Abstract
We have accounted for the unusual structural change wherein dioleoylphosphatidylethanolamine undergoes a hexagonal-lamellar-hexagonal transition sequence as the water content is reduced systematically. We describe the role played by the energies of bending, hydration, voids in hexagonal interstices, and van der Waals interaction in this transition sequence. We have used the X-ray diffraction and osmotic stress experiments on the two phases to derive the structural parameters and all of the force constants defining the energetics of the hexagonal and lamellar phases. We have calculated the chemical potentials of lipid and water in both phases and derived the phase diagram of the lipid with no free, adjustable parameters. The calculated temperature/osmotic stress and temperature/composition diagrams quantitatively agree with experiment. The reentrant transition appears to be driven by a delicate balance between the hydration energy in the lamellar phase and bending energy in the hexagonal phase, whereas the energy of voids in hexagonal interstices defines its energy scale and temperature range. Van der Waals attraction between the bilayers in the lamellar phase does not appear to be important in this transition.
Full text
PDF![1603](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/edc8d05b136b/biophysj00070-0241.png)
![1604](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/e6f5e6830ccb/biophysj00070-0242.png)
![1605](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/60d693ab309b/biophysj00070-0243.png)
![1606](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/f37df332af04/biophysj00070-0244.png)
![1607](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/72e2efdd2455/biophysj00070-0245.png)
![1608](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/8993a0e1c3d5/biophysj00070-0246.png)
![1609](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/cb3994b786f7/biophysj00070-0247.png)
![1610](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/692089a5ceb7/biophysj00070-0248.png)
![1611](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526f/1225522/5c4370ea08a1/biophysj00070-0249.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boni L. T., Stewart T. P., Hui S. W. Alterations in phospholipid polymorphism by polyethylene glycol. J Membr Biol. 1984;80(1):91–104. doi: 10.1007/BF01868693. [DOI] [PubMed] [Google Scholar]
- Gawrisch K., Parsegian V. A., Hajduk D. A., Tate M. W., Graner S. M., Fuller N. L., Rand R. P. Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes. Biochemistry. 1992 Mar 24;31(11):2856–2864. doi: 10.1021/bi00126a003. [DOI] [PubMed] [Google Scholar]
- Gruner S. M., Parsegian V. A., Rand R. P. Directly measured deformation energy of phospholipid HII hexagonal phases. Faraday Discuss Chem Soc. 1986;(81):29–37. doi: 10.1039/dc9868100029. [DOI] [PubMed] [Google Scholar]
- Gruner S. M., Tate M. W., Kirk G. L., So P. T., Turner D. C., Keane D. T., Tilcock C. P., Cullis P. R. X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine. Biochemistry. 1988 Apr 19;27(8):2853–2866. doi: 10.1021/bi00408a029. [DOI] [PubMed] [Google Scholar]
- Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
- Rand R. P., Fuller N. L., Gruner S. M., Parsegian V. A. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry. 1990 Jan 9;29(1):76–87. doi: 10.1021/bi00453a010. [DOI] [PubMed] [Google Scholar]
- Rand R. P., Fuller N. L. Structural dimensions and their changes in a reentrant hexagonal-lamellar transition of phospholipids. Biophys J. 1994 Jun;66(6):2127–2138. doi: 10.1016/S0006-3495(94)81008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990 Feb 28;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
- Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate M. W., Gruner S. M. Temperature dependence of the structural dimensions of the inverted hexagonal (HII) phase of phosphatidylethanolamine-containing membranes. Biochemistry. 1989 May 16;28(10):4245–4253. doi: 10.1021/bi00436a019. [DOI] [PubMed] [Google Scholar]
- Turner D. C., Gruner S. M., Huang J. S. Distribution of decane within the unit cell of the inverted hexagonal (HII) phase of lipid-water-decane systems determined by neutron diffraction. Biochemistry. 1992 Feb 11;31(5):1356–1363. doi: 10.1021/bi00120a010. [DOI] [PubMed] [Google Scholar]