Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Nov;67(5):1882–1887. doi: 10.1016/S0006-3495(94)80670-8

Hydration force parameters of phosphatidylcholine lipid bilayers as determined from 2H-NMR studies of deuterated water.

F Volke 1, S Eisenblätter 1, G Klose 1
PMCID: PMC1225562  PMID: 7858124

Abstract

The continuous decrease of the quadrupolar splitting of deuterated water interacting with phosphocholine lipid bilayers with growing water concentration is analyzed as a function of the water activity. From the apparent linear dependence on water activity a measure for hydration forces is obtained. The forces calculated are in the range of published data using sorption isotherms and osmotic stress technique in combination with SAXS. A simple interaction potential which includes orientational order of water adsorbed on surfaces gives a physical base for these findings. Therefore, deuterium NMR may become a powerful tool for hydration force analysis complementing well-known methods.

Full text

PDF
1882

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechinger B., Seelig J. Conformational changes of the phosphatidylcholine headgroup due to membrane dehydration. A 2H-NMR study. Chem Phys Lipids. 1991 May-Jun;58(1-2):1–5. doi: 10.1016/0009-3084(91)90105-k. [DOI] [PubMed] [Google Scholar]
  2. Evans E. A., Parsegian V. A. Thermal-mechanical fluctuations enhance repulsion between bimolecular layers. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7132–7136. doi: 10.1073/pnas.83.19.7132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lundberg B., Svens E., Ekman S. The hydration of phospholipids and phospholipid-cholesterol complexes. Chem Phys Lipids. 1978 Nov;22(4):285–292. doi: 10.1016/0009-3084(78)90017-8. [DOI] [PubMed] [Google Scholar]
  5. Marsh D. Water adsorption isotherms and hydration forces for lysolipids and diacyl phospholipids. Biophys J. 1989 Jun;55(6):1093–1100. doi: 10.1016/S0006-3495(89)82906-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McIntosh T. J., Magid A. D., Simon S. A. Repulsive interactions between uncharged bilayers. Hydration and fluctuation pressures for monoglycerides. Biophys J. 1989 May;55(5):897–904. doi: 10.1016/S0006-3495(89)82888-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
  8. McIntosh T. J., Simon S. A. Contributions of hydration and steric (entropic) pressures to the interactions between phosphatidylcholine bilayers: experiments with the subgel phase. Biochemistry. 1993 Aug 17;32(32):8374–8384. doi: 10.1021/bi00083a042. [DOI] [PubMed] [Google Scholar]
  9. Ulrich A. S., Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994 May;66(5):1441–1449. doi: 10.1016/S0006-3495(94)80934-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Volke F., Eisenblätter S., Galle J., Klose G. Dynamic properties of water at phosphatidylcholine lipid-bilayer surfaces as seen by deuterium and pulsed field gradient proton NMR. Chem Phys Lipids. 1994 Apr 19;70(2):121–131. doi: 10.1016/0009-3084(94)90080-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES