Abstract
目的
探讨鞘氨醇1-磷酸受体5(S1PR5)对氧糖剥夺及复氧复糖(OGD/R)诱导的小鼠脑微血管内皮细胞屏障功能的影响及相关机制。
方法
体外培养小鼠脑微血管内皮细胞bEnd.3,使用OGD/R诱导屏障功能障碍,分别使用S1PR5特异性激动剂A971432、敲低S1PR5的siRNA及过表达S1PR5的慢病毒进行干预。设置对照组:bEnd.3正常培养;OGD/R组:bEnd.3进行OGD/R;A971432组:OGD/R组+A971432;siNC组:转染siNC+OGD/R;siS1PR5组:转染siS1PR5+OGD/R;OE NC组:感染慢病毒LV5-NC+OGD/R;OE S1PR5组:感染慢病毒LV5-S1PR5+OGD/R。RT-qPCR法分别检测敲低或过表达S1PR5的效率;采用CCK-8检测在不同培养条件下bEnd.3细胞的活力;采用FITC-dextran渗透法检测内皮屏障渗透性;采用细胞免疫荧光法检测蛋白的定位及表达;DCFH-DA探针法检测细胞内活性氧水平;Western blotting法检测蛋白的表达水平。
结果
CCK-8结果显示激动S1PR5可以增加OGD/R下调的细胞活力(P<0.0001),FITC-dextran渗透法结果显示激动和过表达S1PR5可减少FITC-dextran的渗漏(P<0.001),而敲低S1PR5增加FITC-dextran的渗漏(P<0.001)。Western blotting及免疫荧光结果显示,与OGD/R组相比,激动和过表达S1PR5可以增加屏障蛋白ZO-1(P<0.05)、Occludin(P<0.05)的表达,而敲低S1PR5会下调ZO-1和Occludin(P<0.05)的表达。ROS检测结果显示,激动和过表达S1PR5能减少ROS的产生,而敲低S1PR5会增加ROS产生。Western blotting检测发现过表达S1PR5可以增加抗氧化蛋白Nrf2(P<0.0001)、HO-1(P<0.0001)、SOD2(P<0.01)的表达。
结论
S1PR5受体的激动剂干预及基因过表达可显著改善OGD/R模型诱导的活力减少及通透性增加,而基因敲低S1PR5则加剧OGD/R诱导的功能损伤,其机制可能与减少ROS,上调抗氧化蛋白表达相关。
Keywords: 鞘氨醇1-磷酸受体5, 血脑屏障功能障碍, 氧化应激, 氧糖剥夺/复氧复糖损伤
Abstract
Objective
To investigate the role of sphingosine-1-phosphate receptor 5 (S1PR5) in modulating barrier function of mouse brain microvascular endothelial cells with oxygen-glucose deprivation and reoxygenation (OGD/R).
Methods
Mouse brain microvascular endothelial cells (bEnd.3) were exposed to OGD/R to induce barrier dysfunction following treatment with S1PR5-specific agonist A971432 or lentivirus-mediated transfection with a S1PR5-specific siRNA, a S1PR5-overexpressing plasmid, or their respective negative control sequences. The changes in viability and endothelial barrier permeability of the treated cells were evaluated with CCK-8 assay and FITC-dextran permeability assay; the levels of intracellular reactive oxygen species (ROS) and localization and expression levels of the proteins related with barrier function and oxidative stress were detected using immunofluorescence staining, DCFH-DA probe and Western blotting.
Results
S1PR5 activation obviously enhanced viability of bEnd.3 cells exposed to OGD/R (P<0.0001). Both activation and overexpression of S1PR5 reduced FITC-dextran leakage, while S1PR5 knockdown significantly increased FITC-dextran leakage in the exposed bEnd.3 cells. Activation and overexpression of S1PR5 both increased the cellular expressions of the barrier proteins ZO-1 and occludin, while S1PR5 knockdown produced the opposite effect. In cells exposed to OGD/R, ROS production was significantly reduced by S1PR5 activation and overexpression but increased following S1PR5 knockdown. Overexpression of S1PR5 obviously increased the expressions of the antioxidant proteins Nrf2, HO-1 and SOD2 in the exposed cells.
Conclusion
S1PR5 activation and overexpression significantly improve cell viability and reduce permeability of a mouse brain microvascular endothelial cell model of OGD/R, the mechanism of which may involve the reduction in ROS production and upregulation of the antioxidant proteins.
Keywords: sphingosine 1-phosphate receptor 5, blood-brain barrier dysfunction, oxidative stress, oxygen-glucose deprivation and reoxygenation
血脑屏障(BBB)作为选择性屏障,负责调节脑组织和外周循环之间的物质交换,在维持中枢神经系统稳态中发挥关键作用[1]。缺血性脑卒中(IS)是由于脑血流中断导致的脑组织损伤,发病率高,是致残和致死的主要原因之一[2]。BBB破坏是IS发生后的重要特征,会加剧炎症反应和脑水肿,加重神经损伤。维持BBB的结构功能完整性是IS治疗的关键策略[3]。
鞘氨醇-1-磷酸(S1P)是一种具有生物活性的鞘脂,也是5种G蛋白偶联受体(S1PR1-5)的配体[4]。S1P与其受体组成的信号系统可以通过抑制发芽性血管生成以及调节血管通透性在维持血管完整性方面发挥着至关重要的作用,该信号系统的功能失调会导致多种血管缺陷[5]。其中,S1P的受体5(S1PR5)在中枢神经系统特异性高表达[6]。研究发现,S1PR5的激活可减轻亨廷顿病模型中的BBB损伤[7],提示其对神经血管单元的保护潜力。课题组前期研究发现,使用S1PR5特异性激动剂A971432可缓解H2O2诱导的内皮细胞的通透性和凋亡损伤[8]。S1PR1/S1PR5双靶点激动剂Siponimod在脑出血实验模型[6]及多发性硬化动物模型[7]中发挥神经保护作用,且保护效应在S1PR5基因敲除模型中完全消失。在脑卒中模型小鼠的缺血半暗带区检测到S1PR5的表达显著上调[9]。然而,S1PR5在IS发生时的作用及调控机制尚不明确,其在BBB动态平衡中的作用亟待阐明。本研究采用氧糖剥夺/再灌注(OGD/R)诱导脑内皮细胞损伤模型,通过三重验证(激动剂干预、基因敲低及过表达)揭示S1PR5对BBB的关键调控作用及机制,为IS治疗提供新靶点。
1. 材料和方法
1.1. 材料
bEnd.3细胞系是永生化的小鼠脑内皮细胞,购自武汉普诺赛生物技术有限公司;无糖及高糖DMEM培养基(Gibco);胎牛血清(FBS,Sigma-Aldrich);A971432(Tocris Bioscience);S1PR5 siRNA及相应对照(si-NC)、S1PR5过表达慢病毒(LV5-S1PR5)及相应对照(LV5-NC)由苏州吉玛生物有限公司构建;荧光素异硫氰酸酯-葡聚糖(FITC-dextran,Sigma-Aldrich);Transwell小室(直径6.5 mm,孔径0.4 μm,Corning);CCK-8试剂盒(Biosharp);活性氧检测试剂盒和SDS-PAGE凝胶快速制备试剂盒、辣根过氧化物酶(HRP)标记山羊抗兔/小鼠IgG、RT-qPCR所用引物(碧云天生物科技公司);ZO-1多克隆抗体、Occludin多克隆抗体、Nrf2多克隆抗体、HO-1多克隆抗体(Proteintech);β-actin多克隆抗体、GAPDH多克隆抗体、VE-Cadherin多克隆抗体(Absin);Dy-Light 488标记山羊抗兔二抗(Abbkine);cDNA反转录试剂(TaKaRa);RT-qPCR扩增试剂QuantiNova SYBR Green PCR Kit(Qiagen);电泳仪和转膜仪(Bio-Rad);倒置荧光显微镜(Olympus)。
1.2. 方法
1.2.1. 细胞模型的建立及缺氧时间的筛选
bEnd.3细胞系使用添加含10% FBS、100 mg/L青霉素以及100 mg/L链霉素的高糖DMEM培养,放置于5% CO2、37 ℃的恒温培养箱中进行常规培养。氧糖剥夺(OGD)处理时,将细胞培养基更换为无血清无糖的DMEM,置于95% N2浓度、5% O2的培养箱中进行培养,选取0、2、4、6、8 h等不同时间OGD处理后进行相关检测选取适宜的缺氧模型时间,复氧时恢复常规培养模式。
1.2.2. 细胞分组
根据研究目的设置分组。Con组:正常处理,之后进行相关检测。激动S1PR5时分为:Con组、OGD/R组及激动剂(A-971432)组;其中激动剂组处理为:正常培养细胞后进行OGD处理,在复氧阶段加入不同浓度的A971432激动S1PR5,对相应指标进行检测。沉默S1PR5时分为:Con组、OGD/R组、OGD/R+si-NC组、OGD/R+si-S1PR5组。过表达S1PR5时分为:Con组、OGD/R组、OGD/R+OE-NC组、OGD/R+OE-S1PR5组。其中过表达及沉默S1PR5处理:正常培养细胞后使用慢病毒过表达S1PR5、使用siRNA沉默S1PR5以及加入其相应对照(OE-NC和si-NC),处理时间均为48 h,再进行OGD/R处理,对相应指标进行检测。S1PR5 siRNA及相应对照(si-NC)由苏州吉玛生物有限公司构建(表1)。
表1.
S1PR5 siRNA靶向序列
Tab.1 S1PR5-specifc siRNA sequences used in this study
| Gene | Targeting sequence (5'-3') |
|---|---|
| siRNA1 |
Sense: GCUAUUGCUCGGGGCUGCUATT Antisense: UAGCAGCCCCGAGCAAUAGCTT |
| siRNA2 |
Sense: GCUCUACGCCAAGGCCUAUTT Antisense: AUAGGCCUUGGCGUAGAGCTT |
| siRNA3 |
Sense: GCUCUACGCCAAGGCCUAUTT Antisense: ACGUGACACGUUCGGAGAATT |
| siNC |
Sense: UUCUCCGAACGUGUCACGUTT Antisense: ACGUGACACGUUCGGAGAATT |
1.2.3. 细胞活力检测
采用CCK-8试剂盒检测细胞活力。取对数生长期细胞以4×103/孔铺板至96孔板,24 h后,更换为无糖培养基进行OGD处理,时间分别为0、2、4、6、8 h,之后更换为完全培养基进行复氧培养,使OGD和R总时长为24 h,实验结束后加入10 μL/孔 CCK-8试剂,于37 ℃下培养2 h。检测A971432对于细胞活力的影响时,常规培养组直接在铺板24 h后加入不同浓度的A971432孵育24 h后加入CCK-8试剂进行检测;OGD组则在复氧时加入A971432。使用多功能酶标仪检测吸光度值(A 450 nm)。对细胞活力进行定量分析,细胞活力=(处理组A 450 nm均值-空白组A 450 nm均值)/(对照组A 450 nm均值-空白组A 450 nm均值)×100 %。设置3个复孔/组。
1.2.4. RT-qPCR
处理后的细胞样本使用PBS清洗后加入Trizol试剂,加入氯仿,振荡混匀后于室温静置10 min。在4 ℃下12 000×g离心15 min。取上清液加入等体积的异丙醇并混匀后,在4 ℃下,12 000×g离心10 min。弃去上清后加入1 mL 75%乙醇清洗沉淀。然后在4 ℃下7500×g离心5 min。弃去上清,风干RNA沉淀5 min。用无RNase的水溶解RNA。使用PrimeScript™ RT Master将1 μg RNA逆转录为cDNA。使用QuantiNova SYBR Green PCR Kit和ABI7500仪器对相关基因的mRNA表达进行检测,GAPDH上引物:5'-CCAGCAAGGAC ACTGAGCAA-3';GAPDH下引物:5'-GGGATGGAA ATTGTGAGGGA-3'。S1PR5引物购自碧云天生物科技(产品编号:QM07674S)。使用GAPDH内参照,相对表达量用2-ΔΔCt表示。实验重复3次。
1.2.5. Western blotting
处理后的细胞使用预冷的PBS清洗后,加入含有PMSF及蛋白酶抑制剂的RIPA裂液,经超声、低温离心后获得细胞总蛋白。在对蛋白进行定量测定后,通过PAGE-SDS凝胶进行电泳分离,通过湿转法转移至孔径为0.22 μm的PVDF膜上。经5%脱脂牛奶封闭后,将膜分别与ZO-1、Occludin、β-actin、GAPDH(均为1∶1000);VE-Cadherin(1∶800);Nrf2和HO-1(1∶400)等一抗,以及辣根过氧化物酶标山羊抗兔或抗鼠二抗(1∶5000)进行孵育,用含0.1%吐温-20的TBST进行洗涤。通过化学发光成像系统进行成像,利用Image J软件计算条带灰度值。实验重复3次。
1.2.6. 细胞免疫荧光染色
处理后的bEnd.3细胞加入4%多聚甲醛固定25 min,用0.2% Triton X-100进行通透化处理10 min,加入羊血清封闭1 h,之后加入稀释比例为1∶400的ZO-1抗体在4 ℃环境孵育24 h,用Dy-Light 488标记亲和纯化山羊抗兔IgG(1∶1000)在室温下避光孵育2 h。最后加入Hoechst-33342(1∶1000)孵育10 min后,在荧光显微镜下拍照。实验重复3次。
1.2.7. 活性氧(ROS)检测
采用ROS检测试剂盒来检测细胞中ROS的累积情况。处理后的bEnd.3细胞使用PBS清洗,加入用无血清培养基稀释DCFH-DA探针至终浓度为10 μmol/L的工作液,于细胞培养箱中孵育30 min,再次使用PBS清洗后,置于倒置荧光显微镜下拍照。实验重复3次。
1.2.8. 血管内皮细胞通透性测定
参照文献[10]中血管内皮细胞通透性测定的测量的方法,将bEnd.3细胞接种到24孔Transwell小室的上室中,每孔1×10⁴个细胞,培养24 h后进行OGD/R处理。处理结束后在Transwell小室的上室中加入终浓度为1 mg/mL FITC-dextran,于细胞培养箱中孵育30 min,从下室中吸取100 μL液体置入不透光96孔板中,使用多功能酶标仪检测激发光490 nm、吸收光520 nm的吸光度。实验重复3次。
1.3. 统计学分析
数据采用GraphPad 9.0软件进行分析,符合正态分布的计量资料以均数±标准差表示,两组间差异的比较采用独立样本t检验,多组间比较采用单因素方差分析。以P<0.05为差异有统计学意义。
2. 结果
2.1. OGD诱导脑内皮细胞活力下降及紧密连接蛋白的减少
光学显微镜下观察到,随着OGD处理时间的延长,bEnd.3细胞间隙越来越大,形态逐渐表现出明显的皱缩、胞体卷曲(图1A)。CCK-8结果显示,细胞的活力随OGD刺激时间延长逐渐下降(P<0.001,图1B)。Western blotting检测结果显示,与对照组相比,紧密连接蛋白ZO-1(P<0.05,图1D)、Occludin(P<0.05,图1F)以及钙黏蛋白VE-Cadherin(P<0.0001,图1E)的表达随OGD时间的延长下调(图1C),本研究最终选择缺氧8 h复氧16 h作为损伤模型进行后续实验。
图1.

OGD处理降低bEnd.3细胞活性并下调细胞间紧密连接蛋白的表达
Fig.1 Oxygen-glucose deprivation (OGD) decrease viability of bEnd.3 cells and down-regulate expressions of intercellular tight junction proteins. A: Representative images of bEnd.3 cells after OGD treatment. B: Viability of b.End3 cells assessed with CCK-8 assay (n=6). C: Western blotting of tight junction proteins (ZO-1 and occludin) and VE-cadherin after OGD. D-F: Quantification of ZO-1, VE-cadherin, and occludin protein expression levels (n=3). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs Con.
2.2. 激动S1PR5抑制OGD诱导的细胞活力下降及紧密连接蛋白的减少
CCK-8检测结果显示不同浓度的A971432(1、5、10、20、30、40、50 μmol/L)作用于正常培养下bEnd.3细胞24 h后与未处理组相比,细胞活力无明显变化(图2A),但OGD/R处理的细胞中可以观测到40 μmol/L A971432提高了细胞活性(P<0.0001,图2B)。最终选用10、20、40 μmol/L浓度进行检测。
图2.

激动S1PR5有助于恢复OGD下调的细胞活性并上调细胞间紧密连接蛋白的表达
Fig.2 Activation of S1PR5 restores viability of OGD-damaged cells and up-regulates expressions of intercellular tight junction proteins. A: CCK8 assay for assessing viability of cultured bEnd.3 cells treated with different concentrations of A971432. B: CCK8 assay for assessing viability of bEnd.3 cells exposed to OGD after treatment with different concentrations of A971432 (****P<0.0001 vs 0 μmol/L A971432). C: Schematic diagram for detecting endothelial permeability of bEnd.3 cells using FITC-Dextran. D: Detection of endothelial permeability using FITC-Dextran. E: Western blotting of ZO-1 and occluding expressions in bEnd.3 cells with OGD/R after S1PR5 activation. F, G: Quantitative analysis of the expression levels of ZO-1 and occludin. H: Changes in the fluorescence intensity of tight junction proteins caused by activation of S1PR5 in bEnd.3 cells with OGD/R (scale bar= 50 μm). *P<0.05, **P<0.01, ****P<0.0001 vs Con; # P<0.05, ## P<0.01, #### P<0.0001 vs OGD/R.
采用FITC标记的葡聚糖联合Transwell小室研究血管内皮的渗透性(图2C),与对照组相比,OGD处理增加了葡聚糖-FITC的渗透量(P<0.0001),而20 μmol/L(P<0.01)、40 μmol/L A971432(P<0.0001)干预显著降低了葡聚糖-FITC的渗透量(图2D)。Western blotting检测发现,与对照组相比,OGD/R处理下调了ZO-1(P<0.01)及Occludin(P<0.05)的表达,但随着S1PR5激动剂A971432浓度的增加,ZO-1及Occludin的表达逐渐上调,且与OGD/R组比,40 μmol/L A971432显著增加了ZO-1及Occludin的表达(P<0.05,图2E~G)。免疫荧光结果提示,A971432能增加OGD/R处理后ZO-1的荧光强度(图2I)。
2.3. 敲低S1PR5加剧OGD诱导的细胞活力下降及紧密连接蛋白的减少
在细胞中转染沉默S1PR5的3条siRNA,48 h后通过RT-qPCR检测转染效率,发现siS1PR5-3的沉默效果较好(P<0.01,图3A),用于后续实验。
图3.

敲低S1PR5加剧OGD诱导的细胞活力下降及紧密连接蛋白的减少
Fig.3 S1PR5 knockdown exacerbates the reduction of cell viability and tight junction protein expressions in OGD-induced bEnd.3 cells. A: Efficiency of S1PR5 knockdown assessed by RT-qPCR. B: Endothelial permeability of the transfected cells detected by FITC-Dextran. C: Alterations in the fluorescence intensity of the tight junction proteins in bEnd.3 cells with S1PR5 knockdown following OGD/R. D-F: Western blotting for detecting the expression levels of ZO-1 and occluding in bEnd.3 cells with OGD/R after S1PR5 knockdown. *P<0.05, **P<0.01 vs Con; # P<0.05, ### P<0.001 vs OGD/R.
血管内皮的渗透性实验检测到沉默S1PR5后,下室中葡聚糖-FITC的渗透量增加(P<0.001,图3B)。Western blotting结果显示,下调S1PR5的表达使血管内皮细胞中的屏障蛋白Occludin表达下降(P<0.05,图3D~F)。细胞免疫荧光显示ZO-1的荧光强度在下调S1PR5后减弱,细胞连接处缺乏ZO-1的表达(图3C)。
2.4. 过表达S1PR5抑制OGD诱导的细胞活力下降及紧密连接蛋白的减少
使用过表达S1PR5的慢病毒上调bEnd.3细胞中的S1PR5表达量,通过RT-qPCR检测了慢病毒的转染效率,结果显示过表达S1PR5慢病毒上调S1PR5的表达(P<0.01,图4A)。
图4.

过表达S1PR5抑制OGD诱导的细胞活力下降及紧密连接蛋白的减少
Fig.4 Overexpression of S1PR5 enhances viability and tight junction protein expressions in OGD-induced bEnd.3 cells. A: RT-qPCR for assessing efficiency of lentivirus-mediated S1PR5 overexpression (**P<0.01 vs OENC). B: Endothelial permeability of the cells detected by FITC-Dextran. C: Changes in the fluorescence intensity of tight junction proteins in OGD-induced bEnd.3 cells with S1PR5 overexpression. D-F: Western blotting for detecting expression levels of ZO-1 and occludin in OGD-induced bEnd.3 cells with S1PR5 overexpression. *P<0.05, **P<0.01, ****P<0.0001 vs Con; # P<0.05, ## P<0.01, ### P<0.001 vs OGD/R.
血管内皮的渗透性实验检测到过表达S1PR5后,下室中葡聚糖-FITC的渗透量减少(P<0.001,图4B)。Western blotting结果显示,过表达S1PR5使得在OGD/R下紧密连接蛋白ZO-1和Occludin的表达量增加(P<0.01),但在过表达S1PR5的基础上再次使用S1PR5激动剂并未起到更高的保护效应(P<0.05,图4D~F)。细胞荧光检测结果显示,过表达S1PR5显著恢复了ZO-1的荧光强度,但对细胞的数目并没有明显的改善(图4C)。
2.5. S1PR5介导Nrf-2/HO-1通路发挥抗氧化作用
对细胞内ROS的检测结果提示,OGD/R显著诱导了细胞内ROS的产生。而激动剂A971432和过表达S1PR5都有效抑制了ROS的产生,其中过表达S1PR5对氧化损伤的改善作用更明显(图5A)。Western blotting结果提示,在OGD/R的条件下上调S1PR5可增加抗氧化通路的关键蛋白Nrf2(P<0.0001,图5C)、HO-1(P<0.0001,图5D)和SOD2的表达(P<0.01,图5E),但敲低S1PR5对氧化应激蛋白并没有显著的影响(P>0.05,图5B~E)。
图5.

S1PR5介导Nrf-2/HO-1通路发挥抗氧化作用
Fig.5 S1PR5 overexpression produces antioxidant effect in OGD-induced bEnd.3 cells via the Nrf-2/HO-1 pathway. A: Effects of S1PR5 knockdown and overexpression on intracellular reactive oxygen species in OGD-induced bEnd.3 cells (scale bar=50 μm). B-E: Western blotting for detecting expression levels of Nrf2, HO-1 and SOD2 in OGD-induced bEnd.3 cells with S1PR5 knockdown or overexpression. *P<0.05 vs Con, ## P<0.01, #### P<0.0001 vs OGD/R.
3. 讨论
BBB通过调控营养物质、免疫细胞的进出及代谢产物的清除,维持中枢神经系统微环境稳态和神经组织结构完整性。在IS的病理进程中,脑组织因缺血、缺氧触发了一系列复杂的级联反应,其中血管内皮细胞功能紊乱是重要的始动环节[11, 12]。该紊乱导致血管内皮细胞间的紧密连接结构遭受破坏,具体表现为ZO-1、Occludin等关键连接蛋白表达下调,引发BBB通透性异常升高,进而加剧血管源性脑水肿、炎性介质外渗及继发性神经元损伤,最终导致神经功能预后恶化[13]。基于此,本研究采用OGD/R处理模型模拟IS后BBB损伤。通过细胞活性检测以及紧密连接蛋白的表达变化,发现OGD处理小鼠脑微血管内皮细胞8 h,R处理16 h可显著下调细胞活性,并下调细胞间的紧密连接蛋白的表达,复现IS中BBB功能障碍的核心特征。
研究证实S1P对BBB完整性具有多维度的调控作用[12, 14]:S1PR1激活可增强内皮屏障抵抗剪切力能力[15];S1PR2/3拮抗通过抑制RhoA/MLCK通路改善内皮通透性损伤[10, 16-18];而S1PR4通过维持基底侧S1P梯度稳定内皮稳态[19],然而,作为中枢神经系统高表达受体,S1PR5在BBB调控中的作用长期缺乏直接证据。本研究通过三重策略(激动剂干预、基因敲低及过表达)揭示S1PR5对BBB的正向调控作用,实验结果表明,S1PR5激动剂A971432可以显著上调OGD/R处理后细胞活性下降,激动剂处理和过表达S1PR5均显著改善FITC-葡聚糖渗透性增加以及紧密连接蛋白(ZO-1和Occludin)表达下调,而siRNA介导的S1PR5敲低则显著加剧屏障功能失调。这些结果从功能获得与功能缺失双重角度证实S1PR5对BBB完整性的正向调控作用。上述发现与S1PR1/5双靶点激动剂Siponimod的研究[20]结果一致,与课题组前期在H2O2诱导的损伤模型研究结论[9]一致。在实验性脑卒中动物模型中,S1PR受体调节剂FTY720(可结合S1PR1/2/3/5)可通过调节S1PR1阻止紧密连接蛋白的重新分布和亚急性期的炎症,有效维持BBB的完整性[21],结合本研究,可能证实在IS后,S1PR1和S1PR5对于紧密连接蛋白的调节方式并不相同,这仍有待于进一步探究。
在IS的病理进程中,微血管内皮细胞作为BBB的核心组成单元,不仅是氧化应激损伤的靶点,更是ROS生成的关键源头[22]。研究表明,IS后内皮细胞内线粒体电子传递链功能障碍及NADPH氧化酶异常激活,导致ROS产量急剧升高。这种氧化应激状态可通过直接氧化修饰紧密连接蛋白和激活基质金属蛋白酶等机制破坏内皮屏障[23, 24]。Nrf2作为内源性抗氧化防御的关键调节因子,介导HO-1和其他抗氧化酶(如NQO1、SOD和GSH)的表达及活性[25],从而清除过量的ROS,保护BBB免受氧化应激损伤。S1PR调节剂已显示出显著神经保护效应,例如FTY720通过调节Nrf2信号通路,增加抗氧化酶的表达和活性,从而减轻氧化应激并保护神经细胞免受线粒体氧化损伤[26]。Siponimod能够迅速诱导星形胶质细胞中Nrf2的核转位,激活抗氧化反应[27]。本研究结果也提示激动或过表达S1PR5能通过Nrf2/HO-1通路发挥抗氧化作用;而敲低S1PR5对氧化应激蛋白并没有显著影响,这也提示S1PR5对于BBB的作用可能是多重信号通路共同调控的[8]。但S1PR5激活如何介导Nrf2的上调仍需进一步探讨。一种可能的机制是,通过S1PR5相关的Gi蛋白信号通路[28],间接激活Nrf2;也可能是通过抑制Nrf2降解途径[29](如Keap1依赖性降解),增强Nrf2的稳定性。已有研究表明,Nrf2不仅在抗氧化应激中发挥重要作用,还能够保护紧密连接蛋白,改善BBB功能[30]。
综上,本研究聚焦于S1PR5在OGD/R诱导的BBB功能障碍中的作用及机制,结果显示S1PR5在OGD/R中对血管内皮细胞具有保护作用,过表达S1PR5或应用其激动剂可显著改善内皮细胞完整性和渗透性损害;机制上,过表达S1PR5可能通过激活Nrf2/HO-1通路,调节ROS产生,发挥抗氧化作用。与以往研究相比,本研究直接证实了S1PR5在内皮功能中的作用,为BBB功能障碍疾病提供了理论依据。但本研究存在一定的局限性:当前结论基于细胞实验,需通过内皮特异性S1PR5敲除小鼠验证其在体效应,并应用转录组学或蛋白质组学筛选S1PR5下游效应分子深入探究作用机制。
基金资助
湖北省自然科学基金(2021CFB567);湖北医药学院研究生创新项目(YC2023048)
利益冲突声明
The authors declare no competing interests.
参考文献
- 1. Zhao Z, Nelson AR, Betsholtz C, et al. Establishment and dysfunction of the blood-brain barrier[J]. Cell, 2015, 163(5): 1064-78. doi: 10.1016/j.cell.2015.10.067 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Ding QQ, Liu SW, Yao YD, et al. Global, regional, and national burden of ischemic stroke, 1990-2019[J]. Neurology, 2022, 98(3): e279-90. doi: 10.1212/wnl.0000000000013115 [DOI] [PubMed] [Google Scholar]
- 3. Munji RN, Soung AL, Weiner GA, et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module[J]. Nat Neurosci, 2019, 22(11): 1892-902. doi: 10.1038/s41593-019-0497-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy[J]. Science, 2019, 366(6463): eaar5551. doi: 10.1126/science.aar5551 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Obinata H, Hla T. Sphingosine 1-phosphate and inflammation[J]. Int Immunol, 2019, 31(9): 617-25. doi: 10.1093/intimm/dxz037 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. van Doorn R, Lopes Pinheiro MA, Kooij G, et al. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier[J]. J Neuroinflammation, 2012, 9: 133. doi: 10.1186/1742-2094-9-133 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Di Pardo A, Castaldo S, Amico E, et al. Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood-brain barrier integrity and exerts therapeutic effect in an animal model of Huntington's disease[J]. Hum Mol Genet, 2018, 27(14): 2490-501. doi: 10.1093/hmg/ddy153 [DOI] [PubMed] [Google Scholar]
- 8. 李星阅, 任自敬, 王 越, 等. S1PR5激动剂减轻H2O2诱导的脑微血管内皮细胞高通透性及氧化应激损伤[J]. 医学研究生学报, 2022, 35(8): 820-6. [Google Scholar]
- 9. Matsumoto N, Yamashita T, Shang JW, et al. Up-regulation of sphingosine-1-phosphate receptors and sphingosine kinase 1 in the peri-ischemic area after transient middle cerebral artery occlusion in mice[J]. Brain Res, 2020, 1739: 146831. doi: 10.1016/j.brainres.2020.146831 [DOI] [PubMed] [Google Scholar]
- 10. Cao CC, Dai L, Mu JY, et al. S1PR2 antagonist alleviates oxidative stress-enhanced brain endothelial permeability by attenuating p38 and Erk1/2-dependent cPLA2 phosphorylation[J]. Cell Signal, 2019, 53: 151-61. doi: 10.1016/j.cellsig.2018.09.019 [DOI] [PubMed] [Google Scholar]
- 11. Jiang XY, Andjelkovic AV, Zhu L, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke[J]. Prog Neurobiol, 2018, 163/164: 144-71. doi: 10.1016/j.pneurobio.2017.10.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Qiu Y, Shen JY, Jiang WL, et al. Sphingosine 1-phosphate and its regulatory role in vascular endothelial cells[J]. Histol Histopathol, 2022, 37(3): 213-25. [DOI] [PubMed] [Google Scholar]
- 13. Qiao N, An ZH, Fu ZY, et al. Kinsenoside alleviates oxidative stress-induced blood-brain barrier dysfunction via promoting Nrf2/HO-1 pathway in ischemic stroke[J]. Eur J Pharmacol, 2023, 949: 175717. doi: 10.1016/j.ejphar.2023.175717 [DOI] [PubMed] [Google Scholar]
- 14. Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier[J]. Trends Mol Med, 2015, 21(6): 354-63. doi: 10.1016/j.molmed.2015.03.006 [DOI] [PubMed] [Google Scholar]
- 15. Thompson J, Yang YR, Duval K, et al. Progressive disruption of sphingosine-1-phosphate receptor 1 correlates with blood-brain barrier leakage in a rat model of chronic hypoxic hypoperfusion[J]. Aging Dis, 2024, 16(2): 1099-119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Xiang P, Chew WS, Seow WL, et al. The S1P2 receptor regulates blood-brain barrier integrity and leukocyte extravasation with implications for neurodegenerative disease[J]. Neurochem Int, 2021, 146: 105018. doi: 10.1016/j.neuint.2021.105018 [DOI] [PubMed] [Google Scholar]
- 17. Fan XH, Chen HP, Xu C, et al. S1PR3, as a core protein related to ischemic stroke, is involved in the regulation of blood-brain barrier damage[J]. Front Pharmacol, 2022, 13: 834948. doi: 10.3389/fphar.2022.834948 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Wu JL, Liang Y, Fu PF, et al. Sphingosine-1-phosphate receptor 3 induces endothelial barrier loss via ADAM10-mediated vascular endothelial-cadherin cleavage[J]. Int J Mol Sci, 2023, 24(22): 16083. doi: 10.3390/ijms242216083 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Hansen LN, Lohfink N, Vutukuri R, et al. Endothelial sphingosine-1-phosphate receptor 4 regulates blood-brain barrier permeability and promotes a homeostatic endothelial phenotype[J]. J Neurosci, 2022, 42(10): 1908-29. doi: 10.1523/jneurosci.0188-21.2021 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Spampinato SF, Merlo S, Sano Y, et al. Protective effect of the sphingosine-1 phosphate receptor agonist siponimod on disrupted blood brain barrier function[J]. Biochem Pharmacol, 2021, 186: 114465. doi: 10.1016/j.bcp.2021.114465 [DOI] [PubMed] [Google Scholar]
- 21. Wang ZF, Higashikawa K, Yasui H, et al. FTY720 protects against ischemia-reperfusion injury by preventing the redistribution of tight junction proteins and decreases inflammation in the subacute phase in an experimental stroke model[J]. Transl Stroke Res, 2020, 11(5): 1103-16. doi: 10.1007/s12975-020-00789-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Yang CJ, Hawkins KE, Doré S, et al. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke[J]. Am J Physiol Cell Physiol, 2019, 316(2): C135-53. doi: 10.1152/ajpcell.00136.2018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Gao CL, Xu YZ, Liang ZZ, et al. A novel PGAM5 inhibitor LFHP-1c protects blood-brain barrier integrity in ischemic stroke[J]. Acta Pharm Sin B, 2021, 11(7): 1867-84. doi: 10.1016/j.apsb.2021.01.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Li Y, Liao J, Xiong LY, et al. Stepwise targeted strategies for improving neurological function by inhibiting oxidative stress levels and inflammation following ischemic stroke[J]. J Control Release, 2024, 368: 607-22. doi: 10.1016/j.jconrel.2024.02.039 [DOI] [PubMed] [Google Scholar]
- 25. Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice[J]. Redox Biol, 2023, 66: 102852. doi: 10.1016/j.redox.2023.102852 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Martín-Montañez E, Pavia J, Valverde N, et al. The S1P mimetic fingolimod phosphate regulates mitochondrial oxidative stress in neuronal cells[J]. Free Radic Biol Med, 2019, 137: 116-30. doi: 10.1016/j.freeradbiomed.2019.04.022 [DOI] [PubMed] [Google Scholar]
- 27. Colombo E, Bassani C, De Angelis A, et al. Siponimod (BAF312) activates Nrf2 while hampering NFκB in human astrocytes, and protects from astrocyte-induced neurodegeneration[J]. Front Immunol, 2020, 11: 635. doi: 10.3389/fimmu.2020.00635 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Chen HW, Chen K, Huang WJ, et al. Structure of S1PR2-hetero-trimeric G13 signaling complex[J]. Sci Adv, 2022, 8(13): eabn0067. doi: 10.1126/sciadv.abn0067 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-33. doi: 10.1016/j.bbamcr.2018.02.010 [DOI] [PubMed] [Google Scholar]
- 30. Fan W, Chen HP, Li M, et al. NRF2 activation ameliorates blood-brain barrier injury after cerebral ischemic stroke by regulating ferroptosis and inflammation[J]. Sci Rep, 2024, 14(1): 5300. doi: 10.1038/s41598-024-53836-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
