Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982;328:105–123. doi: 10.1113/jphysiol.1982.sp014255

Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro

B E Alger 1,2,*, R A Nicoll 1,2
PMCID: PMC1225649  PMID: 7131309

Abstract

1. Intracellular recordings from CA1 pyramidal cells in the rat hippocampal slice preparation have been used to study the neuronal pathways involved in hippocampal synaptic inhibition.

2. When direct comparisons are made in a single pyramidal cell, orthodromic stimulation delivered to stratum (s.) radiatum in normal recording conditions is found to be more effective than antidromic stimulation in producing inhibitory post-synaptic potentials (i.p.s.p.s).

3. Orthodromic i.p.s.p.s in normal conditions appear to be complex, multiphasic events, whereas antidromic i.p.s.p.s are relatively simple. The orthodromic i.p.s.p. involves both a GABA-mediated dendritic component and a non-GABA-mediated component neither of which is activated by antidromic stimulation.

4. Barbiturates induce a late depolarizing phase of the orthodromic response, a `depolarizing i.p.s.p.', which is mediated by GABA. The depolarizing i.p.s.p. is not produced by antidromic stimulation.

5. Injections of tetrodotoxin and bicuculline methiodide localized to either somatic or apical dendritic regions reveal that the depolarizing i.p.s.p. is produced by GABA released from neuronal elements in the dendritic field which acts on pyramidal cell dendrites.

6. The depolarizing i.p.s.p. is strongly temperature-dependent and increases in amplitude and duration progressively as slices are cooled from 37 to 22 °C.

7. Depolarizing i.p.s.p.s can be produced by orthodromic stimulation in s. oriens as well as in s. radiatum. In each case the depolarizing i.p.s.p.s appear localized to the dendrites in the field stimulated.

8. We conclude that the depolarizing i.p.s.p. evident in the presence of barbiturates is caused by the same synaptic release of GABA which in normal conditions produces hyperpolarizing dendritic i.p.s.p.s.

9. Numerous comparisons between orthodromic and antidromic stimulation indicate that dendritic i.p.s.p.s are activated by feed-forward pathways.

Full text

PDF
105

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P., ECCLES J. C., LOYNING Y. LOCATION OF POSTSYNAPTIC INHIBITORY SYNAPSES ON HIPPOCAMPAL PYRAMIDS. J Neurophysiol. 1964 Jul;27:592–607. doi: 10.1152/jn.1964.27.4.592. [DOI] [PubMed] [Google Scholar]
  2. ANDERSEN P., ECCLES J. C., LOYNING Y. PATHWAY OF POSTSYNAPTIC INHIBITION IN THE HIPPOCAMPUS. J Neurophysiol. 1964 Jul;27:608–619. doi: 10.1152/jn.1964.27.4.608. [DOI] [PubMed] [Google Scholar]
  3. Alger B. E., Nicoll R. A. Epileptiform burst afterhyperolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science. 1980 Dec 5;210(4474):1122–1124. doi: 10.1126/science.7444438. [DOI] [PubMed] [Google Scholar]
  4. Alger B. E., Nicoll R. A. GABA-mediated biphasic inhibitory responses in hippocampus. Nature. 1979 Sep 27;281(5729):315–317. doi: 10.1038/281315a0. [DOI] [PubMed] [Google Scholar]
  5. Alger B. E., Nicoll R. A. Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol. 1982 Jul;328:125–141. doi: 10.1113/jphysiol.1982.sp014256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Andersen P., Blackstad T. W., Lömo T. Location and identification of excitatory synapses on hippocampal pyramidal cells. Exp Brain Res. 1966;1(3):236–248. doi: 10.1007/BF00234344. [DOI] [PubMed] [Google Scholar]
  7. Andersen P., Bliss T. V., Skrede K. K. Unit analysis of hippocampal polulation spikes. Exp Brain Res. 1971;13(2):208–221. doi: 10.1007/BF00234086. [DOI] [PubMed] [Google Scholar]
  8. Andersen P., Dingledine R., Gjerstad L., Langmoen I. A., Laursen A. M. Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J Physiol. 1980 Aug;305:279–296. doi: 10.1113/jphysiol.1980.sp013363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Andersen P., Gjerstad L., Pasztor E. Effects of cooling on inhibitory processes in the cuneate nucleus. Acta Physiol Scand. 1972 Apr;84(4):448–461. doi: 10.1111/j.1748-1716.1972.tb05195.x. [DOI] [PubMed] [Google Scholar]
  10. Andersen P., Gross G. N., Lomo T., Sveen O. Participation of inhibitory and excitatory interneurones in the control of hippocampal cortical output. UCLA Forum Med Sci. 1969;11:415–465. [PubMed] [Google Scholar]
  11. Barker J. L., Ransom B. R. Amino acid pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:331–354. doi: 10.1113/jphysiol.1978.sp012387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chan-Palay V. Quantitative visualization of gamma-aminobutyric acid receptors in hippocampus and area dentata demonstrated by [3H]muscimol autoradiography. Proc Natl Acad Sci U S A. 1978 May;75(5):2516–2520. doi: 10.1073/pnas.75.5.2516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Curtis D. R., Felix D., McLellan H. GABA and hippocampal inhibition. Br J Pharmacol. 1970 Dec;40(4):881–883. doi: 10.1111/j.1476-5381.1970.tb10663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dingledine R., Gjerstad L. Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J Physiol. 1980 Aug;305:297–313. doi: 10.1113/jphysiol.1980.sp013364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dingledine R., Langmoen I. A. Conductance changes and inhibitory actions of hippocampal recurrent IPSPs. Brain Res. 1980 Mar 10;185(2):277–287. doi: 10.1016/0006-8993(80)91068-9. [DOI] [PubMed] [Google Scholar]
  16. Eccles J., Nicoll R. A., Oshima T., Rubia F. J. The anionic permeability of the inhibitory postsynaptic membrane of hippocampal pyramidal cells. Proc R Soc Lond B Biol Sci. 1977 Sep 19;198(1133):345–361. doi: 10.1098/rspb.1977.0102. [DOI] [PubMed] [Google Scholar]
  17. FUJITA Y., SAKATA H. Electrophysiological properties of CA1 and CA2 apical dendrites of rabbit hippocampus. J Neurophysiol. 1962 Mar;25:209–222. doi: 10.1152/jn.1962.25.2.209. [DOI] [PubMed] [Google Scholar]
  18. Fujita Y. Evidence for the existence of inhibitory postsynaptic potentials in dendrites and their functional significance in hippocampal pyramidal cells of adult rabbits. Brain Res. 1979 Oct 12;175(1):59–69. doi: 10.1016/0006-8993(79)90514-6. [DOI] [PubMed] [Google Scholar]
  19. Gottlieb D. I., Cowan W. M. On the distribution of axonal terminals containing spheroidal and flattened synaptic vesicles in the hippocampus and dentate gyrus of the rat and cat. Z Zellforsch Mikrosk Anat. 1972;129(3):413–429. doi: 10.1007/BF00307297. [DOI] [PubMed] [Google Scholar]
  20. Hubbard J. I., Jones S. F., Landau E. M. The effect of temperature change upon transmitter release, facilitation and post-tetanic potentiation. J Physiol. 1971 Aug;216(3):591–609. doi: 10.1113/jphysiol.1971.sp009542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iversen L. L., Neal M. J. The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem. 1968 Oct;15(10):1141–1149. doi: 10.1111/j.1471-4159.1968.tb06831.x. [DOI] [PubMed] [Google Scholar]
  22. KANDEL E. R., SPENCER W. A., BRINLEY F. J., Jr Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol. 1961 May;24:225–242. doi: 10.1152/jn.1961.24.3.225. [DOI] [PubMed] [Google Scholar]
  23. Krogsgaard-Larsen P., Johnston G. A. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem. 1975 Dec;25(6):797–802. doi: 10.1111/j.1471-4159.1975.tb04410.x. [DOI] [PubMed] [Google Scholar]
  24. Lee H. K., Dunwiddie T. V., Hoffer B. J. Interaction of diazepam with synaptic transmission in the in vitro rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1979 Nov;309(2):131–136. doi: 10.1007/BF00501220. [DOI] [PubMed] [Google Scholar]
  25. Lee H. K., Dunwiddie T., Hoffer B. Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. II. Effects on interneuron excitability. Brain Res. 1980 Feb 24;184(2):331–342. doi: 10.1016/0006-8993(80)90802-1. [DOI] [PubMed] [Google Scholar]
  26. Llinás R. Electroresponsive properties of dendrites in central neurons. Adv Neurol. 1975;12:1–13. [PubMed] [Google Scholar]
  27. Lynch G. S., Jensen R. A., McGaugh J. L., Davila K., Oliver M. W. Effects of enkephalin, morphine, and naloxone on the electrical activity of the in vitro hippocampal slice preparation. Exp Neurol. 1981 Mar;71(3):527–540. doi: 10.1016/0014-4886(81)90030-3. [DOI] [PubMed] [Google Scholar]
  28. Matthews G., Wickelgren W. O. Glycine, GABA and synaptic inhibition of reticulospinal neurones of lamprey. J Physiol. 1979 Aug;293:393–415. doi: 10.1113/jphysiol.1979.sp012896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nicoll R. A., Alger B. E. A simple chamber for recording from submerged brain slices. J Neurosci Methods. 1981 Aug;4(2):153–156. doi: 10.1016/0165-0270(81)90049-2. [DOI] [PubMed] [Google Scholar]
  30. Nicoll R. A., Alger B. E. Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. Science. 1981 May 22;212(4497):957–959. doi: 10.1126/science.6262912. [DOI] [PubMed] [Google Scholar]
  31. Nicoll R. A., Eccles J. C., Oshima T., Rubia F. Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature. 1975 Dec 18;258(5536):625–627. doi: 10.1038/258625a0. [DOI] [PubMed] [Google Scholar]
  32. Pong S. F., Graham L. T., Jr A simple preparation of bicuculline methiodide, a water-soluble GABA antagonist. Brain Res. 1973 Aug 17;58(1):266–267. doi: 10.1016/0006-8993(73)90844-5. [DOI] [PubMed] [Google Scholar]
  33. Purpura D. P., Pappas G. D. Structural characteristics of neurons in the feline hippocampus during postnatal ontogenesis. Exp Neurol. 1968 Nov;22(3):379–393. doi: 10.1016/0014-4886(68)90004-6. [DOI] [PubMed] [Google Scholar]
  34. Purpura D. P., Prelevic S., Santini M. Postsynaptic potentials and spike variations in the feline hippocampus during postnatal ontogenesis. Exp Neurol. 1968 Nov;22(3):408–422. doi: 10.1016/0014-4886(68)90006-x. [DOI] [PubMed] [Google Scholar]
  35. Ribak C. E., Vaughn J. E., Saito K. Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res. 1978 Jan 27;140(2):315–332. doi: 10.1016/0006-8993(78)90463-8. [DOI] [PubMed] [Google Scholar]
  36. Scholfield C. N. Electrical properties of neurones in the olfactory cortex slice in vitro. J Physiol. 1978 Feb;275:535–546. doi: 10.1113/jphysiol.1978.sp012206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schwartz I. R., Pappas D., Purpura D. P. Fine structure of neurons and synapses in the feline hippocampus during postnatal ontogenesis. Exp Neurol. 1968 Nov;22(3):394–407. doi: 10.1016/0014-4886(68)90005-8. [DOI] [PubMed] [Google Scholar]
  38. Schwartzkroin P. A., Altschuler R. J. Development of kitten hippocampal neurons. Brain Res. 1977 Oct 14;134(3):429–444. doi: 10.1016/0006-8993(77)90820-4. [DOI] [PubMed] [Google Scholar]
  39. Schwartzkroin P. A., Prince D. A. Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity. Brain Res. 1980 Feb 3;183(1):61–76. doi: 10.1016/0006-8993(80)90119-5. [DOI] [PubMed] [Google Scholar]
  40. Silfvenius H., Olofsson S., Ridderheim P. A. Induced epileptiform activity evoked from dendrites of hippocampal neurones. Acta Physiol Scand. 1980 Jan;108(1):109–111. doi: 10.1111/j.1748-1716.1980.tb06507.x. [DOI] [PubMed] [Google Scholar]
  41. Storm-Mathisen J. Localization of transmitter candidates in the brain: the hippocampal formation as a model. Prog Neurobiol. 1977;8(2):119–181. doi: 10.1016/0301-0082(77)90013-2. [DOI] [PubMed] [Google Scholar]
  42. Thalmann R. H., Peck E. J., Ayala G. F. Biphasic response of hippocampal pyramidal neurons to GABA. Neurosci Lett. 1981 Feb 6;21(3):319–324. doi: 10.1016/0304-3940(81)90224-x. [DOI] [PubMed] [Google Scholar]
  43. Tsuchiya T., Fukushima H. Effects of benzodiazepines and pentobarbitone on the gaba-ergic recurrent inhibition of hippocampal neurons. Eur J Pharmacol. 1978 Apr 15;48(4):421–424. doi: 10.1016/0014-2999(78)90169-3. [DOI] [PubMed] [Google Scholar]
  44. Wolf P., Haas H. L. Effects of diazepines and barbiturates on hippocampal recurrent inhibition. Naunyn Schmiedebergs Arch Pharmacol. 1977 Oct;299(3):211–218. doi: 10.1007/BF00500313. [DOI] [PubMed] [Google Scholar]
  45. Wong R. K., Prince D. A., Basbaum A. I. Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci U S A. 1979 Feb;76(2):986–990. doi: 10.1073/pnas.76.2.986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wong R. K., Prince D. A. Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science. 1979 Jun 15;204(4398):1228–1231. doi: 10.1126/science.451569. [DOI] [PubMed] [Google Scholar]
  47. Yamamoto C., Kawai N. Generation of the seizure discharge in thin sections from the guinea pig brain in chloride-free medium in vitro. Jpn J Physiol. 1968 Oct 15;18(5):620–631. doi: 10.2170/jjphysiol.18.620. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES