Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Nov;65(5):1866–1877. doi: 10.1016/S0006-3495(93)81251-7

Studies of mixed-chain diacyl phosphatidylcholines with highly asymmetric acyl chains: a Fourier transform infrared spectroscopic study of interfacial hydration and hydrocarbon chain packing in the mixed interdigitated gel phase.

R N Lewis 1, R N McElhaney 1
PMCID: PMC1225922  PMID: 8298016

Abstract

The mixed interdigitated gel phases of unlabeled, specifically 13C = O-labeled, and specifically chain-perdeuterated samples of 1-O-eicosanoyl, 2-O-lauroyl phosphatidylcholine and 1-O-decanoyl, 2-O-docosanoyl phosphatidylcholine were studied by infrared spectroscopy. Our results suggest that at the liquid-crystalline/gel phase transition temperatures of these lipids, there is a greater redistribution in the populations of free and hydrogen-bonded ester carbonyl groups than is commonly observed with symmetric chain n-saturated diacyl phosphatidylcholines. The formation of the mixed interdigitated gel phase coincides with the appearance of a marked asymmetry in the contours of the C = O stretching band, a process which becomes more pronounced as the temperature is reduced. This asymmetry is ascribed to the emergence of a predominant lipid population consisting of free sn1- and hydrogen-bonded (hydrated) sn2-ester carbonyl groups. This suggests that the region of the mixed interdigitated bilayer polar/apolar interface near to the sn1-ester carbonyl group is less hydrated than is the case with the noninterdigitated gel-phase bilayers formed by normal symmetric chain phosphatidylcholines. In the methylene deformation region of the spectrum, the unlabeled lipids exhibit a pronounced splitting of the CH2 scissoring bands. This splitting is significantly attenuated when the short chains are perdeuterated and collapses completely upon perdeuteration of the long chains, irrespective of whether the long (or short) chains are esterified to the sn1 or sn2 positions of the glycerol backbone. These results are consistent with a global hydrocarbon chain packing motif in which the zigzag planes of the hydrocarbon chains are perpendicular to each other and the sites occupied by long chains are twice as numerous as those occupied by short chains. The experimental support for this chain-packing motif enabled more detailed considerations of the possible ways in which these lipid molecules are assembled in the mixed interdigitated gel phase. Generally, our results are compatible with a previously proposed model in which the mixed interdigitated gel phase is an assembly of repeat units which consists of two phosphatidylcholine molecules forming a triple-chain structure with the long chains traversing the bilayer and with the methyl termini of the shorter chains opposed at the bilayer center. Our data also suggest that the packing format which is most consistent with our results and previously published work is one in which the hydrocarbon chains of each repeat unit are parallel to each other with the repeat units themselves being perpendicularly packed.

Full text

PDF
1866

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S., Lin H. N., Bittman R., Huang C. H. Binary mixtures of saturated and unsaturated mixed-chain phosphatidylcholine. A differential scanning calorimetry study. Biochemistry. 1989 Jan 24;28(2):522–528. doi: 10.1021/bi00428a017. [DOI] [PubMed] [Google Scholar]
  2. Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
  3. Bultmann T., Lin H. N., Wang Z. Q., Huang C. H. Thermotropic and mixing behavior of mixed-chain phosphatidylcholines with molecular weights identical with that of L-alpha-dipalmitoylphosphatidylcholine. Biochemistry. 1991 Jul 23;30(29):7194–7202. doi: 10.1021/bi00243a022. [DOI] [PubMed] [Google Scholar]
  4. Chen S. C., Sturtevant J. M. Thermotropic behavior of bilayers formed from mixed-chain phosphatidylcholines. Biochemistry. 1981 Feb 17;20(4):713–718. doi: 10.1021/bi00507a007. [DOI] [PubMed] [Google Scholar]
  5. Davis P. J., Keough K. M. Chain arrangements in the gel state and the transition temperatures of phosphatidylcholines. Biophys J. 1985 Dec;48(6):915–918. doi: 10.1016/S0006-3495(85)83854-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hauser H., Pascher I., Pearson R. H., Sundell S. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta. 1981 Jun 16;650(1):21–51. doi: 10.1016/0304-4157(81)90007-1. [DOI] [PubMed] [Google Scholar]
  7. Hauser H., Pascher I., Sundell S. Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis. Biochemistry. 1988 Dec 27;27(26):9166–9174. doi: 10.1021/bi00426a014. [DOI] [PubMed] [Google Scholar]
  8. Hitchcock P. B., Mason R., Thomas K. M., Shipley G. G. Structural chemistry of 1,2 dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3036–3040. doi: 10.1073/pnas.71.8.3036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hsiao C. Y., Ottaway C. A., Wetlaufer D. B. Preparation of fully deuterated fatty acids by simple method. Lipids. 1974 Nov;9(11):913–915. doi: 10.1007/BF02532618. [DOI] [PubMed] [Google Scholar]
  10. Huang C. Empirical estimation of the gel to liquid-crystalline phase transition temperatures for fully hydrated saturated phosphatidylcholines. Biochemistry. 1991 Jan 8;30(1):26–30. doi: 10.1021/bi00215a004. [DOI] [PubMed] [Google Scholar]
  11. Huang C., Mason J. T., Levin I. W. Raman spectroscopic study of saturated mixed-chain phosphatidylcholine multilamellar dispersions. Biochemistry. 1983 May 24;22(11):2775–2780. doi: 10.1021/bi00280a028. [DOI] [PubMed] [Google Scholar]
  12. Huang C., Mason J. T. Structure and properties of mixed-chain phospholipid assemblies. Biochim Biophys Acta. 1986 Dec 22;864(3-4):423–470. doi: 10.1016/0304-4157(86)90005-5. [DOI] [PubMed] [Google Scholar]
  13. Huang C. Mixed-chain phospholipids and interdigitated bilayer systems. Klin Wochenschr. 1990 Feb 1;68(3):149–165. doi: 10.1007/BF01649079. [DOI] [PubMed] [Google Scholar]
  14. Hui S. W., Mason J. T., Huang C. Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1984 Nov 6;23(23):5570–5577. doi: 10.1021/bi00318a029. [DOI] [PubMed] [Google Scholar]
  15. Keough K. M., Davis P. J. Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines. Biochemistry. 1979 Apr 17;18(8):1453–1459. doi: 10.1021/bi00575a011. [DOI] [PubMed] [Google Scholar]
  16. Lewis R. N., McElhaney R. N. Structures of the subgel phases of n-saturated diacyl phosphatidylcholine bilayers: FTIR spectroscopic studies of 13C = O and 2H labeled lipids. Biophys J. 1992 Jan;61(1):63–77. doi: 10.1016/S0006-3495(92)81816-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 1. Differential scanning calorimetric studies. Biochemistry. 1985 May 7;24(10):2431–2439. doi: 10.1021/bi00331a007. [DOI] [PubMed] [Google Scholar]
  18. Lin H. N., Wang Z. Q., Huang C. H. Differential scanning calorimetry study of mixed-chain phosphatidylcholines with a common molecular weight identical with diheptadecanoylphosphatidylcholine. Biochemistry. 1990 Jul 31;29(30):7063–7072. doi: 10.1021/bi00482a017. [DOI] [PubMed] [Google Scholar]
  19. Mantsch H. H., Madec C., Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 2. Infrared and 31P NMR spectroscopic studies. Biochemistry. 1985 May 7;24(10):2440–2446. doi: 10.1021/bi00331a008. [DOI] [PubMed] [Google Scholar]
  20. Mantsch H. H., McElhaney R. N. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids. 1991 Mar;57(2-3):213–226. doi: 10.1016/0009-3084(91)90077-o. [DOI] [PubMed] [Google Scholar]
  21. Marsh D. Analysis of the bilayer phase transition temperatures of phosphatidylcholines with mixed chains. Biophys J. 1992 Apr;61(4):1036–1040. doi: 10.1016/S0006-3495(92)81911-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mason J. T., Broccoli A. V., Huang C. A method for the synthesis of isomerically pure saturated mixed-chain phosphatidylcholines. Anal Biochem. 1981 May 1;113(1):96–101. doi: 10.1016/0003-2697(81)90049-x. [DOI] [PubMed] [Google Scholar]
  23. Mason J. T., Huang C., Biltonen R. L. Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1981 Oct 13;20(21):6086–6092. doi: 10.1021/bi00524a026. [DOI] [PubMed] [Google Scholar]
  24. Mattai J., Sripada P. K., Shipley G. G. Mixed-chain phosphatidylcholine bilayers: structure and properties. Biochemistry. 1987 Jun 16;26(12):3287–3297. doi: 10.1021/bi00386a007. [DOI] [PubMed] [Google Scholar]
  25. McIntosh T. J., Simon S. A., Ellington J. C., Jr, Porter N. A. New structural model for mixed-chain phosphatidylcholine bilayers. Biochemistry. 1984 Aug 28;23(18):4038–4044. doi: 10.1021/bi00313a005. [DOI] [PubMed] [Google Scholar]
  26. Mushayakarara E. C., Wong P. T., Mantsch H. H. Detection by high pressure infrared spectrometry of hydrogen-bonding between water and triacetyl glycerol. Biochem Biophys Res Commun. 1986 Jan 14;134(1):140–145. doi: 10.1016/0006-291x(86)90538-3. [DOI] [PubMed] [Google Scholar]
  27. Mushayakarara E., Albon N., Levin I. W. Effect of water on the molecular structure of a phosphatidylcholine hydrate. Raman spectroscopic analysis of the phosphate, carbonyl and carbon-hydrogen stretching mode regions of 1,2-dipalmitoylphosphatidylcholine dihydrate. Biochim Biophys Acta. 1982 Apr 7;686(2):153–159. doi: 10.1016/0005-2736(82)90107-9. [DOI] [PubMed] [Google Scholar]
  28. Pearson R. H., Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979 Oct 11;281(5731):499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
  29. Shah J., Sripada P. K., Shipley G. G. Structure and properties of mixed-chain phosphatidylcholine bilayers. Biochemistry. 1990 May 1;29(17):4254–4262. doi: 10.1021/bi00469a030. [DOI] [PubMed] [Google Scholar]
  30. Sisk R. B., Huang C. H. Calorimetric studies on the influence of N-methylated headgroups on the mixing behavior of diheptadecanoyl phosphatidylcholine with 1-behenoyl-2-lauroylphosphatidylcholine. Biophys J. 1992 Mar;61(3):593–603. doi: 10.1016/S0006-3495(92)81864-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sisk R. B., Wang Z. Q., Lin H. N., Huang C. H. Mixing behavior of identical molecular weight phosphatidylcholines with various chain-length differences in two-component lamellae. Biophys J. 1990 Sep;58(3):777–783. doi: 10.1016/S0006-3495(90)82420-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Slater J. L., Huang C. H., Levin I. W. Interdigitated bilayer packing motifs: Raman spectroscopic studies of the eutectic phase behavior of the 1-stearoyl-2-caprylphosphatidylcholine/dimyristoylphosphatidylcholine binary mixture. Biochim Biophys Acta. 1992 May 21;1106(2):242–250. doi: 10.1016/0005-2736(92)90002-4. [DOI] [PubMed] [Google Scholar]
  33. Stümpel J., Nicksch A., Eibl H. Calorimetric studies on saturated mixed-chain lecithin-water systems. Nonequivalence of acyl chains in the thermotropic phase transition. Biochemistry. 1981 Feb 3;20(3):662–665. doi: 10.1021/bi00506a033. [DOI] [PubMed] [Google Scholar]
  34. Wang Z. Q., Lin H. N., Huang C. H. Differential scanning calorimetric study of a homologous series of fully hydrated saturated mixed-chain C(X):C(X + 6) phosphatidylcholines. Biochemistry. 1990 Jul 31;29(30):7072–7076. doi: 10.1021/bi00482a018. [DOI] [PubMed] [Google Scholar]
  35. Wong P. T., Huang C. H. Structural aspects of pressure effects on infrared spectra of mixed-chain phosphatidylcholine assemblies in D2O. Biochemistry. 1989 Feb 7;28(3):1259–1263. doi: 10.1021/bi00429a046. [DOI] [PubMed] [Google Scholar]
  36. Xu H., Huang C. H. Scanning calorimetric study of fully hydrated asymmetric phosphatidylcholines with one acyl chain twice as long as the other. Biochemistry. 1987 Feb 24;26(4):1036–1043. doi: 10.1021/bi00378a009. [DOI] [PubMed] [Google Scholar]
  37. Xu H., Stephenson F. A., Huang C. H. Binary mixtures of asymmetric phosphatidylcholines with one acyl chain twice as long as the other. Biochemistry. 1987 Aug 25;26(17):5448–5453. doi: 10.1021/bi00391a035. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES