Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Sep;67(3):1252–1259. doi: 10.1016/S0006-3495(94)80595-8

An estimated shape function for drift in a platelet-transport model.

C Yeh 1, A C Calvez 1, E C Eckstein 1
PMCID: PMC1225482  PMID: 7811940

Abstract

Prior work has shown that concentration profiles of platelets in flowing whole blood and of platelet-sized beads in flowing blood suspensions can include near-wall excesses. A model to describe this phenomenon was built about a single-component convective diffusion equation. To incorporate redistribution to preferred sites by shear flows of red cell suspensions, the model used a drift shape function (in addition to the commonly used augmented diffusion coefficient). This paper reports experiments that provide an average concentration profile from which the shape function for that model is calculated; the experiments and shape function are for the particular conditions of 40% hematocrit, platelet-sized latex beads (2.5 microns diameter), tube ID of 217 microns, and a wall shear rate of 555 s-1. Less precise estimates of the shape function obtained from data of previous studies indicate that the shape function is similar for the hematocrit of 15%.

Full text

PDF
1252

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts P. A., van den Broek S. A., Prins G. W., Kuiken G. D., Sixma J. J., Heethaar R. M. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis. 1988 Nov-Dec;8(6):819–824. doi: 10.1161/01.atv.8.6.819. [DOI] [PubMed] [Google Scholar]
  2. Eckstein E. C., Belgacem F. Model of platelet transport in flowing blood with drift and diffusion terms. Biophys J. 1991 Jul;60(1):53–69. doi: 10.1016/S0006-3495(91)82030-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eckstein E. C., Koleski J. F., Waters C. M. Concentration profiles of 1 and 2.5 microns beads during blood flow. Hematocrit effects. ASAIO Trans. 1989 Jul-Sep;35(3):188–190. [PubMed] [Google Scholar]
  4. Koleski J. F., Eckstein E. C. Near wall concentration profiles of 1.0 and 2.5 microns beads during flow of blood suspensions. ASAIO Trans. 1991 Jan-Mar;37(1):9–12. doi: 10.1097/00002480-199101000-00004. [DOI] [PubMed] [Google Scholar]
  5. Tangelder G. J., Slaaf D. W., Tierlinck H. C., Alewijnse R., Reneman R. S. Localization within a thin optical section of fluorescent blood platelets flowing in a microvessel. Microvasc Res. 1982 Mar;23(2):214–230. doi: 10.1016/0026-2862(82)90066-8. [DOI] [PubMed] [Google Scholar]
  6. Tilles A. W., Eckstein E. C. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc Res. 1987 Mar;33(2):211–223. doi: 10.1016/0026-2862(87)90018-5. [DOI] [PubMed] [Google Scholar]
  7. Waters C. M., Eckstein E. C. Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers. Artif Organs. 1990 Feb;14(1):7–13. doi: 10.1111/j.1525-1594.1990.tb01586.x. [DOI] [PubMed] [Google Scholar]
  8. Yeh C., Eckstein E. C. Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophys J. 1994 May;66(5):1706–1716. doi: 10.1016/S0006-3495(94)80962-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES