Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1994 Dec;67(6):2280–2285. doi: 10.1016/S0006-3495(94)80713-1

Streaming potentials reveal a short ryanodine-sensitive selectivity filter in cardiac Ca2+ release channel.

Q Tu 1, P Vélez 1, M Brodwick 1, M Fill 1
PMCID: PMC1225612  PMID: 7696468

Abstract

Single cardiac sarcoplasmic reticulum Ca2+ release channels were reconstituted into planar bilayer membranes. Streaming potentials were measured in osmotically asymmetric solutions as a shift in the reversal potential. Potential changes induced by water movement through the bilayer (concentration polarization) and reduced ion activity in the concentrated non-electrolyte solutions were determined using valinomycin. In 400 mM symmetrical CsCH3SO3, the average streaming potential was 2.74 +/- 0.2 mV (n = 5, mean +/- SE; 2 osmol/kg) and independent of the osmoticant used (sucrose or diglycine). Identical streaming potential magnitudes were obtained regardless of which side of the membrane the nonelectrolyte was placed. This suggests that the narrow part of the pore where single file diffusion occurs is relatively short (i.e., accommodates a minimum of 3 H2O molecules). This value is comparable to similar measurements in a variety of surface membrane channels. Ryanodine-modified channels had no measurable streaming potential, an increased Tris+ permeability relative to Cs+, and decreased divalent selectivity (PCs/PTris 5.1 +/- 1.1 to 1.7 +/- 0.3, n = 3; PBa/PCs 8.2 +/- 0.7 to 1.8 +/- 0.5, n = 4). Cation/anion selectivity was essentially unaltered in ryanodine-modified channels. These results suggests that the narrow region of the permeation pathway (i.e., the selectivity filter) is relatively short and widens after ryanodine modification.

Full text

PDF
2280

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcayaga C., Cecchi X., Alvarez O., Latorre R. Streaming potential measurements in Ca2+-activated K+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes. Biophys J. 1989 Feb;55(2):367–371. doi: 10.1016/S0006-3495(89)82814-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry P. H., Diamond J. M. Effects of unstirred layers on membrane phenomena. Physiol Rev. 1984 Jul;64(3):763–872. doi: 10.1152/physrev.1984.64.3.763. [DOI] [PubMed] [Google Scholar]
  3. Campbell D. T. Modified kinetics and selectivity of sodium channels in frog skeletal muscle fibers treated with aconitine. J Gen Physiol. 1982 Nov;80(5):713–731. doi: 10.1085/jgp.80.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cecchi X., Bull R., Franzoy R., Coronado R., Alvarez O. Probing the pore size of the hemocyanin channel. Biochim Biophys Acta. 1982 Dec 8;693(1):173–176. doi: 10.1016/0005-2736(82)90484-9. [DOI] [PubMed] [Google Scholar]
  5. Györke S., Fill M. Ryanodine receptor adaptation: control mechanism of Ca(2+)-induced Ca2+ release in heart. Science. 1993 May 7;260(5109):807–809. doi: 10.1126/science.8387229. [DOI] [PubMed] [Google Scholar]
  6. Hamilton S. L., Alvarez R. M., Fill M., Hawkes M. J., Brush K. L., Schilling W. P., Stefani E. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes. Anal Biochem. 1989 Nov 15;183(1):31–41. doi: 10.1016/0003-2697(89)90167-x. [DOI] [PubMed] [Google Scholar]
  7. Latorre R., Miller C. Conduction and selectivity in potassium channels. J Membr Biol. 1983;71(1-2):11–30. doi: 10.1007/BF01870671. [DOI] [PubMed] [Google Scholar]
  8. Levitt D. G., Elias S. R., Hautman J. M. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim Biophys Acta. 1978 Sep 22;512(2):436–451. doi: 10.1016/0005-2736(78)90266-3. [DOI] [PubMed] [Google Scholar]
  9. Meissner G., Rousseau E., Lai F. A. Structural and functional correlation of the trypsin-digested Ca2+ release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1989 Jan 25;264(3):1715–1722. [PubMed] [Google Scholar]
  10. Meves H., Vogel W. Calcium inward currents in internally perfused giant axons. J Physiol. 1973 Nov;235(1):225–265. doi: 10.1113/jphysiol.1973.sp010386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller C. Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum. Biophys J. 1982 Jun;38(3):227–230. doi: 10.1016/S0006-3495(82)84552-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nakai J., Imagawa T., Hakamat Y., Shigekawa M., Takeshima H., Numa S. Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS Lett. 1990 Oct 1;271(1-2):169–177. doi: 10.1016/0014-5793(90)80399-4. [DOI] [PubMed] [Google Scholar]
  13. Rosenberg P. A., Finkelstein A. Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes. J Gen Physiol. 1978 Sep;72(3):327–340. doi: 10.1085/jgp.72.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith J. S., Imagawa T., Ma J., Fill M., Campbell K. P., Coronado R. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol. 1988 Jul;92(1):1–26. doi: 10.1085/jgp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tate C. A., Bick R. J., Chu A., Van Winkle W. B., Entman M. L. Nucleotide specificity of cardiac sarcoplasmic reticulum. GTP-induced calcium accumulation and GTPase activity. J Biol Chem. 1985 Aug 15;260(17):9618–9623. [PubMed] [Google Scholar]
  16. Tinker A., Williams A. J. Probing the structure of the conduction pathway of the sheep cardiac sarcoplasmic reticulum calcium-release channel with permeant and impermeant organic cations. J Gen Physiol. 1993 Dec;102(6):1107–1129. doi: 10.1085/jgp.102.6.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tu Q., Velez P., Cortes-Gutierrez M., Fill M. Surface charge potentiates conduction through the cardiac ryanodine receptor channel. J Gen Physiol. 1994 May;103(5):853–867. doi: 10.1085/jgp.103.5.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wagenknecht T., Grassucci R., Frank J., Saito A., Inui M., Fleischer S. Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature. 1989 Mar 9;338(6211):167–170. doi: 10.1038/338167a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES