Abstract
We have extended the method of modulated excitation, a small perturbation kinetic method, to study ligand binding and conformational change of hemoglobin tetramers with a single ligand bound. To restrict the excitation to the first ligand, only 1% of the hemes have bound CO, and the remainder are kept unliganded. A detailed theory is presented which agrees well with the experimental observations. This method of observing ligand recombination also provides a novel and simple method for determination of hemoglobin concentration. Additional relaxation processes are also observed. By fitting independently determined spectra to the spectra associated with the relaxations, these processes are assigned as thermal excitation and thermally driven protonation/deprotonation reactions. These added relaxations arise from the deoxy-Hb portion of the samples, and demonstrate that modulated excitation can be used effectively for temperature perturbation in the absence of photodissociation. The spectra observed are not well described by the spectra of allosteric change, however, and we conclude that there is no significant mixing of quaternary states at the first ligation step. In an appendix we present a derivation of the particular features seen in thermally modulated protonation reactions.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackers G. K. Energetics of subunit assembly and ligand binding in human hemoglobin. Biophys J. 1980 Oct;32(1):331–346. doi: 10.1016/S0006-3495(80)84960-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho K. C., Hopfield J. J. Spin equilibrium and quaternary structure change in hemoglobin A. Experiments on a quantitative probe of the stereochemical mechanism of hemoglobin cooperativity. Biochemistry. 1979 Dec 25;18(26):5826–5833. doi: 10.1021/bi00593a012. [DOI] [PubMed] [Google Scholar]
- Ho C. Proton nuclear magnetic resonance studies on hemoglobin: cooperative interactions and partially ligated intermediates. Adv Protein Chem. 1992;43:153–312. doi: 10.1016/s0065-3233(08)60555-0. [DOI] [PubMed] [Google Scholar]
- Johnson M. L., Turner B. W., Ackers G. K. A quantitative model for the cooperative mechanism of human hemoglobin. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1093–1097. doi: 10.1073/pnas.81.4.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee A. W., Karplus M., Poyart C., Bursaux E. Analysis of proton release in oxygen binding by hemoglobin: implications for the cooperative mechanism. Biochemistry. 1988 Feb 23;27(4):1285–1301. doi: 10.1021/bi00404a031. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Martino A. J., Ferrone F. A. Rate of allosteric change in hemoglobin measured by modulated excitation using fluorescence detection. Biophys J. 1989 Oct;56(4):781–794. doi: 10.1016/S0006-3495(89)82725-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mozzarelli A., Rivetti C., Rossi G. L., Henry E. R., Eaton W. A. Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect. Nature. 1991 May 30;351(6325):416–419. doi: 10.1038/351416a0. [DOI] [PubMed] [Google Scholar]
- Okonjo K. O., Vega-Catalan F. J., Ubochi C. I. Temperature-jump studies on hemoglobin. Kinetic evidence for a non-quaternary isomerization process in deoxy- and carbonmonoxyhemoglobin. J Mol Biol. 1989 Jul 20;208(2):347–354. doi: 10.1016/0022-2836(89)90394-x. [DOI] [PubMed] [Google Scholar]
- Olson J. S. Spectral differences between the alpha and beta heme groups within human deoxyhemoglobin. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1140–1144. doi: 10.1073/pnas.73.4.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perutz M. F., Ladner J. E., Simon S. R., Ho C. Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin. Biochemistry. 1974 May 7;13(10):2163–2173. doi: 10.1021/bi00707a026. [DOI] [PubMed] [Google Scholar]
- Rivetti C., Mozzarelli A., Rossi G. L., Henry E. R., Eaton W. A. Oxygen binding by single crystals of hemoglobin. Biochemistry. 1993 Mar 23;32(11):2888–2906. doi: 10.1021/bi00062a021. [DOI] [PubMed] [Google Scholar]
- Shulman R. G., Hopfield J. J., Ogawa S. Allosteric interpretation of haemoglobin properties. Q Rev Biophys. 1975 Jul;8(3):325–420. doi: 10.1017/s0033583500001840. [DOI] [PubMed] [Google Scholar]
- Zahroon I. A., Sawicki C. A. Changes in the apparent quantum efficiency for photolysis of Hb(CO)1. Biophys J. 1989 Nov;56(5):947–953. doi: 10.1016/S0006-3495(89)82740-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao M., Jiang J., Greene M., Andracki M. E., Fowler S. A., Walder J. A., Ferrone F. A. Allosteric kinetics and equilibria of triligated, cross-linked hemoglobin. Biophys J. 1993 May;64(5):1520–1532. doi: 10.1016/S0006-3495(93)81521-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
