Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Oct;65(4):1718–1726. doi: 10.1016/S0006-3495(93)81226-8

Time-resolved absorption and magnetic circular dichroism spectroscopy of cytochrome c3 from Desulfovibrio.

D B O'Connor 1, R A Goldbeck 1, J H Hazzard 1, D S Kliger 1, M A Cusanovich 1
PMCID: PMC1225899  PMID: 8274660

Abstract

The UV-visible absorption and magnetic circular dichroism (MCD) spectra of the ferric, ferrous, CO-ligated forms and kinetic photolysis intermediates of the tetraheme electron-transfer protein cytochrome c3 (Cc3) are reported. Consistent with bis-histidinyl axial coordination of the hemes in this Class III c-type cytochrome, the Soret and visible region MCD spectra of ferric and ferrous Cc3 are very similar to those of other bis-histidine axially coordinated hemeproteins such as cytochrome b5. The MCD spectra indicate low spin state for both the ferric (S = 1/2) and ferrous (S = 0) oxidation states. CO replaces histidine as the axial sixth ligand at each heme site, forming a low-spin complex with an MCD spectrum similar to that of myoglobin-CO. Photodissociation of Cc3-CO (observed photolysis yield = 30%) produces a transient five-coordinate, high-spin (S = 2) species with an MCD spectrum similar to deoxymyoglobin. The recombination kinetics of CO with heme Fe are complex and appear to involve at least five first-order or pseudo first-order rate processes, corresponding to time constants of 5.7 microseconds, 62 microseconds, 425 microseconds, 2.9 ms, and a time constant greater than 1 s. The observed rate constants were insensitive to variation of the actinic photon flux, suggesting noncooperative heme-CO rebinding. The growing in of an MCD signal characteristic of bis-histidine axial ligation within tens of microseconds after photodissociation shows that, although heme-CO binding is thermodynamically favored at 1 atm CO, binding of histidine to the sixth axial site competes kinetically with CO rebinding.

Full text

PDF
1718

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akutsu H., Hazzard J. H., Bartsch R. G., Cusanovich M. A. Reduction kinetics of the four hemes of cytochrome c3 from Desulfovibrio vulgaris by flash photolysis. Biochim Biophys Acta. 1992 Dec 7;1140(2):144–156. doi: 10.1016/0005-2728(92)90003-k. [DOI] [PubMed] [Google Scholar]
  2. Chance M. R., Courtney S. H., Chavez M. D., Ondrias M. R., Friedman J. M. O2 and CO reactions with heme proteins: quantum yields and geminate recombination on picosecond time scales. Biochemistry. 1990 Jun 12;29(23):5537–5545. doi: 10.1021/bi00475a018. [DOI] [PubMed] [Google Scholar]
  3. Dolinger P. M., Kielczewski M., Trudell J. R., Barth G., Linder R. E., Bunnenberg E., Djerassi C. Magnetic circular dichroism studies. XXV. A preliminary investigation of microsomal cytochromes. Proc Natl Acad Sci U S A. 1974 Feb;71(2):399–403. doi: 10.1073/pnas.71.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drucker H., Campbell L. L., Woody R. W. Optical rotatory properties of the cytochromes c3 from three species of Desulfovibrio. Biochemistry. 1970 Mar 31;9(7):1519–1527. doi: 10.1021/bi00809a007. [DOI] [PubMed] [Google Scholar]
  5. Goldbeck R. A., Dawes T. D., Einarsdóttir O., Woodruff W. H., Kliger D. S. Time-resolved magnetic circular dichroism spectroscopy of photolyzed carbonmonoxy cytochrome c oxidase (cytochrome aa3). Biophys J. 1991 Jul;60(1):125–134. doi: 10.1016/S0006-3495(91)82036-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldbeck R. A., Kliger D. S. Nanosecond time-resolved absorption and polarization dichroism spectroscopies. Methods Enzymol. 1993;226:147–177. doi: 10.1016/0076-6879(93)26009-x. [DOI] [PubMed] [Google Scholar]
  7. Higuchi Y., Kusunoki M., Matsuura Y., Yasuoka N., Kakudo M. Refined structure of cytochrome c3 at 1.8 A resolution. J Mol Biol. 1984 Jan 5;172(1):109–139. doi: 10.1016/0022-2836(84)90417-0. [DOI] [PubMed] [Google Scholar]
  8. Hobbs J. D., Larsen R. W., Meyer T. E., Hazzard J. H., Cusanovich M. A., Ondrias M. R. Resonance Raman characterization of Chromatium vinosum cytochrome c'. Effect of pH and comparison of equilibrium and photolyzed carbon monoxide species. Biochemistry. 1990 May 1;29(17):4166–4174. doi: 10.1021/bi00469a020. [DOI] [PubMed] [Google Scholar]
  9. Jongeward K. A., Magde D., Taube D. J., Traylor T. G. Picosecond kinetics of cytochromes b5 and c. J Biol Chem. 1988 May 5;263(13):6027–6030. [PubMed] [Google Scholar]
  10. Meyer T. E., Kamen M. D. New perspectives on c-type cytochromes. Adv Protein Chem. 1982;35:105–212. doi: 10.1016/s0065-3233(08)60469-6. [DOI] [PubMed] [Google Scholar]
  11. Millhauser G. L., Oswald R. E. A reevaluation of the mathematical models for simulating single-channel and whole-cell ionic currents. Synapse. 1988;2(1):97–103. doi: 10.1002/syn.890020113. [DOI] [PubMed] [Google Scholar]
  12. Nozawa T., Kobayashi N., Hatano M. Magnetic circular dichroism studies on horseradish peroxidase. Biochim Biophys Acta. 1976 Apr 14;427(2):652–662. doi: 10.1016/0005-2795(76)90209-9. [DOI] [PubMed] [Google Scholar]
  13. OZOLS J., STRITTMATTER P. THE INTERACTION OF PORPHYRINS AND METALLOPORHYRINS WITH APOCYTOCHROME BETA-5. J Biol Chem. 1964 Apr;239:1018–1023. [PubMed] [Google Scholar]
  14. Proceedings of the Biochemical Society. Biochem J. 1954 Feb;56(2):xi–xviii. [PMC free article] [PubMed] [Google Scholar]
  15. Suh B., Akagi J. M. Formation of thiosulfate from sulfite by Desulfovibrio vulgaris. J Bacteriol. 1969 Jul;99(1):210–215. doi: 10.1128/jb.99.1.210-215.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tamura A., Kawate T., Ogata M., Yagi T. Interaction of cellular hydrogenase, cytochrome c3, and desulfoviridin in Desulfovibrio vulgaris Miyazaki with their antibodies. J Biochem. 1988 Nov;104(5):722–726. doi: 10.1093/oxfordjournals.jbchem.a122540. [DOI] [PubMed] [Google Scholar]
  17. Uchida K., Shimizu T., Makino R., Sakaguchi K., Iizuka T., Ishimura Y., Nozawa T., Hatano M. Magnetic and natural circular dichroism of L-tryptophan 2,3-dioxygenases and indoleamine 2,3-dioxygenase. I. Spectra of ferric and ferrous high spin forms. J Biol Chem. 1983 Feb 25;258(4):2519–2525. [PubMed] [Google Scholar]
  18. Uchida K., Shimizu T., Makino R., Sakaguchi K., Iizuka T., Ishimura Y., Nozawa T., Hatano M. Magnetic and natural circular dichroism of L-tryptophan 2,3-dioxygenases and indoleamine 2,3-dioxygenase. II. Spectra of their ferric cyanide and ferrous carbon monoxide complexes and an oxygenated form. J Biol Chem. 1983 Feb 25;258(4):2526–2533. [PubMed] [Google Scholar]
  19. Vickery L., Nozawa T., Sauer K. Magnetic circular dichroism studies of low-spin cytochromes. Temperature dependence and effects of axial coordination on the spectra of cytochrome c and cytochrome b5. J Am Chem Soc. 1976 Jan 21;98(2):351–357. doi: 10.1021/ja00418a006. [DOI] [PubMed] [Google Scholar]
  20. Vickery L., Nozawa T., Sauer K. Magnetic circular dichroism studies of myoglobin complexes. Correlations with heme spin state and axial ligation. J Am Chem Soc. 1976 Jan 21;98(2):343–350. doi: 10.1021/ja00418a005. [DOI] [PubMed] [Google Scholar]
  21. Vickery L., Salmon A., Sauer K. Magnetic circular dichroism studies on microsomal aryl hydrocarbon hydroxylase: comparison with cytochrome b-5 and cytochrome P-450-cam. Biochim Biophys Acta. 1975 Mar 28;386(1):87–98. doi: 10.1016/0005-2795(75)90249-4. [DOI] [PubMed] [Google Scholar]
  22. Woodruff W. H., Einarsdóttir O., Dyer R. B., Bagley K. A., Palmer G., Atherton S. J., Goldbeck R. A., Dawes T. D., Kliger D. S. Nature and functional implications of the cytochrome a3 transients after photodissociation of CO-cytochrome oxidase. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2588–2592. doi: 10.1073/pnas.88.6.2588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yagi T., Maruyama K. Purification and properties of cytochrome c 3 of Desulfovibrio vulgaris, Miyazaki. Biochim Biophys Acta. 1971 Aug 27;243(2):214–224. doi: 10.1016/0005-2795(71)90078-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES