Abstract
Radiosurgery can be defined as 3-dimensional stereotactic irradiation of small intracranial targets by various radiation techniques. The goal is to deliver, with great accuracy, a large, single fraction dose to a small intracranial target, while minimizing the absorbed dose in the surrounding tissue. This article describes certain technical aspects of radiosurgery and compares the different methods of performing such treatment. The 2 most frequently used types of devices for radiosurgery are units with multiple cobalt sources (e.g., the Gamma Knife) and those based on a linear accelerator. In the former, highly collimated beams of radiation from the cobalt sources intersect at the target. In the latter, the source of a highly collimated beam of high-energy photons directed at the target turns through an arc or set of arcs. The accuracy of target localization, the steepness of fall-off of the radiation dose outside the target and the ability to irradiate an irregularly shaped target are all comparable for these 2 types of devices, despite claims to the contrary.
Full Text
The Full Text of this article is available as a PDF (116.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Deen H. G., Ebersold M. J., Harner S. G., Beatty C. W., Marion M. S., Wharen R. E., Green J. D., Quast L. Conservative management of acoustic neuroma: an outcome study. Neurosurgery. 1996 Aug;39(2):260–266. doi: 10.1097/00006123-199608000-00005. [DOI] [PubMed] [Google Scholar]
- Larson D. A., Gutin P. H. Introduction to radiosurgery. Neurosurg Clin N Am. 1990 Oct;1(4):897–908. [PubMed] [Google Scholar]
- Norén G., Arndt J., Hindmarsh T. Stereotactic radiosurgery in cases of acoustic neurinoma: further experiences. Neurosurgery. 1983 Jul;13(1):12–22. doi: 10.1227/00006123-198307000-00003. [DOI] [PubMed] [Google Scholar]
- Norén G., Greitz D., Hirsch A., Lax I. Gamma knife surgery in acoustic tumours. Acta Neurochir Suppl (Wien) 1993;58:104–107. doi: 10.1007/978-3-7091-9297-9_24. [DOI] [PubMed] [Google Scholar]
- O'Brien P. F., Fung A. Measured spatial accuracy for linac-based radiosurgery. Med Phys. 1994 Jul;21(7):1145–1147. doi: 10.1118/1.597341. [DOI] [PubMed] [Google Scholar]
- Podgorsak E. B., Olivier A., Pla M., Lefebvre P. Y., Hazel J. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1988 Jan;14(1):115–126. doi: 10.1016/0360-3016(88)90059-4. [DOI] [PubMed] [Google Scholar]
- Podgorsak E. B., Pike G. B., Olivier A., Pla M., Souhami L. Radiosurgery with high energy photon beams: a comparison among techniques. Int J Radiat Oncol Biol Phys. 1989 Mar;16(3):857–865. doi: 10.1016/0360-3016(89)90506-3. [DOI] [PubMed] [Google Scholar]
- Pollock B. E., Lunsford L. D., Kondziolka D., Flickinger J. C., Bissonette D. J., Kelsey S. F., Jannetta P. J. Outcome analysis of acoustic neuroma management: a comparison of microsurgery and stereotactic radiosurgery. Neurosurgery. 1995 Jan;36(1):215–229. doi: 10.1227/00006123-199501000-00036. [DOI] [PubMed] [Google Scholar]
- Ramani R., Ketko M. G., O'Brien P. F., Schwartz M. L. A QA phantom for dynamic stereotactic radiosurgery: quantitative measurements. Med Phys. 1995 Aug;22(8):1343–1346. doi: 10.1118/1.597518. [DOI] [PubMed] [Google Scholar]
- Ramani R., O'Brien P. F., Davey P., Schwartz M. L., Young C. S., Lightstone A. W., Mason D. L. Implementation of multiple isocentre treatment for dynamic radiosurgery. Br J Radiol. 1995 Jul;68(811):731–735. doi: 10.1259/0007-1285-68-811-731. [DOI] [PubMed] [Google Scholar]
- Schwartz M., Sixel K., Young C., Kemeny A., Forster D., Walton L., Franssen E. Prediction of obliteration of arteriovenous malformations after radiosurgery: the obliteration prediction index. Can J Neurol Sci. 1997 May;24(2):106–109. doi: 10.1017/s0317167100021417. [DOI] [PubMed] [Google Scholar]
- Varlotto J. M., Shrieve D. C., Alexander E., 3rd, Kooy H. M., Black P. M., Loeffler J. S. Fractionated stereotactic radiotherapy for the treatment of acoustic neuromas: preliminary results. Int J Radiat Oncol Biol Phys. 1996 Aug 1;36(1):141–145. doi: 10.1016/s0360-3016(96)00237-4. [DOI] [PubMed] [Google Scholar]
- Walton L., Bomford C. K., Ramsden D. The Sheffield stereotactic radiosurgery unit: physical characteristics and principles of operation. Br J Radiol. 1987 Sep;60(717):897–906. doi: 10.1259/0007-1285-60-717-897. [DOI] [PubMed] [Google Scholar]
- Winston K. R., Lutz W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery. 1988 Mar;22(3):454–464. doi: 10.1227/00006123-198803000-00002. [DOI] [PubMed] [Google Scholar]
