Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Nov;65(5):2248–2260. doi: 10.1016/S0006-3495(93)81258-X

Pressure effects on the physical properties of lipid bilayers detected by trans-parinaric acid fluorescence decay.

C Reyes Mateo 1, P Tauc 1, J C Brochon 1
PMCID: PMC1225956  PMID: 8298048

Abstract

The effects of hydrostatic pressure on the physical properties of large unilamellar vesicles of single lipids dipalmitoyl phosphatidylcholine (DPPC) and dimyristoyl phosphatidylcholine (DMPC) and lipid mixtures of DMPC/DPPC have been studied from time-resolved fluorescence of trans-parinaric acid. Additional experiments were carried out using diphenylhexatriene to compare the results extracted from both probes. Fluorescence decays were analyzed by the maximum entropy method. Pressure does not influence the fluorescence lifetime distribution of trans-parinaric acid in isotropic solvents. However, in pressurized lipid bilayers an abrupt change was observed in the lifetime distribution which was associated with the isothermal pressure-induced phase transition. The pressure to temperature equivalence values, dT/dP, determined from the midpoint of the phase transitions, were 24 and 14.5 degrees C kbar-1 for DMPC and POPC, respectively. Relatively moderate pressures of about 500 bar shifted the DMPC/DPPC phase diagram 11.5 degrees C to higher temperatures. The effects of pressure on the structural properties of these lipid vesicles were investigated from the anisotropy decays of both probes. Order parameters for all systems increased with pressure. In the gel phase of POPC the order parameter was smaller than that obtained in the same phase of saturated phospholipids, suggesting that an efficient packing of the POPC hydrocarbon chains is hindered.

Full text

PDF
2248

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ameloot M., Hendrickx H., Herreman W., Pottel H., Van Cauwelaert F., van der Meer W. Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. Experimental verification on unilamellar vesicles and lipid/alpha-lactalbumin complexes. Biophys J. 1984 Oct;46(4):525–539. doi: 10.1016/S0006-3495(84)84050-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behan M. K., Macdonald A. G., Jones G. R., Cossins A. R. Homeoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish. Biochim Biophys Acta. 1992 Jan 31;1103(2):317–323. doi: 10.1016/0005-2736(92)90102-r. [DOI] [PubMed] [Google Scholar]
  3. Braganza L. F., Worcester D. L. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry. 1986 May 6;25(9):2591–2596. doi: 10.1021/bi00357a047. [DOI] [PubMed] [Google Scholar]
  4. Braganza L. F., Worcester D. L. Structural changes in lipid bilayers and biological membranes caused hydrostatic pressure. Biochemistry. 1986 Nov 18;25(23):7484–7488. doi: 10.1021/bi00371a034. [DOI] [PubMed] [Google Scholar]
  5. Ceuterick F., Peeters J., Heremans K., De Smedt H., Olbrechts H. Effect of high pressure, detergents and phospholipase on the break in the Arrhenius plot of Azotobacter nitrogenase. Eur J Biochem. 1978 Jun 15;87(2):401–407. doi: 10.1111/j.1432-1033.1978.tb12389.x. [DOI] [PubMed] [Google Scholar]
  6. Chong P. L., Cossins A. R., Weber G. A differential polarized phase fluorometric study of the effects of high hydrostatic pressure upon the fluidity of cellular membranes. Biochemistry. 1983 Jan 18;22(2):409–415. doi: 10.1021/bi00271a026. [DOI] [PubMed] [Google Scholar]
  7. Chong P. L. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry. 1988 Jan 12;27(1):399–404. doi: 10.1021/bi00401a060. [DOI] [PubMed] [Google Scholar]
  8. Chong P. L., van der Meer B. W., Thompson T. E. The effects of pressure and cholesterol on rotational motions of perylene in lipid bilayers. Biochim Biophys Acta. 1985 Mar 14;813(2):253–265. doi: 10.1016/0005-2736(85)90240-8. [DOI] [PubMed] [Google Scholar]
  9. Heyn M. P. Order and viscosity of membranes: analysis by time-resolved fluorescence depolarization. Methods Enzymol. 1989;172:462–471. doi: 10.1016/s0076-6879(89)72029-2. [DOI] [PubMed] [Google Scholar]
  10. Jonas J., Xie C. L., Jonas A., Grandinetti P. J., Campbell D., Driscoll D. High-resolution 13C NMR study of pressure effects on the main phase transition in L-alpha-dipalmitoyl phosphatidylcholine vesicles. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4115–4117. doi: 10.1073/pnas.85.12.4115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kinosita K., Jr, Kawato S., Ikegami A. Dynamic structure of biological and model membranes: analysis by optical anisotropy decay measurement. Adv Biophys. 1984;17:147–203. doi: 10.1016/0065-227x(84)90027-3. [DOI] [PubMed] [Google Scholar]
  14. Liu N. I., Kay R. L. Redetermination of the pressure dependence of the lipid bilayer phase transition. Biochemistry. 1977 Jul 26;16(15):3484–3486. doi: 10.1021/bi00634a030. [DOI] [PubMed] [Google Scholar]
  15. Ludescher R. D., Peting L., Hudson S., Hudson B. Time-resolved fluorescence anisotropy for systems with lifetime and dynamic heterogeneity. Biophys Chem. 1987 Oct;28(1):59–75. doi: 10.1016/0301-4622(87)80075-3. [DOI] [PubMed] [Google Scholar]
  16. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nagle J. F., Wilkinson D. A. Lecithin bilayers. Density measurement and molecular interactions. Biophys J. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peng X., Jonas J. High-pressure 31P NMR study of dipalmitoylphosphatidylcholine bilayers. Biochemistry. 1992 Jul 21;31(28):6383–6390. doi: 10.1021/bi00143a004. [DOI] [PubMed] [Google Scholar]
  19. Reyes Mateo C., Brochon J. C., Pilar Lillo M., Ulises Acuña A. Lipid clustering in bilayers detected by the fluorescence kinetics and anisotropy of trans-parinaric acid. Biophys J. 1993 Nov;65(5):2237–2247. doi: 10.1016/S0006-3495(93)81257-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sassaroli M., Vauhkonen M., Somerharju P., Scarlata S. Dipyrenylphosphatidylcholines as membrane fluidity probes. Pressure and temperature dependence of the intramolecular excimer formation rate. Biophys J. 1993 Jan;64(1):137–149. doi: 10.1016/S0006-3495(93)81348-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Siminovitch D. J., Wong P. T., Mantsch H. H. Effects of cis and trans unsaturation on the structure of phospholipid bilayers: a high-pressure infrared spectroscopic study. Biochemistry. 1987 Jun 16;26(12):3277–3287. doi: 10.1021/bi00386a006. [DOI] [PubMed] [Google Scholar]
  22. Sklar L. A., Hudson B. S., Petersen M., Diamond J. Conjugated polyene fatty acids on fluorescent probes: spectroscopic characterization. Biochemistry. 1977 Mar 8;16(5):813–819. doi: 10.1021/bi00624a001. [DOI] [PubMed] [Google Scholar]
  23. Tosh R. E., Collings P. J. High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers. Biochim Biophys Acta. 1986 Jul 10;859(1):10–14. doi: 10.1016/0005-2736(86)90312-3. [DOI] [PubMed] [Google Scholar]
  24. Trudell J. R., Payan D. G., Chin J. H., Cohen E. N. Pressure-induced elevation of phase transition temperature in dipalmitoylphosphatidylcholine bilayers. An electron spin resonance measurement of the enthalpy of phase transition. Biochim Biophys Acta. 1974 Dec 24;373(3):436–443. doi: 10.1016/0005-2736(74)90023-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES