Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Nov;67(5):2110–2119. doi: 10.1016/S0006-3495(94)80694-0

Single-particle tracking: models of directed transport.

M J Saxton 1
PMCID: PMC1225586  PMID: 7858148

Abstract

Single-particle tracking techniques make it possible to measure motion of individual particles on the cell surface. In these experiments, individual trajectories are observed, so the data analysis must take into account the randomness of individual random walks. Methods of data analysis are discussed for models combining diffusion and directed motion. In the uniform flow model, a tracer simultaneously diffuses and undergoes directed motion. In the conveyor belt model, a tracer binds and unbinds to a uniform conveyor belt moving with constant velocity. If a tracer is bound, it moves at the velocity of the conveyor belt; if it is unbound, it diffuses freely. Trajectories are analyzed using parameters that measure the extent and asymmetry of the trajectory. A method of assessing the usefulness of such parameters is presented, and pitfalls in data analysis are discussed. Joint probability distributions of pairs of extent and asymmetry parameters are obtained for a pure random walk. These distributions can be used to show that a trajectory is not likely to have resulted from a pure random walk.

Full text

PDF
2110

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. M., Georgiou G. N., Morrison I. E., Stevenson G. V., Cherry R. J. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci. 1992 Feb;101(Pt 2):415–425. doi: 10.1242/jcs.101.2.415. [DOI] [PubMed] [Google Scholar]
  2. Edidin M., Kuo S. C., Sheetz M. P. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science. 1991 Nov 29;254(5036):1379–1382. doi: 10.1126/science.1835798. [DOI] [PubMed] [Google Scholar]
  3. Family F, Vicsek T, Meakin P. Are random fractal clusters isotropic? Phys Rev Lett. 1985 Aug 12;55(7):641–644. doi: 10.1103/PhysRevLett.55.641. [DOI] [PubMed] [Google Scholar]
  4. Fein M., Unkeless J., Chuang F. Y., Sassaroli M., da Costa R., Vänänen H., Eisinger J. Lateral mobility of lipid analogues and GPI-anchored proteins in supported bilayers determined by fluorescent bead tracking. J Membr Biol. 1993 Jul;135(1):83–92. doi: 10.1007/BF00234654. [DOI] [PubMed] [Google Scholar]
  5. Ghosh R. N., Webb W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J. 1994 May;66(5):1301–1318. doi: 10.1016/S0006-3495(94)80939-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kucik D. F., Elson E. L., Sheetz M. P. Cell migration does not produce membrane flow. J Cell Biol. 1990 Oct;111(4):1617–1622. doi: 10.1083/jcb.111.4.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee G. M., Zhang F., Ishihara A., McNeil C. L., Jacobson K. A. Unconfined lateral diffusion and an estimate of pericellular matrix viscosity revealed by measuring the mobility of gold-tagged lipids. J Cell Biol. 1993 Jan;120(1):25–35. doi: 10.1083/jcb.120.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Popov S., Brown A., Poo M. M. Forward plasma membrane flow in growing nerve processes. Science. 1993 Jan 8;259(5092):244–246. doi: 10.1126/science.7678471. [DOI] [PubMed] [Google Scholar]
  10. Qian H., Sheetz M. P., Elson E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J. 1991 Oct;60(4):910–921. doi: 10.1016/S0006-3495(91)82125-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rudnick J., Gaspari G. The shapes of random walks. Science. 1987 Jul 24;237(4813):384–389. doi: 10.1126/science.237.4813.384. [DOI] [PubMed] [Google Scholar]
  12. Saxton M. J. Lateral diffusion in an archipelago. Single-particle diffusion. Biophys J. 1993 Jun;64(6):1766–1780. doi: 10.1016/S0006-3495(93)81548-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sheetz M. P. Glycoprotein motility and dynamic domains in fluid plasma membranes. Annu Rev Biophys Biomol Struct. 1993;22:417–431. doi: 10.1146/annurev.bb.22.060193.002221. [DOI] [PubMed] [Google Scholar]
  14. Sheetz M. P., Turney S., Qian H., Elson E. L. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature. 1989 Jul 27;340(6231):284–288. doi: 10.1038/340284a0. [DOI] [PubMed] [Google Scholar]
  15. Zhang F., Lee G. M., Jacobson K. Protein lateral mobility as a reflection of membrane microstructure. Bioessays. 1993 Sep;15(9):579–588. doi: 10.1002/bies.950150903. [DOI] [PubMed] [Google Scholar]
  16. de Brabander M., Nuydens R., Ishihara A., Holifield B., Jacobson K., Geerts H. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy. J Cell Biol. 1991 Jan;112(1):111–124. doi: 10.1083/jcb.112.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES