Skip to main content
CMAJ : Canadian Medical Association Journal logoLink to CMAJ : Canadian Medical Association Journal
. 1998 Mar 10;158(5):625–628.

Stereotactic radiosurgery: comparing different technologies

M Schwartz 1
PMCID: PMC1229009  PMID: 9526480

Abstract

Radiosurgery can be defined as 3-dimensional stereotactic irradiation of small intracranial targets by various radiation techniques. The goal is to deliver, with great accuracy, a large, single fraction dose to a small intracranial target, while minimizing the absorbed dose in the surrounding tissue. This article describes certain technical aspects of radiosurgery and compares the different methods of performing such treatment. The 2 most frequently used types of devices for radiosurgery are units with multiple cobalt sources (e.g., the Gamma Knife) and those based on a linear accelerator. In the former, highly collimated beams of radiation from the cobalt sources intersect at the target. In the latter, the source of a highly collimated beam of high-energy photons directed at the target turns through an arc or set of arcs. The accuracy of target localization, the steepness of fall-off of the radiation dose outside the target and the ability to irradiate an irregularly shaped target are all comparable for these 2 types of devices, despite claims to the contrary.

Full Text

The Full Text of this article is available as a PDF (116.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deen H. G., Ebersold M. J., Harner S. G., Beatty C. W., Marion M. S., Wharen R. E., Green J. D., Quast L. Conservative management of acoustic neuroma: an outcome study. Neurosurgery. 1996 Aug;39(2):260–266. doi: 10.1097/00006123-199608000-00005. [DOI] [PubMed] [Google Scholar]
  2. Larson D. A., Gutin P. H. Introduction to radiosurgery. Neurosurg Clin N Am. 1990 Oct;1(4):897–908. [PubMed] [Google Scholar]
  3. Norén G., Arndt J., Hindmarsh T. Stereotactic radiosurgery in cases of acoustic neurinoma: further experiences. Neurosurgery. 1983 Jul;13(1):12–22. doi: 10.1227/00006123-198307000-00003. [DOI] [PubMed] [Google Scholar]
  4. Norén G., Greitz D., Hirsch A., Lax I. Gamma knife surgery in acoustic tumours. Acta Neurochir Suppl (Wien) 1993;58:104–107. doi: 10.1007/978-3-7091-9297-9_24. [DOI] [PubMed] [Google Scholar]
  5. O'Brien P. F., Fung A. Measured spatial accuracy for linac-based radiosurgery. Med Phys. 1994 Jul;21(7):1145–1147. doi: 10.1118/1.597341. [DOI] [PubMed] [Google Scholar]
  6. Podgorsak E. B., Olivier A., Pla M., Lefebvre P. Y., Hazel J. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1988 Jan;14(1):115–126. doi: 10.1016/0360-3016(88)90059-4. [DOI] [PubMed] [Google Scholar]
  7. Podgorsak E. B., Pike G. B., Olivier A., Pla M., Souhami L. Radiosurgery with high energy photon beams: a comparison among techniques. Int J Radiat Oncol Biol Phys. 1989 Mar;16(3):857–865. doi: 10.1016/0360-3016(89)90506-3. [DOI] [PubMed] [Google Scholar]
  8. Pollock B. E., Lunsford L. D., Kondziolka D., Flickinger J. C., Bissonette D. J., Kelsey S. F., Jannetta P. J. Outcome analysis of acoustic neuroma management: a comparison of microsurgery and stereotactic radiosurgery. Neurosurgery. 1995 Jan;36(1):215–229. doi: 10.1227/00006123-199501000-00036. [DOI] [PubMed] [Google Scholar]
  9. Ramani R., Ketko M. G., O'Brien P. F., Schwartz M. L. A QA phantom for dynamic stereotactic radiosurgery: quantitative measurements. Med Phys. 1995 Aug;22(8):1343–1346. doi: 10.1118/1.597518. [DOI] [PubMed] [Google Scholar]
  10. Ramani R., O'Brien P. F., Davey P., Schwartz M. L., Young C. S., Lightstone A. W., Mason D. L. Implementation of multiple isocentre treatment for dynamic radiosurgery. Br J Radiol. 1995 Jul;68(811):731–735. doi: 10.1259/0007-1285-68-811-731. [DOI] [PubMed] [Google Scholar]
  11. Schwartz M., Sixel K., Young C., Kemeny A., Forster D., Walton L., Franssen E. Prediction of obliteration of arteriovenous malformations after radiosurgery: the obliteration prediction index. Can J Neurol Sci. 1997 May;24(2):106–109. doi: 10.1017/s0317167100021417. [DOI] [PubMed] [Google Scholar]
  12. Varlotto J. M., Shrieve D. C., Alexander E., 3rd, Kooy H. M., Black P. M., Loeffler J. S. Fractionated stereotactic radiotherapy for the treatment of acoustic neuromas: preliminary results. Int J Radiat Oncol Biol Phys. 1996 Aug 1;36(1):141–145. doi: 10.1016/s0360-3016(96)00237-4. [DOI] [PubMed] [Google Scholar]
  13. Walton L., Bomford C. K., Ramsden D. The Sheffield stereotactic radiosurgery unit: physical characteristics and principles of operation. Br J Radiol. 1987 Sep;60(717):897–906. doi: 10.1259/0007-1285-60-717-897. [DOI] [PubMed] [Google Scholar]
  14. Winston K. R., Lutz W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery. 1988 Mar;22(3):454–464. doi: 10.1227/00006123-198803000-00002. [DOI] [PubMed] [Google Scholar]

Articles from CMAJ: Canadian Medical Association Journal are provided here courtesy of Canadian Medical Association

RESOURCES