction in vascular smooth muscle. J Pharmacol Exp Ther. 1993 Apr;265(1):447–456. [PubMed] [Google Scholar]
  6. Fluri G. S., Rüdisüli A., Willi M., Rohr S., Weingart R. Effects of arachidonic acid on the gap junctions of neonatal rat heart cells. Pflugers Arch. 1990 Oct;417(2):149–156. doi: 10.1007/BF00370692. [DOI] [PubMed] [Google Scholar]
  7. Giaume C., Randriamampita C., Trautmann A. Arachidonic acid closes gap junction channels in rat lacrimal glands. Pflugers Arch. 1989 Jan;413(3):273–279. doi: 10.1007/BF00583541. [DOI] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson R., Hammer M., Sheridan J., Revel J. P. Gap junction formation between reaggregated Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4536–4540. doi: 10.1073/pnas.71.11.4536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kent K. C., Collins L. J., Schwerin F. T., Raychowdhury M. K., Ware J. A. Identification of functional PGH2/TxA2 receptors on human endothelial cells. Circ Res. 1993 May;72(5):958–965. doi: 10.1161/01.res.72.5.958. [DOI] [PubMed] [Google Scholar]
  13. Lazrak A., Peracchia C. Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells. Biophys J. 1993 Nov;65(5):2002–2012. doi: 10.1016/S0006-3495(93)81242-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marty A., Neher E. Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol. 1985 Oct;367:117–141. doi: 10.1113/jphysiol.1985.sp015817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meyer R. A., Laird D. W., Revel J. P., Johnson R. G. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol. 1992 Oct;119(1):179–189. doi: 10.1083/jcb.119.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mochizuki-Oda N., Negishi M., Mori K., Ito S. Arachidonic acid activates cation channels in bovine adrenal chromaffin cells. J Neurochem. 1993 Nov;61(5):1882–1890. doi: 10.1111/j.1471-4159.1993.tb09830.x. [DOI] [PubMed] [Google Scholar]
  17. Negishi M., Ito S., Hayaishi O. Arachidonic acid stimulates phosphoinositide metabolism and catecholamine release from bovine adrenal chromaffin cells. Biochem Biophys Res Commun. 1990 Jun 15;169(2):773–779. doi: 10.1016/0006-291x(90)90398-7. [DOI] [PubMed] [Google Scholar]
  18. Ordway R. W., Singer J. J., Walsh J. V., Jr Direct regulation of ion channels by fatty acids. Trends Neurosci. 1991 Mar;14(3):96–100. doi: 10.1016/0166-2236(91)90069-7. [DOI] [PubMed] [Google Scholar]
  19. Parker J., Daniel L. W., Waite M. Evidence of protein kinase C involvement in phorbol diester-stimulated arachidonic acid release and prostaglandin synthesis. J Biol Chem. 1987 Apr 15;262(11):5385–5393. [PubMed] [Google Scholar]
  20. Peracchia C. Increase in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration. J Membr Biol. 1990 Jan;113(1):75–92. doi: 10.1007/BF01869608. [DOI] [PubMed] [Google Scholar]
  21. Peres A., Racca C., Zippel R., Sturani E. Cytosolic calcium and membrane conductance in response to platelet-derived growth factor and bradykinin stimulation in single human fibroblasts. Eur J Cell Biol. 1990 Dec;53(2):290–295. [PubMed] [Google Scholar]
  22. Piomelli D., Shapiro E., Feinmark S. J., Schwartz J. H. Metabolites of arachidonic acid in the nervous system of Aplysia: possible mediators of synaptic modulation. J Neurosci. 1987 Nov;7(11):3675–3686. doi: 10.1523/JNEUROSCI.07-11-03675.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Poenie M. Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium. 1990 Feb-Mar;11(2-3):85–91. doi: 10.1016/0143-4160(90)90062-y. [DOI] [PubMed] [Google Scholar]
  24. Reyes J. L., Nava E., Namorado M. C. Receptor-mediated effect of a synthetic thromboxane-analogue on cytosolic calcium in isolated proximal tubules. Prostaglandins. 1992 Aug;44(2):145–154. doi: 10.1016/0090-6980(92)90076-6. [DOI] [PubMed] [Google Scholar]
  25. Roe M. W., Lemasters J. J., Herman B. Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium. 1990 Feb-Mar;11(2-3):63–73. doi: 10.1016/0143-4160(90)90060-8. [DOI] [PubMed] [Google Scholar]
  26. Shimizu T., Wolfe L. S. Arachidonic acid cascade and signal transduction. J Neurochem. 1990 Jul;55(1):1–15. doi: 10.1111/j.1471-4159.1990.tb08813.x. [DOI] [PubMed] [Google Scholar]
  27. Wilkes J. M., Kajimura M., Scott D. R., Hersey S. J., Sachs G. Muscarinic responses of gastric parietal cells. J Membr Biol. 1991 Jun;122(2):97–110. doi: 10.1007/BF01872634. [DOI] [PubMed] [Google Scholar]
  28. Williams D. A., Fay F. S. Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium. 1990 Feb-Mar;11(2-3):75–83. doi: 10.1016/0143-4160(90)90061-x. [DOI] [PubMed] [Google Scholar]
  29. Yamagishi T., Yanagisawa T., Taira N. Ca2+ influx induced by the agonist U46619 is inhibited by hyperpolarization induced by the K+ channel opener cromakalim in canine coronary artery. Jpn J Pharmacol. 1992 Jul;59(3):291–299. doi: 10.1254/jjp.59.291. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES