Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982;328:125–141. doi: 10.1113/jphysiol.1982.sp014256

Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studied in vitro

B E Alger 1,2,*, R A Nicoll 1,2
PMCID: PMC1225650  PMID: 7131310

Abstract

1. The rat hippocampal slice preparation has been used in conjunction with intracellular recording and ionophoresis to study the action of γ-aminobutyric acid (GABA) on CA1 pyramidal cells.

2. GABA elicits a hyperpolarizing (h.) response at the soma. The reversal potential of this h. response is the same as for inhibitory post-synaptic potentials (i.p.s.p.s) evoked by stimulating pyramidal cell axons.

3. GABA elicits primarily depolarizing (d.) responses when applied to the apical dendrites, but h. responses can also be found.

4. The GABA antagonists bicuculline methiodide, picrotoxin, penicillin, and pentylenetetrazole are all ten to one hundred times more potent on the d. response than on the h. response. Hyperpolarizing responses are uncovered in the dendrites when intermediate doses of these drugs block the d. response.

5. The GABA analogue, 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridine-3-ol (THIP), which has been proposed to activate synaptic receptors preferentially in other systems, elicits h. responses in the dendrites. It is one seventh as potent as GABA in eliciting d. responses.

6. Pentobarbitone enhances d. responses to a much greater extent than h. responses, while diazepam enhances h. responses to a greater extent.

7. Nipecotic acid, low temperature, and low sodium media all increase the size of d. responses to ionophoretically applied GABA indicating that an active uptake process limits their size.

8. We conclude that h. responses reflect the activation of synaptic receptors which are highly concentrated on the pyramidal cell soma—initial segment, but are also present on the dendrites. Depolarizing responses, which are evoked in the dendrites, reflect the activation of extrasynaptic receptors.

9. We propose that an ordinarily undetectable amount of synaptically released GABA can `spill' over onto extrasynaptic (d.) receptors. Depolarizing receptor activation can be detected in the presence of pentobarbitone. Spillover is markedly enhanced at subphysiological temperatures presumably due to enhanced release of GABA and impairment of the GABA uptake system.

Full text

PDF
125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN P., ECCLES J. C., LOYNING Y. PATHWAY OF POSTSYNAPTIC INHIBITION IN THE HIPPOCAMPUS. J Neurophysiol. 1964 Jul;27:608–619. doi: 10.1152/jn.1964.27.4.608. [DOI] [PubMed] [Google Scholar]
  2. Adams P. R., Brown D. A. Actions of gamma-aminobutyric acid on sympathetic ganglion cells. J Physiol. 1975 Aug;250(1):85–120. doi: 10.1113/jphysiol.1975.sp011044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alger B. E., Nicoll R. A. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol. 1982 Jul;328:105–123. doi: 10.1113/jphysiol.1982.sp014255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alger B. E., Nicoll R. A. GABA-mediated biphasic inhibitory responses in hippocampus. Nature. 1979 Sep 27;281(5729):315–317. doi: 10.1038/281315a0. [DOI] [PubMed] [Google Scholar]
  5. Allan R. D., Evans R. H., Johnston G. A. gamma-Aminobutyric acid agonists: an in vitro comparison between depression of spinal synaptic activity and depolarization of spinal root fibres in the rat. Br J Pharmacol. 1980 Dec;70(4):609–615. doi: 10.1111/j.1476-5381.1980.tb09779.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Andersen P., Dingledine R., Gjerstad L., Langmoen I. A., Laursen A. M. Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J Physiol. 1980 Aug;305:279–296. doi: 10.1113/jphysiol.1980.sp013363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Assaf S. Y., Crunelli V., Kelly J. S. Depolarizing postsynaptic actions of GABA in the rat dentate gyrus. Adv Biochem Psychopharmacol. 1981;29:239–248. [PubMed] [Google Scholar]
  8. Barker J. L., Ransom B. R. Amino acid pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:331–354. doi: 10.1113/jphysiol.1978.sp012387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bowery N. G., Brown D. A. Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol. 1974 Feb;50(2):205–218. doi: 10.1111/j.1476-5381.1974.tb08563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown D. A., Higgins A. J., Marsh S., Smart T. G. Actions of GABA on mammalian neurones, axons, and nerve terminals. Adv Biochem Psychopharmacol. 1981;29:321–326. [PubMed] [Google Scholar]
  11. Brown D. A., Scholfield C. N. Depolarization of neurones in the isolated olfactory cortex of the guinea-pig by gamma-aminobutyric acid. Br J Pharmacol. 1979 Feb;65(2):339–345. doi: 10.1111/j.1476-5381.1979.tb07835.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Choi D. W., Fischbach G. D. GABA conductance of chick spinal cord and dorsal root ganglion neurons in cell culture. J Neurophysiol. 1981 Apr;45(4):605–620. doi: 10.1152/jn.1981.45.4.605. [DOI] [PubMed] [Google Scholar]
  13. Dingledine R., Gjerstad L. Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J Physiol. 1980 Aug;305:297–313. doi: 10.1113/jphysiol.1980.sp013364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dudel J. A conductance decrease after application of GABA to crayfish muscle fibers. J Physiol (Paris) 1979;75(6):597–600. [PubMed] [Google Scholar]
  15. Dudel J. Relaxation after a voltage step of inhibitory synaptic current elicited by nerve stimulation (crayfish neuromuscular junction). Pflugers Arch. 1978 Sep 6;376(2):151–157. doi: 10.1007/BF00581578. [DOI] [PubMed] [Google Scholar]
  16. Gallagher J. P., Higashi H., Nishi S. Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol. 1978 Feb;275:263–282. doi: 10.1113/jphysiol.1978.sp012189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gruol D. L., Barker J. L., Huang L. Y., MacDonald J. F., Smith T. G., Jr Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons. Brain Res. 1980 Feb 3;183(1):247–252. doi: 10.1016/0006-8993(80)90138-9. [DOI] [PubMed] [Google Scholar]
  18. Iversen L. L., Johnston G. A. GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem. 1971 Oct;18(10):1939–1950. doi: 10.1111/j.1471-4159.1971.tb09600.x. [DOI] [PubMed] [Google Scholar]
  19. Iversen L. L., Neal M. J. The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem. 1968 Oct;15(10):1141–1149. doi: 10.1111/j.1471-4159.1968.tb06831.x. [DOI] [PubMed] [Google Scholar]
  20. Jahnsen H., Laursen A. M. The effects of a benzodiazepine on the hyperpolarizing and the depolarizing responses of hippocampal cells to GABA. Brain Res. 1981 Feb 23;207(1):214–217. doi: 10.1016/0006-8993(81)90696-x. [DOI] [PubMed] [Google Scholar]
  21. Krogsgaard-Larsen P., Johnston G. A. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem. 1975 Dec;25(6):797–802. doi: 10.1111/j.1471-4159.1975.tb04410.x. [DOI] [PubMed] [Google Scholar]
  22. Krogsgaard-Larsen P., Johnston G. A. Structure-activity studies on the inhibition of GABA binding to rat brain membranes by muscimol and related compounds. J Neurochem. 1978 Jun;30(6):1377–1382. doi: 10.1111/j.1471-4159.1978.tb10469.x. [DOI] [PubMed] [Google Scholar]
  23. Nicoll R. A., Padjen A., Barker J. L. Analysis of amino acid responses on frog motoneurones. Neuropharmacology. 1976 Jan;15(1):45–53. doi: 10.1016/0028-3908(76)90096-4. [DOI] [PubMed] [Google Scholar]
  24. Obata K., Oide M., Tanaka H. Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture. Brain Res. 1978 Apr 7;144(1):179–184. doi: 10.1016/0006-8993(78)90447-x. [DOI] [PubMed] [Google Scholar]
  25. Olsen R. W., Leeb-Lundberg F. Convulsant and anticonvulsant drug binding sites related to GABA-regulated chloride ion channels. Adv Biochem Psychopharmacol. 1981;26:93–102. [PubMed] [Google Scholar]
  26. Pong S. F., Graham L. T., Jr A simple preparation of bicuculline methiodide, a water-soluble GABA antagonist. Brain Res. 1973 Aug 17;58(1):266–267. doi: 10.1016/0006-8993(73)90844-5. [DOI] [PubMed] [Google Scholar]
  27. Ransom B. R., Barker J. L. Pentobarbital selectively enhances GABA-mediated post-synaptic inhibition in tissue cultured mouse spinal neurons. Brain Res. 1976 Sep 24;114(3):530–535. doi: 10.1016/0006-8993(76)90977-x. [DOI] [PubMed] [Google Scholar]
  28. Ribak C. E., Vaughn J. E., Saito K. Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res. 1978 Jan 27;140(2):315–332. doi: 10.1016/0006-8993(78)90463-8. [DOI] [PubMed] [Google Scholar]
  29. Thalmann R. H., Peck E. J., Ayala G. F. Biphasic response of hippocampal pyramidal neurons to GABA. Neurosci Lett. 1981 Feb 6;21(3):319–324. doi: 10.1016/0304-3940(81)90224-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES