Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Oct;65(4):1656–1659. doi: 10.1016/S0006-3495(93)81220-7

Multiple hydration layers in cubic insulin crystals.

J Badger 1
PMCID: PMC1225891  PMID: 8274653

Abstract

Cubic insulin crystals contain approximately 30-A-diameter channels filled with aqueous solvent, providing a useful system in which to analyze hydration structure at a variety of distances from protein surfaces. Beginning with an atomic model for the protein and ordered water molecules, the density distribution in the solvent volume of the phasing model was iteratively refined to improve the fit of calculated structure factors with x-ray diffraction data. The free R value, which compares calculated structure factors with a subset of observed structure factors deliberately omitted from the refinement, was used to provide an objective confirmation of the effectiveness of the refinement procedure. Electron density maps of the solvent, computed using the solvent-refined phases and complete low-resolution diffraction data, reveal multiple hydration layers around the protein.

Full text

PDF
1656

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badger J., Caspar D. L. Water structure in cubic insulin crystals. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):622–626. doi: 10.1073/pnas.88.2.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Badger J., Harris M. R., Reynolds C. D., Evans A. C., Dodson E. J., Dodson G. G., North A. C. Structure of the pig insulin dimer in the cubic crystal. Acta Crystallogr B. 1991 Feb 1;47(Pt 1):127–136. doi: 10.1107/s0108768190009570. [DOI] [PubMed] [Google Scholar]
  3. Blake C. C., Pulford W. C., Artymiuk P. J. X-ray studies of water in crystals of lysozyme. J Mol Biol. 1983 Jul 5;167(3):693–723. doi: 10.1016/s0022-2836(83)80105-3. [DOI] [PubMed] [Google Scholar]
  4. Dodson E. J., Dodson G. G., Lewitova A., Sabesan M. Zinc-free cubic pig insulin: crystallization and structure determination. J Mol Biol. 1978 Nov 5;125(3):387–396. doi: 10.1016/0022-2836(78)90409-6. [DOI] [PubMed] [Google Scholar]
  5. Gursky O., Badger J., Li Y., Caspar D. L. Conformational changes in cubic insulin crystals in the pH range 7-11. Biophys J. 1992 Nov;63(5):1210–1220. doi: 10.1016/S0006-3495(92)81697-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gursky O., Li Y., Badger J., Caspar D. L. Monovalent cation binding to cubic insulin crystals. Biophys J. 1992 Mar;61(3):604–611. doi: 10.1016/S0006-3495(92)81865-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kossiakoff A. A., Sintchak M. D., Shpungin J., Presta L. G. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin. Proteins. 1992 Mar;12(3):223–236. doi: 10.1002/prot.340120303. [DOI] [PubMed] [Google Scholar]
  8. LeNeveu D. M., Rand R. P., Parsegian V. A. Measurement of forces between lecithin bilayers. Nature. 1976 Feb 19;259(5544):601–603. doi: 10.1038/259601a0. [DOI] [PubMed] [Google Scholar]
  9. Narten A. H., Levy H. A. Observed diffraction pattern and proposed models of liquid water. Science. 1969 Aug 1;165(3892):447–454. doi: 10.1126/science.165.3892.447. [DOI] [PubMed] [Google Scholar]
  10. Thanki N., Thornton J. M., Goodfellow J. M. Distributions of water around amino acid residues in proteins. J Mol Biol. 1988 Aug 5;202(3):637–657. doi: 10.1016/0022-2836(88)90292-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES