Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Nov;67(5):1912–1924. doi: 10.1016/S0006-3495(94)80674-5

Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type.

E W McFarland 1, M J Kushmerick 1, T S Moerland 1
PMCID: PMC1225566  PMID: 7858128

Abstract

We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics.

Full text

PDF
1912

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alger J. R., Shulman R. G. NMR studies of enzymatic rates in vitro and in vivo by magnetization transfer. Q Rev Biophys. 1984 Feb;17(1):83–124. doi: 10.1017/s0033583500005266. [DOI] [PubMed] [Google Scholar]
  2. Aliev M. K., Saks V. A. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria. Biochim Biophys Acta. 1993 Jul 26;1143(3):291–300. doi: 10.1016/0005-2728(93)90200-y. [DOI] [PubMed] [Google Scholar]
  3. Ariano M. A., Armstrong R. B., Edgerton V. R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51–55. doi: 10.1177/21.1.51. [DOI] [PubMed] [Google Scholar]
  4. Bessman S. P., Geiger P. J. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981 Jan 30;211(4481):448–452. doi: 10.1126/science.6450446. [DOI] [PubMed] [Google Scholar]
  5. Bittl J. A., DeLayre J., Ingwall J. S. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat. Biochemistry. 1987 Sep 22;26(19):6083–6090. doi: 10.1021/bi00393a021. [DOI] [PubMed] [Google Scholar]
  6. Bittl J. A., Ingwall J. S. Intracellular high-energy phosphate transfer in normal and hypertrophied myocardium. Circulation. 1987 Jan;75(1 Pt 2):I96–101. [PubMed] [Google Scholar]
  7. Bittl J. A., Ingwall J. S. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem. 1985 Mar 25;260(6):3512–3517. [PubMed] [Google Scholar]
  8. Brindle K. M., Radda G. K. 31P-NMR saturation transfer measurements of exchange between Pi and ATP in the reactions catalysed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase in vitro. Biochim Biophys Acta. 1987 Apr 2;928(1):45–55. doi: 10.1016/0167-4889(87)90084-x. [DOI] [PubMed] [Google Scholar]
  9. Burke R. E., Levine D. N., Salcman M., Tsairis P. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol. 1974 May;238(3):503–514. doi: 10.1113/jphysiol.1974.sp010540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crow M. T., Kushmerick M. J. Chemical energetics of slow- and fast-twitch muscles of the mouse. J Gen Physiol. 1982 Jan;79(1):147–166. doi: 10.1085/jgp.79.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crow M. T., Kushmerick M. J. Correlated reduction of velocity of shortening and the rate of energy utilization in mouse fast-twitch muscle during a continuous tetanus. J Gen Physiol. 1983 Nov;82(5):703–720. doi: 10.1085/jgp.82.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Degani H., Alger J. R., Shulman R. G., Petroff O. A., Prichard J. W. 31P magnetization transfer studies of creatine kinase kinetics in living rabbit brain. Magn Reson Med. 1987 Jul;5(1):1–12. doi: 10.1002/mrm.1910050102. [DOI] [PubMed] [Google Scholar]
  13. Dulhunty A. F. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres. J Physiol. 1978 Mar;276:67–82. doi: 10.1113/jphysiol.1978.sp012220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Funk C. I., Clark A., Jr, Connett R. J. A simple model of aerobic metabolism: applications to work transitions in muscle. Am J Physiol. 1990 Jun;258(6 Pt 1):C995–1005. doi: 10.1152/ajpcell.1990.258.6.C995. [DOI] [PubMed] [Google Scholar]
  15. Hoerter J. A., Lauer C., Vassort G., Guéron M. Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a 31P-NMR study. Am J Physiol. 1988 Aug;255(2 Pt 1):C192–C201. doi: 10.1152/ajpcell.1988.255.2.C192. [DOI] [PubMed] [Google Scholar]
  16. Hoppeler H., Hudlicka O., Uhlmann E. Relationship between mitochondria and oxygen consumption in isolated cat muscles. J Physiol. 1987 Apr;385:661–675. doi: 10.1113/jphysiol.1987.sp016513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoppeler H. The different relationship of VO2max to muscle mitochondria in humans and quadrupedal animals. Respir Physiol. 1990 May-Jun;80(2-3):137–145. doi: 10.1016/0034-5687(90)90077-c. [DOI] [PubMed] [Google Scholar]
  18. Jacobus W. E. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Annu Rev Physiol. 1985;47:707–725. doi: 10.1146/annurev.ph.47.030185.003423. [DOI] [PubMed] [Google Scholar]
  19. Khalifah R. G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971 Apr 25;246(8):2561–2573. [PubMed] [Google Scholar]
  20. Kupriyanov V. V., Ya Steinschneider A., Ruuge E. K., Kapel'ko V. I., Yu Zueva M., Lakomkin V. L., Smirnov V. N., Saks V. A. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Biochim Biophys Acta. 1984 Dec 11;805(4):319–331. doi: 10.1016/0167-4889(84)90014-4. [DOI] [PubMed] [Google Scholar]
  21. Kushmerick M. J., Dillon P. F., Meyer R. A., Brown T. R., Krisanda J. M., Sweeney H. L. 31P NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle. J Biol Chem. 1986 Nov 5;261(31):14420–14429. [PubMed] [Google Scholar]
  22. Kushmerick M. J., Meyer R. A., Brown T. R. Regulation of oxygen consumption in fast- and slow-twitch muscle. Am J Physiol. 1992 Sep;263(3 Pt 1):C598–C606. doi: 10.1152/ajpcell.1992.263.3.C598. [DOI] [PubMed] [Google Scholar]
  23. Kushmerick M. J., Moerland T. S., Wiseman R. W. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7521–7525. doi: 10.1073/pnas.89.16.7521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Le Rumeur E., Le Moyec L., de Certaines J. D. Creatine kinase activity in rat skeletal muscle with intermittent tetanic stimulation. Magn Reson Med. 1992 Apr;24(2):335–342. doi: 10.1002/mrm.1910240214. [DOI] [PubMed] [Google Scholar]
  25. McAuliffe J. J., Perry S. B., Brooks E. E., Ingwall J. S. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation. Biochemistry. 1991 Mar 12;30(10):2585–2593. doi: 10.1021/bi00224a004. [DOI] [PubMed] [Google Scholar]
  26. McFarland E. W., Neuringer L. J., Kushmerick M. J. Chemical exchange magnetic resonance imaging (CHEMI). Magn Reson Imaging. 1988 Sep-Oct;6(5):507–515. doi: 10.1016/0730-725x(88)90125-7. [DOI] [PubMed] [Google Scholar]
  27. Meyer R. A., Brown T. R., Kushmerick M. J. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol. 1985 Mar;248(3 Pt 1):C279–C287. doi: 10.1152/ajpcell.1985.248.3.C279. [DOI] [PubMed] [Google Scholar]
  28. Meyer R. A., Kuchmerick M. J., Brown T. R. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol. 1982 Jan;242(1):C1–11. doi: 10.1152/ajpcell.1982.242.1.C1. [DOI] [PubMed] [Google Scholar]
  29. Meyer R. A. Linear dependence of muscle phosphocreatine kinetics on total creatine content. Am J Physiol. 1989 Dec;257(6 Pt 1):C1149–C1157. doi: 10.1152/ajpcell.1989.257.6.C1149. [DOI] [PubMed] [Google Scholar]
  30. Meyer R. A., Sweeney H. L., Kushmerick M. J. A simple analysis of the "phosphocreatine shuttle". Am J Physiol. 1984 May;246(5 Pt 1):C365–C377. doi: 10.1152/ajpcell.1984.246.5.C365. [DOI] [PubMed] [Google Scholar]
  31. Moreadith R. W., Jacobus W. E. Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to the adenine nucleotide translocase. J Biol Chem. 1982 Jan 25;257(2):899–905. [PubMed] [Google Scholar]
  32. Morrison J. F., Cleland W. W. Isotope exchange studies of the mechanism of the reaction catalyzed by adenosine triphosphate: creatine phosphotransferase. J Biol Chem. 1966 Feb 10;241(3):673–683. [PubMed] [Google Scholar]
  33. Nunnally R. L., Hollis D. P. Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry. 1979 Aug 7;18(16):3642–3646. doi: 10.1021/bi00583a032. [DOI] [PubMed] [Google Scholar]
  34. Roos A. Intracellular pH and buffering power of rat muscle. Am J Physiol. 1971 Jul;221(1):182–188. doi: 10.1152/ajplegacy.1971.221.1.182. [DOI] [PubMed] [Google Scholar]
  35. Saks V. A., Chernousova G. B., Gukovsky D. E., Smirnov V. N., Chazov E. I. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions. Eur J Biochem. 1975 Sep 1;57(1):273–290. doi: 10.1111/j.1432-1033.1975.tb02299.x. [DOI] [PubMed] [Google Scholar]
  36. Sanyal G., Maren T. H. Thermodynamics of carbonic anhydrase catalysis. A comparison between human isoenzymes B and C. J Biol Chem. 1981 Jan 25;256(2):608–612. [PubMed] [Google Scholar]
  37. Schimerlik M. I., Cleland W. W. Inhibition of creatine kinase by chromium nucleotides. J Biol Chem. 1973 Dec 25;248(24):8418–8423. [PubMed] [Google Scholar]
  38. Schlegel J., Wyss M., Schürch U., Schnyder T., Quest A., Wegmann G., Eppenberger H. M., Wallimann T. Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules. J Biol Chem. 1988 Nov 15;263(32):16963–16969. [PubMed] [Google Scholar]
  39. Shoubridge E. A., Bland J. L., Radda G. K. Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle. Biochim Biophys Acta. 1984 Sep 14;805(1):72–78. doi: 10.1016/0167-4889(84)90038-7. [DOI] [PubMed] [Google Scholar]
  40. Uğurbil K., Petein M., Maidan R., Michurski S., From A. H. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction. Biochemistry. 1986 Jan 14;25(1):100–107. doi: 10.1021/bi00349a015. [DOI] [PubMed] [Google Scholar]
  41. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zahler R., Bittl J. A., Ingwall J. S. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Biophys J. 1987 Jun;51(6):883–893. doi: 10.1016/S0006-3495(87)83416-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zeleznikar R. J., Goldberg N. D. Kinetics and compartmentation of energy metabolism in intact skeletal muscle determined from 18O labeling of metabolite phosphoryls. J Biol Chem. 1991 Aug 15;266(23):15110–15119. [PubMed] [Google Scholar]
  44. van Deursen J., Heerschap A., Oerlemans F., Ruitenbeek W., Jap P., ter Laak H., Wieringa B. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell. 1993 Aug 27;74(4):621–631. doi: 10.1016/0092-8674(93)90510-w. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES