Skip to main content
EFSA Journal logoLink to EFSA Journal
. 2025 Jul 25;23(7):e9582. doi: 10.2903/j.efsa.2025.9582

Pest categorisation of Coccus viridis

EFSA Panel on Plant Health (PLH), Antonio Vicent Civera, Paula Baptista, Anna Berlin, Elisavet Chatzivassiliou, Jaime Cubero, Nik Cunniffe, Eduardo de la Peña, Nicolas Desneux, Francesco Di Serio, Anna Filipiak, Paolo Gonthier, Beata Hasiów‐Jaroszewska, Hervé Jactel, Blanca B Landa, Lara Maistrello, David Makowski, Panagiotis Milonas, Nikos T Papadopoulos, Roel Potting, Hanna Susi, Dirk Jan van der Gaag, Alex Gobbi, Virag Kertesz, Andrea Maiorano, Antigoni Akrivou, Dimitrios Papachristos, Oresteia Sfyra
PMCID: PMC12290422  PMID: 40718748

Abstract

The EFSA Panel on Plant Health performed a pest categorisation of Coccus viridis (Hemiptera: Coccidae), the green coffee scale, for the territory of the European Union (EU), following the commodity risk assessment of Jasminum polyanthum from Uganda, in which C. viridis was identified as a pest of possible concern to the EU. Coccus viridis is distributed in tropical and subtropical areas of the Americas, Africa, Asia and Oceania. In the EU, C. viridis occurs on the Azores and Madeira Islands (Portugal). It is a polyphagous pest, feeding on plant species belonging to more than 200 genera from 72 plant families, primarily on coffee (Coffea arabica), guava (Psidium guajava) and cacao (Theobroma cacao) plants. Hosts that are grown in the EU include Apium graveolens, Citrus spp., Eriobotrya japonica, Eucalyptus camaldulensis, Mangifera indica, Pyrus communis and some ornamental plants. Plants for planting, fruits, vegetables and cut flowers provide potential pathways for entry into the EU. Climatic conditions and availability of host plants in southern and central EU countries would allow this species to establish and spread. However, since little is known about the pest‐specific temperature requirements, and considering its tropical and subtropical origin, there is uncertainty about its ability to establish outdoors in central EU. Nevertheless, establishment could occur in greenhouses and on indoor plantings in such areas. Introduction and spread of C. viridis would likely have an economic impact in the EU, but there is uncertainty on the magnitude. This insect is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. Phytosanitary measures are available to reduce the likelihood of entry and further spread. While the magnitude of impact in the EU is associated with uncertainty, all criteria assessed by EFSA for consideration as a potential quarantine pest are met.

Keywords: Coccidae, green coffee scale, hemiptera, pest risk, plant health, plant pest, quarantine

1. INTRODUCTION

1.1. Background and Terms of Reference as provided by the requestor

1.1.1. Background

The new Plant Health Regulation (EU) 2016/2031, on the protective measures against pests of plants, is applying from 14 December 2019. Conditions are laid down in this legislation in order for pests to qualify for listing as Union quarantine pests, protected zone quarantine pests or Union regulated non‐quarantine pests. The lists of the EU regulated pests together with the associated import or internal movement requirements of commodities are included in Commission Implementing Regulation (EU) 2019/2072. Additionally, as stipulated in the Commission Implementing Regulation 2018/2019, certain commodities are provisionally prohibited to enter in the EU (high‐risk plants, HRP). EFSA is performing the risk assessment of the dossiers submitted by exporting to the EU countries of the HRP commodities, as stipulated in Commission Implementing Regulation 2018/2018. Furthermore, EFSA has evaluated a number of requests from exporting to the EU countries for derogations from specific EU import requirements.

In line with the principles of the new plant health law, the European Commission with the Member States is discussing monthly the reports of the interceptions and the outbreaks of pests notified by the Member States. Notifications of an imminent danger from pests that may fulfil the conditions for inclusion in the list of the Union quarantine pest are included. Furthermore, EFSA has been performing horizon scanning of media and literature.

As a follow‐up of the above‐mentioned activities (reporting of interceptions and outbreaks, HRP, derogation requests and horizon scanning), a number of pests of concern have been identified. EFSA is requested to provide scientific opinions for these pests, in view of their potential inclusion by the risk manager in the lists of Commission Implementing Regulation (EU) 2019/2072 and the inclusion of specific import requirements for relevant host commodities, when deemed necessary by the risk manager.

1.1.2. Terms of Reference

EFSA is requested, pursuant to Article 29(1) of Regulation (EC) No 178/2002, to provide scientific opinions in the field of plant health.

EFSA is requested to deliver 53 pest categorisations for the pests listed in Annex 1A, 1B, 1D and 1E (for more details see mandate M‐2021‐00027 on the Open.EFSA portal). Additionally, EFSA is requested to perform pest categorisations for the pests so far not regulated in the EU, identified as pests potentially associated with a commodity in the commodity risk assessments of the HRP dossiers (Annex 1C; for more details, see mandate M‐2021‐00027 on the Open.EFSA portal). Such pest categorisations are needed in the case where there are not available risk assessments for the EU.

When the pests of Annex 1A are qualifying as potential Union quarantine pests, EFSA should proceed to phase 2 risk assessment. The opinions should address entry pathways, spread, establishment, impact and include a risk reduction option analysis.

Additionally, EFSA is requested to develop further the quantitative methodology currently followed for risk assessment, in order to have the possibility to deliver an express risk assessment methodology. Such methodological development should take into account the EFSA Plant Health Panel Guidance on quantitative pest risk assessment and the experience obtained during its implementation for the Union candidate priority pests and for the likelihood of pest freedom at entry for the commodity risk assessment of high‐risk plants.

1.2. Interpretation of the Terms of Reference

Coccus viridis is one of a number of pests relevant to Annex 1C to the terms of reference (ToR) to be subject to pest categorisation to determine whether it fulfils the criteria of a potential Union quarantine pest for the area of the EU excluding Ceuta, Melilla and the outermost regions of Member States referred to in Article 355(1) of the Treaty on the Functioning of the European Union (TFEU), other than Madeira and the Azores, and so inform EU decision‐making as to its appropriateness for potential inclusion in the lists of pests of Commission Implementing Regulation (EU) 2019/ 2072. If a pest fulfils the criteria to be potentially listed as a Union quarantine pest, risk reduction options will be identified.

1.3. Additional information

This pest categorisation was initiated following the commodity risk assessment of Jasminum polyanthum unrooted cuttings from Uganda (EFSA PLH Panel, 2022), in which C. viridis was identified as a relevant non‐regulated EU pest of possible concern, which could potentially enter the EU on cuttings of J. polyanthum.

2. DATA AND METHODOLOGIES

2.1. Data

2.1.1. Information on pest status from NPPOs

In the context of the current mandate, EFSA is preparing pest categorisations for new/emerging pests that are not yet regulated in the EU. When an official pest status is not available in the European and Mediterranean Plant Protection Organization (EPPO) Global Database (EPPO, online), EFSA consults the NPPOs of the relevant Member States. To obtain information on the official pest status for Coccus viridis, EFSA has consulted the NPPOs of Italy and Portugal. The results of this consultation are presented in Section 3.2.2.

2.1.2. Literature search

A systematic literature search on C. viridis was conducted at the beginning of the categorisation (04‐06‐2024) in the ISI Web of Science and Scopus bibliographic database, using the scientific name of the pest, its synonyms and the international common names as search terms (for more details, see Appendix E). Papers relevant to the pest categorisation were reviewed, and further references and information were obtained from experts, as well as from citations within the references and grey literature.

2.1.3. Database search

Pest information, on host(s) and distribution, was extracted from the references collected in the systematic literature search mentioned above (Section 2.1.2). The CABI Database and the EPPO Global Database were consulted to double‐check the information retrieved through the data extraction.

Data about the import of commodity types that could potentially provide a pathway for the pest to enter the EU and about the area of hosts grown in the EU were obtained from EUROSTAT (Statistical Office of the European Union).

The EUROPHYT (EUROPHYT, online) and TRACES databases (TRACES‐NT, online) were consulted for pest‐specific notifications on interceptions and outbreaks. EUROPHYT is a web‐based network run by the Directorate General for Health and Food Safety (DG SANTÉ) of the European Commission as a subproject of PHYSAN (Phyto‐Sanitary Controls) specifically concerned with plant health information. TRACES is the European Commission's multilingual online platform for sanitary and phytosanitary certification required for the importation of animals, animal products, food and feed of non‐animal origin and plants into the European Union, and the intra‐EU trade and EU exports of animals and certain animal products. Up until May 2020, the EUROPHYT database managed notifications of interceptions of plants or plant products that do not comply with EU legislation, as well as notifications of plant pests detected in the territory of the Member States and the phytosanitary measures taken to eradicate or avoid their spread. The recording of interceptions switched from EUROPHYT to TRACES in May 2020.

GenBank was searched to determine whether it contained any nucleotide sequences for C. viridis which could be used as reference material for molecular diagnosis (www.ncbi.nlm.nih.gov/genbank/; Sayers et al., 2024).

2.2. Methodologies

The Panel performed the pest categorisation for C. viridis, following guiding principles and steps presented in the EFSA guidance on quantitative pest risk assessment (EFSA PLH Panel, 2018), the EFSA guidance on the use of the weight of evidence approach in scientific assessments (EFSA Scientific Committee, 2017), the protocol for pest categorisations as presented in the EFSA standard protocols for scientific assessments (Kertesz et al., 2024, EFSA PLH Panel, 2024) and the International Standards for Phytosanitary Measures No. 11 (FAO, 2013).

The criteria to be considered when categorising a pest as a potential Union quarantine pest (QP) are given in Regulation (EU) 2016/2031 Article 3 and Annex I, Section 1 of the Regulation. Table 1 presents the Regulation (EU) 2016/2031 pest categorisation criteria on which the Panel bases its conclusions. In judging whether a criterion is met, the Panel uses its best professional judgement (EFSA Scientific Committee, 2017) by integrating a range of evidence from a variety of sources (as presented above in Section 2.1) to reach an informed conclusion as to whether a criterion is satisfied.

TABLE 1.

Pest categorisation criteria under evaluation, as derived from Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column).

Criterion of pest categorisation Criterion in Regulation (EU) 2016/2031 regarding Union quarantine pest (article 3)
Identity of the pest (Section  3.1 ) Is the identity of the pest clearly defined, or has it been shown to produce consistent symptoms and to be transmissible?
Absence/presence of the pest in the EU territory (Section  3.2 )

Is the pest present in the EU territory?

If present, is the pest in a limited part of the EU or is it scarce, irregular, isolated or present infrequently? If so, the pest is considered to be not widely distributed.

Pest potential for entry, establishment and spread in the EU territory (Section  3.4 ) Is the pest able to enter into, become established in, and spread within, the EU territory? If yes, briefly list the pathways for entry and spread.
Potential for consequences in the EU territory (Section  3.5 ) Would the pests' introduction have an economic or environmental impact on the EU territory?
Available measures (Section  3.6 ) Are there measures available to prevent pest entry, establishment, spread or impacts?
Conclusion of pest categorisation (Section  4 ) A statement as to whether (1) all criteria assessed by EFSA above for consideration as a potential quarantine pest were met and (2) if not, which one(s) were not met.

The Panel's conclusions are formulated respecting its remit and particularly with regard to the principle of separation between risk assessment and risk management (EFSA founding regulation (EU) No 178/2002). Therefore, instead of determining whether the pest is likely to have an unacceptable impact, deemed to be a risk management decision, the Panel will present a summary of the observed impacts in the areas where the pest occurs, and make an expert knowledge elicitation about potential impacts in the EU. While the Panel may quote impacts reported from areas where the pest occurs in monetary terms, the Panel will seek to express potential EU impacts in terms of yield and quality losses and not in monetary terms, in agreement with the EFSA guidance on quantitative pest risk assessment (EFSA PLH Panel, 2018). Article 3 (d) of Regulation (EU) 2016/2031 refers to unacceptable social impact as a criterion for quarantine pest status. Assessing social impact is outside the remit of the Panel.

3. PEST CATEGORISATION

3.1. Identity and biology of the pest

3.1.1. Identity and taxonomy

Is the identity of the pest clearly defined, or has it been shown to produce consistent symptoms and/or to be transmissible?

Yes, the identity of the pest is clearly defined and Coccus viridis (Green, 1889) is the accepted scientific name.

Coccus viridis (Green) (Figure 1) is an insect within the order Hemiptera, suborder Sternorrhyncha and the family Coccidae. It is commonly known as green coffee scale, green scale, green shield scale and soft green scale (EPPO, online). Coccus viridis was originally described as Lecanium viride by Green in 1889 from specimens collected in Pundaluoya, Sri Lanka, on Coffea sp. (coffee). The current valid scientific name is Coccus viridis (García Morales et al., 2016).

FIGURE 1.

FIGURE 1

Coccus viridis: (A) Adults on an Ixora sp. plant (Source: United States National Collection of Scale Insects Photographs, USDA Agricultural Research Service, Bugwood.org); (B, C) Infestation on Gardenia sp. and Psidium guajava host plants, respectively (Source: Anne W. Gideon; Plutarco Echegoyen, Bugwood.org; licensed under a Creative Commons Attribution‐Noncommercial 3.0 Licence).

The EPPO code 1 (EPPO, 2019; Griessinger & Roy, 2015) for this species is COCCVI (EPPO, online).

3.1.2. Biology of the pest

Coccus viridis is an oviparous species and reproduces parthenogenetically via thelytoky (Fredrick, 1943; Rosado et al., 2014; Souza et al., 2023). The presence of males is very rare (Swirski et al., 1997; Waller et al., 2007). Eggs are laid beneath the female body where they are protected (Fredrick, 1943; Reddy et al., 2022) and hatch into nymphs from a few minutes to several hours after being laid (Dekle & Fasulo, 2001; Fredrick, 1943). Each female can produce between 50 and 600 eggs (Barrera, 2008; Reddy et al., 2022). There are three nymphal instars before becoming an adult (Mani, 2022; Souza et al., 2023). In citrus, the duration of development of the first, second and third instars takes about 10–15 days, 8–12 days and 8–12 days, respectively (Carvalho & Aguiar, 1997; Martinez & Sanchez, 1981). The first‐instar nymphs (crawlers) are active and responsible for searching and choosing the feeding location (Rosado et al., 2014). They settle along the lower surface of leaves close to the midrib and veins, as well as the petiole, stems, on young buds and fruits (Barrera, 2008; Figueroa‐Figueroa et al., 2023; Mani, 2022; Reddy et al., 2022). On the contrary, the older instar nymphs move very little, whereas the adults are motionless (Rosado et al., 2014). Laboratory rearing of C. viridis in Brazil at a temperature of 25°C showed that the life cycle from egg hatching to the first oviposition by the adult female lasts between 47 and 51 days (Silva & Parra, 1982).

Coccus viridis is reported to develop multiple generations per year (Souza et al., 2023). For instance, in Queensland, Australia, it completes three to four generations (García Morales et al., 2016; Smith et al., 1997), and in Taiwan, it completes four to five generations per year (Cheng & Tao, 1963). In South Florida, the developmental period from egg to egg‐depositing maturity during the late summer months averages 59–62 days, with reported variation ranging from 50 to 70 days (Fredrick, 1943). Crawler emergence is typically observed in September (Camacho & Chong, 2015). In Irapuato, Mexico, the highest number of C. viridis adults in guava occurred in winter, decreased in the rainy season (June–September) and increased in October, and the crawlers peaked in December–January (Salas‐Araiza et al., 2020). In West Bengal, India, Kar et al. (2023) observed C. viridis on dragon fruit from June until September–October.

3.1.3. Host range/species affected

Coccus viridis is polyphagous, feeding on 216 plant species assigned to 200 genera from 72 plant families (Appendix A provides a full host list) with preference for coffee (Coffea arabica), guava (Psidium guajava) and cacao (Theobroma cacao) (CABI, online; EPPO, online). Coccus viridis has also been reported on cashew (Anacardium occidentale), cassava (Manihot esculenta), citrus (Citrus sp.), coconut (Cocos nucifera), litchee (Litchi chinensis), loquat (Eriobotrya japonica), mango (Mangifera indica), papaya (Carica papaya), pear (Pyrus communis), pigeon pea (Cajanus cajan), pineapple (Ananas comosus), sapota (Manilkara zapota) and tea (Camellia sinensis). Moreover, it has been reported on ornamental plants such as Camellia sp., Ficus sp., Gardenia sp., Ixora sp., Jasminum sp. and Nerium oleander (García Morales et al., 2016).

3.1.4. Intraspecific diversity

To the best of the Panel's knowledge, no information on intraspecific diversity is reported for C. viridis.

3.1.5. Detection and identification of the pest

Are detection and identification methods available for the pest?

Yes. Visual detection is possible, and morphological and molecular identification methods are available.

Detection

Careful visual examination of plants and fruits is effective for detection of C. viridis presence. Accumulation of honeydew, sooty mould and honeydew‐seeking ants are general signs of phloem feeding insect infestations; they can be used to pinpoint the areas where plants may be inspected for the presence of soft scales (Camacho & Chong, 2015). Coccus viridis occurs on the upper and lower surfaces of leaves, young stems, and colonises flower buds and fruits (Barrera, 2008; Figueroa‐Figueroa et al., 2023; Mani, 2022; Reddy et al., 2022). Sticky traps around stems can be used to detect and monitor the crawlers (Bethke & Wilen, 2010; Siregar & Tulus, 2023).

Symptoms

Several studies have documented the main symptoms of C. viridis infestation (Bach, 1991; Figueroa‐Figueroa et al., 2023; Hara et al., 2002; Mani, 2018; Mani, 2022; Reddy et al., 2022; Reimer et al., 1993; Rosado et al., 2014; Siregar & Tulus, 2023; Souza et al., 2023; Swirski et al., 1997; Vranjic, 1997; Wuryantini et al., 2023; Yalemar, 1999):

  • Honeydew presence egested by adults and immature stages;

  • Black sooty mould growing on the honeydew;

  • Leaf curling;

  • Partial necrosis and wilting of twigs and leaves, and;

  • Yellowing, defoliation, reduced plant growth and fruit production, dieback of the branches or the entire plant caused by heavy infestations.

These symptoms are similar to those caused by many other phloem‐feeding insects and should not be considered as diagnostic.

Identification

The identification of C. viridis requires microscopic examination of slide‐mounted female adults and verification of the presence of key morphological characteristics. Detailed morphological descriptions, illustrations and keys of adult C. viridis can be found in Choi et al. (2018), Granara de Willink et al. (2010), and Williams and Watson (1990). The molecular identification for C. viridis relies on DNA fragments from various genetic markers with reference sequences available in GenBank (https://www.ncbi.nlm.nih.gov/nuccore/?term=txid589264[organism:exp), including the mitochondrial cytochrome c oxidase subunit I (COI) gene, nuclear ribosomal genes (18S and 28S) and mitochondrial ribosomal genes(12S and 16S), as well as wingless (wg) and elongation factor 1‐alpha (EF‐1a) genes (Choi & Lee, 2020).

Description

The eggs are whitish green and elongate oval. The nymphs or immature green scales are oval, flat and yellowish green in colour, and have six short legs. The adult female is shiny pale green with a conspicuous black, irregular U‐shaped internal marking that is dorsally visible to the naked eye. Two submarginal black eye spots are also present and can be seen with a hand lens. The outline shape may be described as elongate‐oval and moderately convex. Dorsum with setae cylindrical, blunt apically; tubular ducts absent; duct tubercles present; and preopercular pores present anterior to anal plates. Marginal setae short, mostly with fimbriate apices. Venter with multilocular disc pores each usually with seven loculi; tubular ducts each with a broad inner ductule, frequent in medial area between mesocoxae, between metacoxae and occasionally a few present around each procoxa; pregenital setae numbering three pairs; antenna seven segmented; and legs each with a tibio‐tarsal articulatory sclerosis.

3.2. Pest distribution

3.2.1. Pest distribution outside the EU

Coccus viridis is thought to be either of Brazilian or East African origin (Bach, 1991; Hsieh et al., 2012; Murphy, 1991; Rivera‐Salinas et al., 2018). The present distribution of C. viridis includes tropical and subtropical regions in Africa, Asia, North, South and Central America and Oceania (Figure 2). Coccus viridis has been reported in 2010 in Cornwall, England, United Kingdom, within a greenhouse that resembles the environment of a tropical rainforest (Humid Tropic Biome at The Eden Project); its origin and pathway of introduction are unknown; however, its abundance within the greenhouse indicates that it may have been present there for several years (Malumphy & Treseder, 2012). For a detailed list of countries where C. viridis is present, see Appendix B.

FIGURE 2.

FIGURE 2

Global distribution of Coccus viridis (Source: EFSA literature search; for details, see Appendix B). Data indicated are based on occurrences outdoors, and greenhouse occurrences are not indicated.

3.2.2. Pest distribution in the EU

Is the pest present in the EU territory? If present, is the pest in a limited part of the EU or is it scarce, irregular, isolated or present infrequently? If so, the pest is considered to be not widely distributed.

Yes. Coccus viridis is present in a limited part of the EU territory. It has been recorded only on the Azores and Madeira Islands (Portugal).

In the EU, C. viridis is known to be present only on the Azores and Madeira Islands (Portugal) (EPPO, online; CABI, online; Franco et al., 2011; Swirski et al., 1997). The Portuguese NPPO confirmed that ‘the pest is present in Azores and Madeira Islands for a long time with few occurrences and does not occur in Portugal mainland. So far, no damage has been reported in Azores, and a few in Madeira, and official surveys not carried out’ (NPPO of Portugal, 2024).

3.3. Regulatory status

3.3.1. Commission Implementing Regulation 2019/2072

Coccus viridis is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072, an implementing act of Regulation (EU) 2016/2031, or in any emergency plant health legislation.

3.3.2. Hosts or species affected that are prohibited from entering the Union from third countries

According to the Commission Implementing Regulation (EU) 2019/2072, Annex VI, the introduction of several C. viridis hosts into the EU from certain third countries is prohibited (Table 2). Plants for planting of Albizia Durazz., Annona L., Cassia L., Diospyros L., Jasminum L., Nerium L. and Prunus L., which are hosts of C. viridis (Appendix A) are considered high‐risk plants for the EU and their import is prohibited pending risk assessment (EU 2018/2019). According to Commission Implementing Regulation (EU) 2022/1942 of 13 October 2022 amending Implementing Regulation (EU) 2018/2019, unrooted cuttings of Jasminum polyanthum Franchet originating in Uganda should no longer be considered high‐risk plants.

TABLE 2.

List of plants, plant products and other objects that are Coccus viridis hosts whose introduction into the Union from certain third countries is prohibited (Source: Commission Implementing Regulation (EU) 2019/2072, Annex VI).

List of plants, plant products and other objects whose introduction into the union from certain third countries is prohibited
Description CN code Third country, group of third countries or specific area of third country
8. Plants for planting of […] Prunus L., Pyrus L. and Rosa L., other than dormant plants free from leaves, flowers and fruits

ex 0602 10 90

ex 0602 20 20

ex 0602 20 80

ex 0602 40 00

ex 0602 90 41

ex 0602 90 45

ex 0602 90 46

ex 0602 90 47

ex 0602 90 48

ex 0602 90 50

ex 0602 90 70

ex 0602 90 91

ex 0602 90 99

Third countries other than Albania, Andorra, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canary Islands, Faeroe Islands, Georgia, Iceland, Liechtenstein, Moldova, Monaco, Montenegro, North Macedonia, Norway, Russia (only the following parts: Central Federal District (Tsentralny federalny okrug), Northwestern Federal District (Severo‐ Zapadny federalny okrug), Southern Federal District (Yuzhny federalny okrug), North Caucasian Federal District (Severo‐Kavkazsky federalny okrug) and Volga Federal District (Privolzhsky federalny okrug)), San Marino, Serbia, Switzerland, Türkiye, Ukraine and the United Kingdom
9. Plants for planting of […] Prunus L. and Pyrus L. and their hybrids, and […] other than seeds

ex 0602 10 90

ex 0602 20 20

ex 0602 90 30

ex 0602 90 41

ex 0602 90 45

ex 0602 90 46

ex 0602 90 48

ex 0602 90 50

ex 0602 90 70

ex 0602 90 91

ex 0602 90 99

Third countries other than Albania, Algeria, Andorra, Armenia, Australia, Azerbaijan, Belarus, Bosnia and Herzegovina, Canada, Canary Islands, Egypt, Faeroe Islands, Georgia, Iceland, Israel, Jordan, Lebanon, Libya, Liechtenstein, Moldova, Monaco, Montenegro, Morocco, New Zealand, North Macedonia, Norway, Russia (only the following parts: Central Federal District (Tsentralny federalny okrug), Northwestern Federal District (Severo‐Zapadny federalny okrug), Southern Federal District (Yuzhny federalny okrug), North Caucasian Federal District (Severo‐ Kavkazsky federalny okrug) and Volga Federal District (Privolzhsky federalny okrug)), San Marino, Serbia, Switzerland, Syria, Tunisia, Türkiye, Ukraine, the United Kingdom and United States other than Hawaii
11. Plants of Citrus L., […] Poncirus Raf., and their hybrids, other than fruits and seeds

ex 0602 10 90

ex 0602 20 20

0602 20 30

ex 0602 20 80

ex 0602 90 45

ex 0602 90 46

ex 0602 90 47

ex 0602 90 50

ex 0602 90 70

ex 0602 90 91

ex 0602 90 99

ex 0604 20 90

ex 1404 90 00

All third countries

3.4. Entry, establishment and spread in the EU

3.4.1. Entry

Is the pest able to enter into the EU territory? If yes, identify and list the pathways.

Yes, the pest has already entered the EU territory. It could further enter the EU with plants for planting, cut flowers, fruits and vegetables.

Comment on plants for planting as a pathway.

Plants for planting are considered one of the main pathways for C. viridis to enter the EU.

Plants for planting, cut flowers, fruits and vegetables are potential pathways for entry into the EU of C. viridis (Table 3). Plants for planting are considered one of the main pathways for C. viridis because of the wide host range and high diversity and large volumes of plants for planting being imported (Appendix C).

TABLE 3.

Potential pathways for Coccus viridis into the EU.

Pathways Life stage Relevant mitigations [e.g. prohibitions (annex VI), special requirements (Annex VII) or phytosanitary certificates (annex XI) within Implementing Regulation 2019/2072]
Plants for planting All life stages

Plants for planting that are hosts of C. viridis and are prohibited to import from third countries (Regulation 2019/2072, Annex VI) are listed in Table 2.

Plants for planting from third countries require a phytosanitary certificate (Regulation 2019/2072, Annex XI, Part A).

Some hosts are considered high‐risk plants (EU 2018/2019) for the EU and their import is prohibited subject to risk assessment.

Fruits, vegetables and cut flowers All life stages Fruits, vegetables and cut flowers from third countries require a phytosanitary certificate to be imported into the EU (2019/2072, Annex XI, Part A). However, no requirements are specified for C. viridis.

Notifications of interceptions of harmful organisms began to be compiled in EUROPHYT in May 1994 and in TRACES in May 2020. As of 31 May 2025, there were no records of interceptions of C. viridis in the EUROPHYT and TRACES databases.

Miller et al. (2014) report that C. viridis was intercepted 5332 times on a variety of hosts at USA ports of entry between 1995 and 2012 and is the most commonly intercepted soft scale taken at USA borders. These interceptions originated from American Samoa, Antigua and Barbuda, Aruba, Bahamas, Barbados, Colombia, Cook Islands, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, El Salvador, Fiji, Grenada, Guatemala, Haiti, Hawaii, Honduras, India, Jamaica, Laos, Malaysia, Mexico, New Caledonia, Nicaragua, Pakistan, Panama, Peru, The Philippines, Puerto Rico, Spain, Sri Lanka, Suriname, St. Kitts and Nevis, St. Lucia, St. Maarten, St. Vincent and the Grenadines, Taiwan, Tahiti, Thailand, Togo, Tonga, Trinidad and Tobago, The U.S. Virgin Islands and Vietnam.

Malumphy and Treseder (2012) reported that C. viridis has been intercepted by the Plant Health and Seeds Inspectorate on plants imported into England on many occasions:

  • East Riding of Yorkshire, wholesaler, on jasmine (Jasminum sp., Oleaceae) from Jamaica;

  • Essex, London Stansted Airport, unidentified plant;

  • Port of Tilbury, on lime fruit (Citrus aurantifolia (Christm.) Swingle, Rutaceae) from Brazil;

  • Greater London, London Heathrow Airport, on mangosteen (Garcinia mangostana L., Clusiaceae) (new host) from Indonesia and Thailand, on Citrus sp. foliage from the Dominican Republic, and lime fruit from Brazil;

  • Hampshire, flower importer, on Dracaena sp. (Asparagaceae) from Costa Rica;

  • Portsmouth, on lime fruit from the Dominican Republic;

  • London, wholesaler, on lime fruit from Brazil;

  • West Sussex, Gatwick Airport, on Citrus sp. fruit from the Dominican Republic, and on lime fruit from Saint Lucia.

3.4.2. Establishment

Is the pest able to become established in the EU territory?

Yes. Southern and central EU countries most likely provide suitable climatic conditions for the establishment of C. viridis. However, there is uncertainty about its ability to establish stable outdoor populations in central EU. Nevertheless, there is a possibility that C. viridis could occur in greenhouses and on indoor plantings in such areas.

Climatic mapping is the principal method for identifying areas that could provide suitable conditions for the establishment of a pest taking key abiotic factors into account (Baker, 2002). The approach used in EFSA pest categorisations is based on the Köppen–Geiger climate classification (version of Kottek et al., 2006; Rubel et al., 2017) which identifies potentially suitable areas based on the climate types present in Europe. Availability of hosts is considered in Section 3.4.2.1. Climatic factors are considered in Section 3.4.2.2.

3.4.2.1. EU distribution of main host plants

Several host plants of C. viridis are present or are grown widely across the EU. Among others are Apium graveolens, Citrus spp., Eriobotrya japonica, Eucalyptus camaldulensis, Mangifera indica, Pyrus communis and some ornamental plants. The harvested area of host plants of C. viridis (available in EUROSTAT) in the EU between 2019 and 2023 is shown in Table 4.

TABLE 4.

Harvested area (1000 ha) of some of the host plants of Coccus viridis in the EU (Eurostat accessed on 08 October 2024).

Harvested area (1000 ha)
Crop Code 2019 2020 2021 2022 2023
Celery V2200 : : 8.27 7.83 7.84
Citrus T0000 512.83 522.10 519.96 520.86 523.71
Pears F1120 110.66 108.29 106.96 103.11 100.53
3.4.2.2. Climatic conditions affecting establishment

Coccus viridis is currently widely distributed throughout the tropical and sub‐tropical regions of the world (Appendix B), in Africa, Asia, America and Oceania. Figure 3 shows the world distribution of Köppen–Geiger climate types (Rubel et al., 2017) that occur in the EU, and which occur in countries where C. viridis has been reported. Climate types of Cfc and Dfc were not included in Figure 3 due to their very limited occurrence in countries where C. viridis is present. The thermal biology of C. viridis has not been studied yet and therefore its thermal requirements and limits are not known. Based on Figure 3, southern and central EU countries most likely provide suitable climatic conditions for the establishment of C. viridis. However, since little is known about the pest's thermal biology and specific temperature requirements, and considering its tropical and subtropical origin, there is uncertainty about its ability to establish stable outdoor populations in central EU. Nevertheless, there is a possibility that C. viridis could occur in greenhouses and on indoor plantings in such areas.

FIGURE 3.

FIGURE 3

World distribution of Köppen–Geiger climate types that occur in the EU and in countries where Coccus viridis has been reported (red dots indicate precise locations where the insect has been observed). Climate types Dfc and Cfc were removed due to their very limited occurrence in the distribution area of C. viridis.

3.4.3. Spread

Describe how the pest would be able to spread within the EU territory following establishment?

Natural spread by first instar nymphs crawling or being carried by wind, or by hitchhiking on other animals, humans or machinery, can occur locally. All stages may be moved over longer distances by movement (including trade) of infested plants specifically plants for planting, cut flowers, fruits and vegetables.

Comment on plants for planting as a mechanism of spread.

Plants for planting is likely one of the main pathways for spread (see Section 3.4.1).

First‐instar nymphs (crawlers) may be carried to neighbouring plants by their own movement, wind (Vandermeer et al., 2019) or by hitchhiking on clothing, equipment or animals (EFSA PLH Panel, 2022). Movement (including trade) of infested plants for planting is likely the main pathway of spread of C. viridis over long distances (see Section 3.4.1).

3.5. Impacts

Would the pests' introduction have an economic or environmental impact on the EU territory?

Yes, if C. viridis established more widely in the EU, it would most probably have an economic impact, but the magnitude of impact is uncertain.

Coccus viridis is a polyphagous and serious pest of coffee, citrus and other crops in several regions, causing damage due to its feeding on the phloem and egesting sugary honeydew, which serves as a medium for the growth of sooty moulds (Almeida et al., 2018; Chiu, 1981; Dekle & Fasulo, 2001; Fernandes et al., 2012; Poole, 2005; Rosado et al., 2014; Smith et al., 2004; Souza et al., 2023). The infested leaves may curl up and tender twigs drop. This hinders photosynthesis, thereby weakening the plant (Reddy et al., 2022; Rosado et al., 2014). Fruits from infested plants and infested ornamental plants are becoming unmarketable due to the presence of honeydew and sooty mould (Mani, 2022; Wuryantini et al., 2023). In West Bengal, India, Kar et al. (2023) reported that C. viridis was found in both developing and ripening stages of dragon fruit with a population of 5–29 insects per fruit spike depending on the length of the spike. Coccus viridis has been reported to cause serious damage in Brazil to Arabica coffee (Coffea arabica) and robusta coffee (Coffea canephora) plants, especially to young plants and in dense plantations (Fernandes et al., 2012).

High infestation levels by C. viridis have also been reported on coffee plantations in Indonesia, where it reached 100% on sparsely shaded coffee plantations with an average of 109 individuals per twig, and in densely shaded coffee plantations with 52 individuals per twig (Syadida et al., 2024).

The green coffee scale is a major insect pest of coffee in Hawaii. Although it is usually of minor importance on healthy, mature coffee trees, it can become a serious pest of nursery stock and young trees (Reimer et al., 1993). Le Pelley (1968) cites records of heavy damage by C. viridis in Sri Lanka, Java, India, Réunion, Cuba, Jamaica, Suriname and Brazil (Waller et al., 2007). Sathish et al. (2024) reported that C. viridis incidence on sapota plants (Manilkara zapota) was recorded on average of 27.10 scales per five infected leaves per plant. Moreover, Mani et al. (2008) declared that among 25 insects known to attack sapota in India, the soft green scale is reported to cause severe loss and found a mean number of 30.72 scales per leaf on its peak month (May) in Bangalore. Severe infestations of mango trees by this coccid were recorded in Trinidad in the 1930s (Swirski et al., 1997). Infested plants, especially young trees (less than 2 years after transplant), suffer stunting, yellowing and/or loss of leaves and fruit drop (Hara et al., 2002; Mau & Kessing, 1999). Coccus viridis is considered an important pest of citrus in the Kodagu of India (Shivaramu & Pillai, 2012; Singh, 1995). In field trials performed in this area to test the efficacy of some pesticides against the pest, an infestation level of more than 64% was recorded in untreated plots of citrus (Shivaramu & Pillai, 2012). In Thailand, C. viridis damages citrus and has been reported as one of the most dominant scale insect species in citrus orchards (Nakao et al., 1977). In the Cerrados region of Brazil, C. viridis has been reported as an important pest of citrus, particularly affecting young trees (Murakami et al., 1984). A survey conducted between 2014 and 2017 in citrus orchards across the main citrus‐producing regions of São Paulo State, Brazil, identified C. viridis as the fourth most prevalent species among 22 scale insects, with infestations observed on 9% of the sampled citrus plants (Almeida et al., 2018). Moreover, Brugnara et al. (2022) reported an outbreak of sooty mould (Capnodium sp.) affecting the branches, leaves and fruits of citrus plants in the western region of Santa Catarina, Brazil, during a period of water deficiency in 2020–2021. The outbreak was associated with a high incidence of scale insects, predominantly C. viridis. In Lukore, Coast Province of Kenya, scale insects primarily Aonidiella aurantii and C. viridis have been reported as the dominant leaf‐feeding pests of orange trees, with average leaf infestation levels of 11% in young trees (5–6 years old) and 23% in older trees (17–20 years old) (Ekesi, 2015). In Australia, C. viridis is considered a pest of citrus. In 1999, the parasitoid Diversinervus sp. nr stramineus was introduced from Kenya and released in Queensland as a biological control agent (Smith et al., 1997; Waterhouse & Sands, 2001). The Department of Agriculture and Food of Western Australia has recommended an action threshold of 5% or more of green twigs infested with one or more scales (State of Western Australia, 2007). According to the Portuguese NPPO, in the Azores, there are no records of damage to the crops. The pest has also been present in Madeira for a long time, but little damage is reported in fruit crops, mainly citrus and guava and no damage in other crops.

In a review of insect pests of citrus in Portugal, Carvalho et al. (1996) assigned C. viridis a pest status of 3 on a scale from 1 to 5, without providing further justification or methodological details.

Several publications refer to C. viridis as an important pest of citrus. However, since quantitative data mostly refer to infestations and the level of the pest populations on citrus, while yield loss data have not been found, there is uncertainty on the magnitude of potential impact in the risk assessment area.

3.6. Available measures and their limitations

Are there measures available to prevent pest entry, establishment, spread or impacts such that the risk becomes mitigated?

Yes. Although the existing phytosanitary measures identified in Section 3.3.2 do not specifically target C. viridis, they mitigate the likelihood of its entry into, establishment and spread within the EU (see also Section 3.6.1).

3.6.1. Identification of potential additional measures

Phytosanitary measures (prohibitions) are currently applied to some host plants for planting (see Section 3.3.2).

Additional potential risk reduction options and supporting measures are shown in Sections 3.6.1.1 and 3.6.1.2.

3.6.1.1. Additional potential risk reduction options

Potential additional control measures are listed in Table 5.

TABLE 5.

Selected control measures (a full list is available in EFSA PLH Panel, 2018) for pest entry/establishment/spread/impact in relation to currently unregulated hosts and pathways. Control measures are measures that have a direct effect on pest abundance.

Control measure/risk reduction option (blue underline = Zenodo doc, Blue = WIP) RRO summary Risk element targeted (entry/establishment/spread/impact)
Require pest freedom Pest‐free place of production (e.g. the place of production and its immediate vicinity is free from the pest over an appropriate time period, e.g. since the beginning of the last complete cycle of vegetation, or past 2 or 3 cycles). Pest‐free production site. Entry/Establishment/Spread
Growing plants in isolation The plants originate in a place of production with complete physical isolation from the pest. Entry (reduce infestation)/ Establishment/Spread
Managed growing conditions Used to mitigate likelihood of infestation at origin. Plants collected directly from natural habitats, have been grown, held and trained for at least two consecutive years prior to dispatch in officially registered nurseries, which are subject to an officially supervised control regime. Entry (reduce infestation)/Establishment/Spread
Roguing and pruning Roguing is defined as the removal of infested plants and/or uninfested host plants in a delimited area, whereas pruning is defined as the removal of infested plant parts only without affecting the viability of the plant. Entry/Spread/Impact
Biological control and behavioural manipulation

Many natural enemies, including predators and parasitoids, have been identified for C. viridis among them: Azya orbiger (Coleoptera: Coccinellidae), Chilocorus nigritus (Coleoptera: Coccinellidae), Coccophagus sp. (Hymenoptera: Aphelinidae), Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) and Encarsia sp. (Hymenoptera: Aphelinidae) (for a detailed list of the natural enemies, see Appendix D). In Hawaii, control was achieved by the coccinellid Azya luteipes, while in Bermuda, C. viridis was controlled locally when A. luteipes and another coccinellid Chilocorus cacti had become established. In the tropical South Pacific region, it is successfully controlled by the encyrtid Metaphycus baruensis (Williams & Watson, 1990). Coccophagus sp. along with coccinellid predators Chilocorus nigrita and Cryptolaemus montrouzieri were found to suppress C. viridis on sapota (Manilkara zapota) and the parasitism by Coccophagus sp. was up to 95% (Mani et al., 2008). Chilocorus nigritus was considered effective biological control agent against C. viridis in acid lime (Citrus aurantifolia) in India (Omkar & Pervez, 2004). In Australia, in 1999, the parasitoid Diversinervus sp. nr stramineus was introduced from Kenya and released in Queensland as a biological control agent (Smith et al., 1997; Waterhouse & Sands 2001).

Furthermore, entomopathogenic fungi play an important role in restraining populations of C. viridis. Akanthomyces lecanii (cited as Lecanicillium lecanii and Verticillium lecanii) is an important biological control of C. viridis (Jackson et al., 2016; Santharam et al., 1977). In Brazil, in the 1930s, it was found to control C. viridis on coffee plants (Li et al., 2010). Akanthomyces lecaniii at a concentration of 16 × 106 spores/mL is known to cause up to 96% mortality of the green scale on coffee plants (Easwaramoorthy & Jayaraj, 1978). A. lecanii is particularly effective in the rainy season when it can kill large colonies of the green coffee scale in a short period of time (Swirski et al., 1997). Also, infection of C. viridis by Purpureocillium lilacinum (cited as Paecilomyces lilacinus) resulted in 100% mortality of the pest (Radhakrishnan, 2022).

Some of the parasitoid species that have been recorded to parasitize on C. viridis in its distribution range, such as Metaphycus helvolus, Cocophagus rustii, C. ceroplastae and C. cowperi are also present in the EU territory (Noyes, 2019).

Entry/Impact
Chemical treatments on crops including reproductive material

Used to mitigate likelihood of infestation of pests susceptible to chemical treatments. The effectiveness of non‐systemic insecticides against soft scales may be reduced by the waxy coating of the adult.

Mortality of C. viridis on potted gardenia plants averaged 95, 89, and 88% when sprayed with limonene, insecticidal soap, or horticultural oil, respectively (Hollingsworth, 2005). In Australia, white oil and chlorpyriphos had been used occasionally to control C. viridis (Bizumungu et al., 2020). Imidacloprid, 144 hours after application, caused mortality rate at 55%. Application of imidacloprid and a mixture of neem and tobacco showed 100% mortality rate of C. viridis (Wuryantini et al., 2023). Easwaramoorthy and Jayaraj (1978) showed that at 14 days after treatment, when A. lecanii was applied alone at the highest concentration (16 × 106 spores/ml) caused 28.4% mortality of C. viridis, while lower concentrations resulted in 14.5% and 20.6% mortality. Among insecticides applied, fenthion at 0.1% caused 54.2% mortality, while phosphamidon at 0.1% caused 41.0%. The combination of A. lecanii (4 × 106 spores/ml) with fenthion at 0.05% resulted in the highest mortality at 93.7%, followed closely by fungus + fenthion 0.1% (88.8%) and fungus + phosphamidon 0.1% (73.9%). Even the lowest combination, fungus + phosphamidon 0.025%, resulted in 44.0% mortality. Synergistic interaction of A. lecanii and dichlorvos has been reported (Ambethgar, 2018; Easwaramoorthy & Jayaraj, 1977). In the EU, there are insecticides with approval that are registered against other scale insects of the same family and may have an effect on C. viridis too.

Entry/Establishment/Impact
Physical treatments on consignments or during processing

This risk mitigation measure deals with the following categories of physical treatments: irradiation/ionisation; mechanical cleaning (brushing, washing); sorting and grading; and removal of plant parts. This risk mitigation measure does not address heat and cold treatments.

Following irradiation at 250 gray (Gy), prolonged survival of green scale, with 8.8%–11.4% of nymphs and up to 8.8% of crawlers remaining alive 3 months after irradiation An absorbed dose of 500, 750 or 1000 Gy caused 100% mortality in all stages of the green scale by 7, 6 and 3 weeks post‐treatment, respectively (Arvanitoyannis & Stratakos, 2010; Follett, 2009; Follett & Griffin, 2012; Hara et al., 2002)

Entry/ Spread
Cleaning and disinfection of facilities, tools and machinery The physical and chemical cleaning and disinfection of facilities, tools, machinery, facilities and other accessories (e.g., boxes, pots, hand tools). Entry/Spread
Heat and cold treatments Controlled temperature treatments aimed to kill or inactivate pests without causing any unacceptable prejudice to the treated material itself. This set of measures addresses: autoclaving; steam; hot water; hot air; cold treatment. Entry/Spread
Controlled atmosphere Treatment of plants by storage in a modified atmosphere (including modified humidity, O2, CO2, temperature, pressure). Entry/Spread (via commodity)
3.6.1.2. Additional supporting measures

Potential additional supporting measures are listed in Table 6.

TABLE 6.

Selected supporting measures (a full list is available in EFSA PLH Panel, 2018) in relation to currently unregulated hosts and pathways. Supporting measures are organisational measures or procedures supporting the choice of appropriate risk reduction options that do not directly affect pest abundance.

Supporting measure Summary Risk element targeted (entry/establishment/spread/impact)
Inspection and trapping ISPM 5 (FAO, 2023) defines inspection as the official visual examination of plants, plant products or other regulated articles to determine if pests are present or to determine compliance with phytosanitary regulations. The effectiveness of sampling and subsequent inspection to detect pests may be enhanced by including trapping and luring technique. Entry/Establishment/Spread/Impact
Laboratory testing Examination, other than visual, to determine if pests are present using official diagnostic protocols. Diagnostic protocols describe the minimum requirements for reliable diagnosis of regulated pests. Entry/Establishment/Spread
Sampling

According to ISPM 31, it is usually not feasible to inspect entire consignments, so phytosanitary inspection is performed mainly on samples obtained from a consignment. It is noted that the sampling concepts presented in this standard may also apply to other phytosanitary procedures, notably selection of units for testing.

For inspection, testing and/or surveillance purposes the sample may be taken according to a statistically based or a non‐statistical sampling methodology.

Entry/Establishment
Phytosanitary certificate and plant passport According to ISPM 5 (FAO, 2023), a phytosanitary certificate and a plant passport are official paper documents or their official electronic equivalents, consistent with the model certificates of the IPPC, attesting that a consignment meets phytosanitary import requirements:
  1. export certificate (import)

  2. plant passport (EU internal trade)

Entry/Establishment/Spread
Certified and approved premises Mandatory/voluntary certification/approval of premises is a process including a set of procedures and of actions implemented by producers, conditioners and traders contributing to ensure the phytosanitary compliance of consignments. It can be a part of a larger system maintained by the NPPO in order to guarantee the fulfilment of plant health requirements of plants and plant products intended for trade. Key property of certified or approved premises is the traceability of activities and tasks (and their components) inherent the pursued phytosanitary objective. Traceability aims to provide access to all trustful pieces of information that may help to prove the compliance of consignments with phytosanitary requirements of importing countries. Entry/Spread
Certification of reproductive material (voluntary/official) Plants come from within an approved propagation scheme and are certified pest free (level of infestation) following testing; used to mitigate against pests that are included in a certification scheme. Entry/Spread
Delimitation of Buffer zones ISPM 5 defines a buffer zone as ‘an area surrounding or adjacent to an area officially delimited for phytosanitary purposes in order to minimise the probability of spread of the target pest into or out of the delimited area, and subject to phytosanitary or other control measures, if appropriate’ (ISPM 5). The objectives for delimiting a buffer zone can be to prevent spread from the outbreak area and to maintain a pest free production place (PFPP), site (PFPS) or area (PFA). Spread
Surveillance Surveillance to guarantee that plants and produce originate from a pest‐free area could be an option. Establishment/Spread
3.6.1.3. Biological or technical factors limiting the effectiveness of measures

C. viridis may not be easily detected in cases where low densities occur and when only young stages (crawlers) are present.

Limited effectiveness of non‐systemic insecticides due to the presence of protective wax cover.

3.7. Uncertainty

No key uncertainties of the assessment have been identified.

4. CONCLUSIONS

While the magnitude of impact in the EU is associated with an uncertainty, C. viridis satisfies all criteria assessed by EFSA for consideration as a potential quarantine pest. Table 7 provides a summary of the PLH Panel conclusion.

TABLE 7.

The Panel's conclusions on the pest categorisation criteria defined in Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column).

Criterion of pest categorisation Panel's conclusions against criterion in Regulation (EU) 2016/2031 regarding Union quarantine pest Key uncertainties
Identity of the pest (Section 3.1 ) The identity of the pest is clearly defined and Coccus viridis (Green) is the accepted name None
Absence/presence of the pest in the EU (Section 3.2 ) Coccus viridis has a restricted distribution in the EU, it is known to occur only on the Azores and Madeira Islands (Portugal). None
Pest potential for entry, establishment and spread in the EU (Section 3.4 ) Coccus viridis is able to further enter, become established and spread within the EU territory, especially in the southern EU MS. The main pathways are plants for planting, cut flowers, fruits, and vegetables. None
Potential for consequences in the EU (Section 3.5 ) The introduction of the pest could cause yield and quality losses on several crops and reduce the value of ornamental plants. None
Available measures (Section 3.6 ) There are measures available to prevent further entry, establishment and spread of C. viridis within the EU. Risk reduction options include inspections, chemical and physical treatments on consignments of fresh plant material from infested countries and the production of plants for import in the EU in pest free areas. Biological control is expected at a certain extent by indigenous natural enemies. None
Conclusion (Section 4 ) While the magnitude of impact in the EU is associated with an uncertainty, all criteria assessed by EFSA for consideration as a potential quarantine pest are met.
Aspects of assessment to focus on/scenarios to address in future if appropriate:

GLOSSARY

Containment (of a pest)

Application of phytosanitary measures in and around an infested area to prevent the spread of a pest (FAO, 2023).

Control (of a pest)

Suppression, containment or eradication of a pest population (FAO, 2023).

Entry (of a pest)

Movement of a pest into an area where it is not yet present, or present but not widely distributed and being officially controlled (FAO, 2023).

Eradication (of a pest)

Application of phytosanitary measures to eliminate a pest from an area (FAO, 2023).

Establishment (of a pest)

Perpetuation, for the foreseeable future, of a pest within an area after entry (FAO, 2023).

Greenhouse

A walk‐in, static, closed place of crop production with a usually translucent outer shell, which allows controlled exchange of material and energy with the surroundings and prevents the release of plant protection products (PPPs) into the environment.

Hitchhiker

An organism sheltering or transported accidentally via inanimate pathways including with machinery, shipping containers and vehicles; such organisms are also known as contaminating pests or stowaways (Toy & Newfield, 2010).

Impact (of a pest)

The impact of the pest on the crop output and quality and on the environment in the occupied spatial units.

Introduction (of a pest)

The entry of a pest resulting in its establishment (FAO, 2023).

Pathway

Any means that allows the entry or spread of a pest (FAO, 2023).

Phytosanitary measures

Any legislation, regulation or official procedure having the purpose to prevent the introduction or spread of quarantine pests, or to limit the economic impact of regulated non‐quarantine pests (FAO, 2023).

Quarantine pest

A pest of potential economic importance to the area endangered thereby and not yet present there, or present but not widely distributed and being officially controlled (FAO, 2023).

Risk reduction option (RRO)

A measure acting on pest introduction and/or pest spread and/or the magnitude of the biological impact of the pest should the pest be present. A RRO may become a phytosanitary measure, action or procedure according to the decision of the risk manager.

Spread (of a pest)

Expansion of the geographical distribution of a pest within an area (FAO, 2023).

ABBREVIATIONS

EPPO

European and Mediterranean Plant Protection Organization

FAO

Food and Agriculture Organization

IPPC

International Plant Protection Convention

ISPM

International Standards for Phytosanitary Measures

MS

Member State

PLH

EFSA Panel on Plant Health

PZ

Protected Zone

TFEU

Treaty on the Functioning of the European Union

ToR

Terms of Reference

REQUESTOR

European Commission

QUESTION NUMBER

EFSA‐Q‐2024‐00619

COPYRIGHT FOR NON‐EFSA CONTENT

EFSA may include images or other content for which it does not hold copyright. In such cases, EFSA indicates the copyright holder and users should seek permission to reproduce the content from the original source.

PANEL MEMBERS

Antonio Vicent Civera, Paula Baptista, Anna Berlin, Elisavet Chatzivassiliou, Jaime Cubero, Nik Cunniffe, Eduardo de la Peña, Nicolas Desneux, Francesco Di Serio, Anna Filipiak, Paolo Gonthier, Beata Hasiów‐Jaroszewska, Hervé Jactel, Blanca B. Landa, Lara Maistrello, David Makowski, Panagiotis Milonas, Nikos T. Papadopoulos, Roel Potting, Hanna Susi, and Dirk Jan van der Gaag.

MAP DISCLAIMER

The designations employed and the presentation of material on any maps included in this scientific output do not imply the expression of any opinion whatsoever on the part of the European Food Safety Authority concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

ACKNOWLEDGEMENTS

EFSA wishes to acknowledge the contribution of Ana Guillem Amat, Malayka Picchi, Stella Papanastasiou and Erica Soldi to this opinion.

APPENDIX A. Coccus viridis host plants/species affected

Host plant records based on literature as indicated in the table below.

Host name Plant family Common name Reference
Aegle sp. Rutaceae Ali (1969)
Aegle marmelos Rutaceae Bael fruit D'Souza et al. (1969)
Aeglopsis chevalieri Rutaceae Ballou (1926)
Afraegle paniculata (cited as Balsamocitrus paniculata) Rutaceae Ballou (1926)
Agave amica (cited as Polianthes tuberosa) Asparagaceae Tuberose Dias Trindade (2011)
Ageratum houstonianum Asteraceae Blue billy‐goat weed Viswanathan (1971)
Albizia sp. Fabaceae D'Souza et al. (1969)
Alcea rosea (cited as Althea rosea) Malvaceae Common hollyhock Khan and Agarwal (1976)
Alpinia purpurata Zingiberaceae Red ginger Hata and Hara (1992)
Alstonia macrophylla Apocynaceae Devil tree Nakahara (1981)
Alstonia scholaris Apocynaceae Devil tree Malumphy and Treseder (2012)
Alyxia sp. Apocynaceae Nakahara (1981)
Alyxia oliviformis (cited as Alyxia olivaeformis) Apocynaceae Nakahara (1981)
Amaranthus sp. Amaranthaceae Singh and Rao (1977)
Amaranthus spinosus Amaranthaceae Prickly caterpillar Singh and Rao (1977)
Anacardium occidentale Anacardiaceae Cashew Schmutterer et al. (1978)
Ananas comosus Bromeliaceae Pineapple Williams and Watson (1990; as cited in García Morales et al., 2016)
Annona sp. Annonaceae Hodgson and Hilburn (1990); Kondo and Hardy (2008)
Annona squamosa Annonaceae Cachiman Mille et al. (2016)
Anthocephalus cadamba
Anthurium sp. Araceae Visalaksy et al. (2014)
Antidesma sp. Euphorbiaceae Kannan (1918)
Antidesma bunius Euphorbiaceae Salamander tree D'Souza et al. (1969)
Antidesma venosum Euphorbiaceae Tasselberry Prinsloo (1985)
Apium graveolens Apiaceae Celery Rodríguez‐Tapia et al. (2022); Yalemar (1999)
Aralia sp. Araliaceae Dias Trindade (2011)
Aralia armata Araliaceae Martin and Lau (2011)
Arctotis sp. Asteraceae Nakahara (1981)
Ardisisa crispa Primulaceae Japanese holly Nakahara (1981)
Areca catechu Arecaceae Areca‐nut palm Dubey et al. (2022)
Artocarpus sp. Moraceae Medina‐Torres et al. (2013)
Artocarpus integer (cited as Artocarpus integrifolia Moraceae D'Souza et al. (1969)
Atalantia citroides Rutaceae Ballou (1926)
Atractocarpus tahitensis (cited as Randia tahitensis) Rubiaceae Williams and Watson (1990; as cited in García Morales et al., 2016)
Baccharis sp. Asteraceae Dias Trindade (2011)
Baccharis halimifolia Asteraceae Groundsel bush Fredrick (1943)
Balsamocitrus dawei Rutaceae Uganda powder flask Ballou (1926)
Bassia latifolia Amaranthaceae Miller (1931)
Begonia sp. Begoniaceae Dias Trindade (2011)
Bidens sp. Asteraceae Krishnan (1973)
Bidens pilosa Asteraceae Beggartick, blackjack D'Souza et al. (1969)
Bischofia sp. Phyllanthaceae Krishnan (1973)
Boninia grisea Rutaceae Kawai and Matsubara (1971)
Brunfelsia nitida Solanaceae Ballou (1926)
Buxus sempervirens Buxaceae Common box Dias Trindade (2011)
Byrsonima crassifolia Malpighiaceae Craboo, nance Medina‐Torres et al. (2013)
Cajanus cajan Fabaceae Pigeon pea Matile‐Ferrero (2006)
Caladium sp. Araceae Nakahara (1981)
Callicarpa lanata Lamiaceae Ali (1969); D'Souza et al. (1969)
Camellia japonica Theaceae Camellia Dias Trindade (2011)
Camellia sinensis Theaceae Tea Dias Trindade (2011); Kannan (1918); Radhakrishnan (2022)
Campnosperma brevipetiolatum Anacardiaceae Williams and Watson (1990; as cited in García Morales et al., 2016)
Carica papaya Caricaceae Papaya Dias Trindade (2011); Padilla et al. (2016)
Carissa carandas Apocynaceae Caranda (plum) Cheng and Tao (1963)
Carissa macrocarpa Apocynaceae Natal plum Hara et al. (2002); Yalemar (1999)
Carissa spinarum Apocynaceae Bush plum Varshney (1992, as cited in García Morales et al., 2016)
Carissa sp. Apocynaceae Ali (1971); Ramakrishna (1919, as cited in García Morales et al., 2016)
Cascabela thevetia (cited as Thevetia neriifolia) Apocynaceae Be‐still tree Ballou (1926)
Casimiroa edulis Rutaceae White sapote Pellizzari and Porcelli (2014)
Cassia sp. Fabaceae Malumphy et al.  2012)
Cedrus sp. Pinaceae Krishnan (1973)
Ceodes umbellifera Nyctaginaceae Kawai et al. (1971
Cestrum sp. Solanaceae Williams & Watson, 1990; as cited in García Morales et al., 2016)
Cestrum auriculatum Solanaceae Lincango et al. (2010)
Cestrum nocturnum Solanaceae Viswanathan (1971)
Chassalia umbraticola Rubiaceae Lim et al. (2008)
Chiococca racemosa Rubiaceae Ballou (1926)
Chrysalidocarpus sp. Arecaceae Suh et al. (2013)
Chrysophyllum cainito Sapotaceae Star apple Mani et al. (2022)
Cinchona sp. Rubiaceae Dias Trindade (2011), Kannan (1918)
Cinchona calisaya Rubiaceae Ledger‐bark cinchona Hutson (1930)
Cinchona officinalis Rubiaceae Brown Peru bark D'Souza et al. (1969)
Cinchona pubescens Rubiaceae Red quinine tree Plank and Winters (1949)
Cinnamomum verum Lauraceae Ceylon cinnamon Holway et al. (2002)
Citharexylum spinosum (cited as Citharexylum fruticosum) Verbenaceae Cutlet Martorell (1945)
Citropsis articulata (cited as Citropsis schweinfurthii) Rutaceae Ballou (1926)
Citrus sp. Rutaceae Hara et al. (2002), Kannan (1918), Kawai and Matsubara (1971), Khan et al. (2007), Schmutterer et al. (1978)
Citrus × aurantiifolia Rutaceae Lime Padilla et al. (2016)
Citrus × aurantium Rutaceae Bitter orange Vieira (1953)
Citrus × aurantium var. sinensis Rutaceae Sweet orange Almeida et al. (2018), Fernandes et al. (2011), Jutsum et al. (1981), Khaladi et al. (2024), Nais and Busoli (2012); Rodríguez‐Tapia et al. (2022)
Citrus australis (cited as Microcitrus australis) Rutaceae Australian round lime Ballou (1926)
Citrus × limon Rutaceae Lemon Almeida et al. (2018), Yalemar (1999), Padilla et al. (2016)
Citrus× limonia Rutaceae Mandarin lime Almeida et al. (2018)
Citrus lucida (cited as Feroniella oblata) Rutaceae Ballou (1926)
Citrus maxima Rutaceae Pummelo Lin et al. (2013)
Citrus medica Rutaceae Cidran; citron De Charmoy and Gebert (1921)
Citrus × nobilis Rutaceae King orange Vieira (1953)
Citrus × paradisi Rutaceae Grapefruit Matile‐Ferrero and Étienne (2006)
Citrus × reticulata Rutaceae Clementine; tree mandarin Almeida et al. (2018), Styrsky and Eubanks (2007), Tandon and Veeresh (1987), Tandon and Veeresh (1988)
Clausena excavata (cited as Clausena lunulata) Rutaceae Pink limeberry Cheng and Tao (1963)
Clausena lansium Rutaceae Wampee Ballou (1926)
Clerodendrum speciosissimum (cited as Clerodendrum fallax) Lamiaceae Java glorybower Ballou (1926)
Coccoloba diversifolia Polygonaceae Martorell (1945)
Coccoloba uvifera Polygonaceae Sea grape Martorell (1945)
Coccoloba venosa Polygonaceae Chicory grape Martorell (1945)
Cocos sp. Arecaceae De Lotto (1960)
Coffea sp. Rubiaceae Malumphy and Treseder (2012)
Coffea arabica Rubiaceae Arabica coffee Camacho and Chong (2015), Dias Trindade (2011), Easwaramoorthy and Jayaraj (1978), Fernandes et al. (2010), Fernandes et al. (2011), Fernandes et al. (2012), Fornazier et al. (2017), Gonthier et al. (2013), González‐Hernández et al. (1999), Green et al. (2015), Hara et al. (2002), Iverson et al. (2018), Jackson et al. (2012), Jha et al. (2009), Koutouleas et al. (2023), Liere and Perfecto (2008), Murphy (1991), Nais and Busoli (2012); Padilla et al. (2016), Ponsonby (2009), Reddy et al. (2022), Reimer et al. (1993), Ruiz‐Orta et al. (2023), Rodríguez‐Tapia et al. (2022), Rosado et al. (2014), Saengyot (2016), Schmutterer et al. (1978), Vandenberg et al. (2018), Varshney (1985)
Coffea canephora Rubiaceae Robusta coffee Fernandes et al. (2011), Fernandes et al. (2012), Fornazier et al. (2017), Green et al. (2015), Lim et al. (2008), Magalhães et al. (2010), Souza et al., 2023, Varshney (1985)
Coffea excelsa Rubiaceae Lim et al. (2008)
Coffea liberica Rubiaceae Liberian coffee Fornazier et al. (2017), Lim et al. (2008)
Commelina sp. Commelinaceae Williams and Watson (1990; as cited in García Morales et al., 2016)
Cordia sp. Boraginaceae Vieira et al. (1983)
Cordia alba Boraginaceae Jackwood Ballou (1926)
Cordia laevigata (cited as Cordia nitida) Boraginaceae Glossy cordia Ballou (1926)
Cordia myxa Boraginaceae Assyrian plum Mamet (1943); as cited in García Morales et al., 2016)
Cordyline fruticosa (cited as Cordyline terminalis) Asparagaceae Bongbush Nakahara (1981)
Crossandra infundibuliformis Acanthaceae Firecracker flower Vadivelu et al. (1976)
Cryptostegia grandiflora Apocynaceae Palay rubber vine Nakahara (1981)
Cymbidium sp. Orchidaceae Suh (2023)
Datura stramonium Solanaceae Thorn apple Viswanathan (1971)
Dimocarpus longan (cited as Euphoria longana) Sapindaceae Dragon's eye; longan Ballou (1926)
Diospyros nigra (cited as Diospyros digyna) Ebenaceae Padilla et al. (2016)
Dodonaea viscosa (cited as Dodonaea eriocarpa) Sapindaceae Broad‐leaf hopbush Mille et al. (2016); Nakahara (1981)
Dombeya wallichii Malvaceae African mallow Dias Trindade (2011)
Dracaena sp. Asparagaceae Nakahara (1981)
Duranta erecta (cited as Duranta repens) Verbenaceae Angel's whisper Dias Trindade (2011)
Dypsis sp. Arecaceae Suh (2023)
Ehretia tinifolia Boraginaceae Ballou (1926)
Eriobotrya japonica Rosaceae Loquat Mani et al. (2022), Padilla et al. (2016), Varshney (1985)
Eucalyptus camaldulensis Myrtaceae Long‐beak eucalyptus Lim et al. (2008)
Eucalyptus sp. Myrtaceae Malumphy and Treseder (2012)
Eugenia sp. Myrtaceae Kannan (1918)
Eugenia sprengelii Myrtaceae Dias Trindade (2011)
Eugenia uniflora Myrtaceae Pitanga Nakahara (1981)
Eulophia alta Orchidaceae Wild coco Diaz et al. (2004)
Fallopia convolvulus (cited as Polygonum convolvulus) Polygonaceae Bearbind Ballou (1926)
Faramea sp. Rubiaceae Ballou (1926)
Faramea odoratissima Rubiaceae Ballou (1926)
Ficus sp. Moraceae Choi et al. (2018)
Fitchia sp. Asteraceae Nakahara (1981)
Funtumia elastica Apocynaceae African wild rubber Miller (1931)
Garcinia mangostana Clusiaceae Mangosteen Malumphy and Treseder (2012)
Gardenia sp. Rubiaceae Arvanitoyannis and Stratakos (2010), Follett and Griffin (2012), Hara et al. (2002), Kannan (1918), Neumann et al. (2010), Yalemar (1999)
Gardenia augusta Rubiaceae Hollingsworth (2005)
Gardenia jasminoides Rubiaceae Hara et al. (1994), Padilla et al. (2016)
Gardenia taitensis Rubiaceae Nakahara (1981)
Genipa americana Rubiaceae Genip Cheng and Tao (1963)
Gerbera jamesonii Asteraceae African daisy Mille et al. (2016)
Gliricidia maculata Fabaceae Light (1928)
Gliricidia sepium Fabaceae Mexican lilac Light (1928)
Gomphrena globosa Amaranthaceae Bachelor's button Nakahara (1981)
Guarea guidonia (cited as Guarea trichilioides) Meliaceae Muskwood Martorell (1945)
Hamelia patens Rubiaceae Butterfly bush Srinivasa (1987)
Harungana madagascariensis Hypericaceae Orange‐milk tree Lim et al. (2008)
Heptapleurum sp. Araliaceae Suh (2023)
Heritiera littoralis Malvaceae Looking glass tree Ali (1971), Cheng and Tao (1963)
Hevea sp. Euphorbiaceae Reyne (1919)
Hibiscus sp. Malvaceae Follett and Griffin (2012), García‐Valente et al. (2009)
Hiptage sp. Malpighiaceae Frappa (1929)
Hiptage benghalensis (cited as Hiptage madablota) Malpighiaceae Helicopter flower Ali (1971), D'Souza et al. (1969)
Holmskioldia sanguinea Lamiaceae Chinese hat plant Matile‐Ferrero (2006)
Selenicereus undatus (cited as Hylocereus undatus) Cactaceae Dragon fruit Kar et al. (2023)
Inga flexuosa (cited as Inga micheliana) Fabaceae Schmitt et al. (2020)
Inga sp. Fabaceae Jackson et al. (2014), Jackson et al. (2016), MacDonald et al. (2013), Rivera‐Salinas et al. (2018)
Ixora sp. Rubiaceae Hansen et al. (1991), Hara et al. (2002), Kannan (1918), Malumphy (2014)
Ixora chinensis Rubiaceae Flame of the woods Dias Trindade (2011)
Ixora coccinea Rubiaceae Burning love Dias Trindade (2011), Padilla et al. (2016)
Ixora macrothyrsa Rubiaceae Dias Trindade (2011), Yalemar (1999)
Jasminum nitidum Oleaceae Angel‐wing jasmine Dias Trindade (2011)
Jasminum sp. Oleaceae Malumphy and Treseder (2012)
Jatropha sp. Euphorbiaceae Suh et al. (2013)
Justicia betonica Acanthaceae White shrimp plant Van der Goot (1916)
Justicia spicigera (cited as Jacobinia mohintli) Acanthaceae Mexican indigo Ballou (1926)
Kalanchoe pinnata (cited as Bryophyllum pinnatum) Crassulaceae Chandelier plant Nakahara (1981)
Khaya senegalensis Meliaceae African mahogany Ganhao (1956)
Lagerstroemia sp. Lythraceae Choi et al. (2018)
Lagerstroemia indica Lythraceae Gómez‐Menor Ortega (1941)
Lagerstroemia speciosa Lythraceae Bloodwood Martorell (1945)
Laguncularia racemosa Combretaceae White buttonwood Lincango et al. (2010)
Landolphia kirkii Apocynaceae Rutherford (1914)
Lantana camara Verbenaceae Common lantana Viswanathan (1971)
Litchi chinensis Sapindaceae Litchee Hara et al. (2002), Yalemar (1999)
Loranthus sp. Loranthaceae Kannan (1918)
Madhuca longifolia Sapotaceae Honey tree Lim et al. (2008)
Maesa indica Primulaceae Varshney (1992)
Maesa perlarius Primulaceae Martin and Lau (2011)
Maieta guianensis Melastomataceae Lapola et al. (2005)
Malpighia emarginata Malpighiaceae Acerola Matile‐Ferrero (2006)
Malpighia glabra Malpighiaceae Barbados cherry Reyne (1919)
Mammea americana Calophyllaceae Mamey apple Beatty (1944)
Mangifera indica Anacardiaceae Mango Dias Trindade (2011), Schmutterer et al. (1978)
Manicaria saccifera Arecaceae Malumphy and Treseder (2012)
Manihot esculenta Euphorbiaceae Cassava Kannan (1918)
Manilkara zapota Sapotaceae Sapota, bully tree Dias Trindade (2011), Dix‐Luna et al. (2018), Kawai and Matsubara (1971), Lim et al. (2008), Mani et al. (2008), Padilla et al. (2016)
Maxillaria multifoliata Orchidaceae Malumphy and Treseder (2012)
Maytenus spp. Celastraceae Vieira et al. (1983)
Melia azedarach Meliaceae Chinaberry tree Corseuil and Barbosa (1971), as cited in García Morales et al., 2016)
Melicoccus bijugatus (cited as Melicocca bijuga) Sapindaceae Genip Gómez‐Menor Ortega (1941
Miconia prasina Melastomataceae Martorell (1945)
Miconia robinsoniana Melastomataceae Lincango et al. (2010)
Microcos paniculata Malvaceae Varshney (1992)
Mimusops elengi Sapotaceae Bullet wood Mani et al. (2022)
Mirabilis jalapa Nyctaginaceae False jalap Viswanathan (1971)
Morinda citrifolia Rubiaceae Cheese fruit Hara et al. (2002), Yalemar (1999)
Morinda sp. Rubiaceae Srinivasa (1987)
Morinda coreia (cited as Morinda tinctoria) Rubiaceae Ayyar (1935)
Murraya paniculata Rutaceae Burmese boxwood Culik et al. (2007)
Musa sp. Musaceae Dias Trindade (2011), Follett (2009)
Myrciaria dubia Lithomyrtus Wolff et al. (2016)
Naringi crenulata (cited as Hesperethusa crenulate) Rutaceae Ballou (1926)
Nectandra sp. Lauraceae Fredrick (1943)
Nephelium lappaceum Sapindaceae Rambutan Hara et al. (2002), Yalemar (1999)
Nerium oleander Apocynaceae Common oleander Chazeau (1981)
Nerium odorum (cited as Nerium indicum) Apocynaceae Sweet oleander Srinivasa (1987)
Neolamarckia cadamba (cited as Anthocephalus cadamba) Rubiaceae Burflower tree Mani et al. (2022)
Ochrosia nakaiana Apocynaceae Kawai and Matsubara (1971)
Oxalis sp. Oxalidaceae Krishnan (1973)
Oxalis acetosella Oxalidaceae Viswanathan (1971)
Ozoroa obovata Anacardiaceae Broad‐leaved resin tree Prinsloo (1985)
Palaquium formosanum Sapotaceae Tao et al. (1983)
Pandanus sp. Pandanaceae Malumphy and Treseder (2012)
Pittosporum tobira Pittosporaceae Japanese pittosporum Nakahara (1981)
Planchonella sp. Sapotaceae Williams and Watson (1990); as cited in García Morales et al., 2016)
Pluchea indica Asteraceae Indian fleabane Bach (1991), García‐Valente et al. (2009), Holway et al. (2002), Moya‐Raygoza and Nault (2000), Simberloff and Von Holle (1999), Styrsky and Eubanks (2007), Vranjic (1997)
Plumeria sp. Apocynaceae D'Souza et al. (1969)
Plumeria obtusa Apocynaceae Frangipani Charanasri and Nishida (1975)
Plumeria rubra Apocynaceae Red frangipani Hara et al. (2002)
Plumeria rubra f. acutifolia (cited as Plumeria rubra var. acutifolia) Apocynaceae Mexican frangipani De Lotto (1960)
Plumeria tricolour Apocynaceae Vieira et al. (1983)
Polyscias guilfoylei (cited as Aralia guilfoylei) Araliaceae Geranium‐leaf aralia Williams and Watson (1990; as cited in García Morales et al., 2016)
Polyscias sp. Araliaceae Suh et al. (2013)
Polysphaeria sp. Rubiaceae Lim et al. (2008)
Poncirus trifoliata Rutaceae Golden apple Nakahara (1981)
Pouteria caimito Sapotaceae Dias Trindade (2011)
Pouteria campechiana (cited as Lucuma nervosa) Sapotaceae Canistel Ballou (1926)
Pouteria obovata Sapotaceae Kawai and Matsubara (1971)
Prosthechea cochleata Orchidaceae Mestre Novoa et al. (2011)
Prunus salicina Rosaceae Chinese plum Padilla et al. (2016)
Psidium sp. Myrtaceae Malumphy and Treseder (2012)
Psidium araca Myrtaceae Dias Trindade (2011)
Psidium cattleyanum Myrtaceae Williams (1985)
Psidium friedrichsthalianum Myrtaceae Costa Rican guava Ballou (1926)
Psidium guajava Myrtaceae Guava Dias Trindade (2011), Hara et al. (2002), Kannan (1918), Lim et al. (2008), Miranda‐Calixto et al. (2023), Padilla et al. (2016), Rosado et al. (2014), Varshney (1985), Yalemar (1999)
Psychotria boninensis Rubiaceae Kawai and Matsubara (1971)
Psychotria laurifolia Rubiaceae Ballou (1926)
Psydrax dicoccos (cited as Canthium dicoccum) Rubiaceae Krishnan (1973)
Psydrax odoratus (cited as Canthium odoratum) Rubiaceae Nakahara (1981)
Pyrus communis Rosaceae Common pear Viswanathan (1971)
Randia nigrescens Rubiaceae Ballou (1926)
Rauvolfia mombasiana Apocynaceae Lim et al. (2008)
Rauvolfia nitida Apocynaceae Martorell (1945)
Rauvolfia vomitoria Apocynaceae Swizzlestick García Morales et al. (2016)
Rosa sp. Rosaceae Dias Trindade (2011)
Rothmannia annae Rubiaceae Malumphy and Treseder (2012)
Salvia rosmarinus (cited as Rosmarinus officinalis) Lamiaceae Garden rosemary Dias Trindade (2011)
Sanchezia oblonga (cited as Sanchezia nobilis) Acanthaceae Brilliant‐flowered sanchezia Nakahara (1981)
Santalum album Santalaceae Indian sandalwood Rostaman (1997)
Scaevola sp. Goodeniaceae Malumphy and Treseder (2012)
Schefflera sp. Araliaceae Suh et al. (2013)
Schinus sp. Anacardiaceae Vieira et al. (1983)
Schinus molle Anacardiaceae California pepper tree Vieira et al. (1983)
Schinus terebinthifolia Anacardiaceae Brazilian pepper tree Dias Trindade (2011)
Senecio sp. Asteraceae Malumphy and Treseder (2012)
Sideroxylon ferrugineum Sapotaceae Cheng and Tao (1963)
Sideroxylon foetidissimum Sapotaceae Akouma Dias Trindade (2011)
Sigesbeckia orientalis Asteraceae Eastern St Paul's wort Viswanathan (1971)
Spermacoce laevis (cited as Borreria laevis) Rubiaceae Buttonplant Williams and Watson (1990); as cited in García Morales et al., 2016)
Strychnos nux‐vomica Loganiaceae Nux‐vomica poison nut Ali (1971)
Swinglea glutinosa (cited as Chaetospermum glutinosum) Rutaceae Tabog Ballou (1926)
Synsepalum sp. Sapotaceae Suh (2023)
Syzygium aromaticum Myrtaceae Clove Lim et al. (2008)
Syzygium cumini Myrtaceae Black plum Lim et al. (2008)
Syzygium malaccense (cited as Eugenia malaccensis) Myrtaceae Kelat oil Ballou (1926)
Tabernaemontana citrifolia Apocynaceae Ballou (1926)
Tabernaemontana divaricata Apocynaceae Butterfly gardenia Visalaksy et al. (2014)
Talinum paniculatum (cited as Talinum patens) Talinaceae Ballou (1926)
Tecomaria capensis Bignoniaceae Cape honeysuckle Nakahara (1981)
Terminalia catappa Combretaceae Bengal almond Martorell (1945)
Tetrazygia sp. Melastomataceae Fredrick (1943)
Theobroma cacao Malvaceae Cacao Dias Trindade (2011), Hara et al. (2002), Rosado et al. (2014), Yalemar (1999)
Timonius sp. Rubiaceae Williams and Watson (1990); as cited in García Morales et al., 2016)
Tipuana sp. Fabaceae Nakahara (1981)
Tococa bullifera Melastomataceae Lapola et al. (2005)
Triphasia trifolia Rutaceae Nakahara (1981)
Triplaris sp. Polygonaceae Dias Trindade (2011)
Vallaris solanacea Apocynaceae Srinivasa (1987)
Verbena rigida Verbenaceae Viswanathan (1971)
Veronica sp. Plantaginaceae Vieira et al. (1983)
Viburnum sp. Adoxaceae Cheng and Tao (1963)
Wrightia tinctoria Apocynaceae D'Souza et al. (1969)
Zamioculcas sp. Araceae Suh et al. (2013)
Zingiber officinale Zingiberaceae Nakahara (1981)

APPENDIX B. Distribution of Coccus viridis

Distribution records are based on literature as indicated in the table below.

Region Country Sub‐national (e.g. state) Status Reference
Africa Algeria Guelma Present Khaladi et al. (2024)
Asia Angola Present Malumphy and Treseder (2012), Mascarenhas de Almeida (1973), as cited in García Morales et al., 2016)
Benin Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Burkina Faso Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Cameroon Present Malumphy and Treseder (2012), Vayssière (1913), as cited in García Morales et al., 2016)
Cabo Verde Present Malumphy and Treseder (2012); van Harten et al. (1990)
Cabo Verde Fogo Present Schmutterer et al. (1978)
Comoros Present Ben‐Dov (1993), as cited in García Morales et al., 2016); Malumphy and Treseder (2012)
Congo Present Waller et al. (2007)
Côte d'Ivoire Present Waller et al. (2007)
Egypt Present Abd‐Rabou and Evans (2021), Malumphy and Treseder (2012)
Eritrea Present Waller et al. (2007)
Ethiopia Present De Lotto (1960), Waller et al. (2007)
Ghana Present De Lotto (1960), Waller et al. (2007)
Guinea Present Fernandes (1987), as cited in García Morales et al., 2016); Waller et al. (2007)
Guinea‐ Bissau Present Fernandes (1987), as cited in García Morales et al., 2016)
Kenya Present Choi et al. (2018), De Lotto (1960), Swirski et al. (1997), Waller et al. (2007)
Kenya Central Present Melville (1945)
Kenya Coast Present De Lotto (1960), Githae et al. (2021)
Kenya Eastern Present Melville (1945), Morstatt (1913), Olubayo et al. (2011)
Kenya Khayewa Present Olubayo et al. (2011)
Kenya Kiambu Present Noyes (1988)
Kenya Kilifi Present Githae et al. (2021)
Kenya Kithimani Present Olubayo et al. (2011)
Kenya Kwale Present Murphy (1991)
Kenya Makueni Present Githae et al. (2021)
Kenya Muranga Present Murphy (1991), Noyes (1988)
Kenya Nairobi Present Anderson (1917)
Kenya Nyanza Present De Lotto (1960)
Madagascar Ambatondrazaka Present Frappa (1928), Waller et al. (2007)
Madagascar Antsirabe Present Frappa (1928), Waller et al. (2007)
Madagascar Betafo Present Frappa (1928), Waller et al. (2007)
Madagascar Itasy Present Frappa (1928), Waller et al. (2007)
Madagascar Mananjary Present Frappa (1928), Waller et al. (2007)
Mali Present Waller et al. (2007)
Mauritius Agalega Islands Present Malumphy and Treseder (2012), Mamet (1978)
Mauritius Present de Charmoy and Gebert (1921), Malumphy and Treseder (2012), Waller et al. (2007), Waterston (1916)
Niger Present Kondo et al. (2022, as cited in García Morales et al., 2016)
Nigeria Present De Lotto (1960)
Réunion Present Luziau (1953), Waller et al. (2007)
Rwanda Present Bizumungu and Majer (2019)
São Tomé and Principe Present de Seabra (1919), Reyne (1919), Waller et al. (2007)
Senegal Present Kondo et al. (2022, as cited in García Morales et al., 2016)
Seychelles Present Holway et al. (2002), Waller et al. (2007)
Sierra Leone Present De Lotto (1960)
South Africa Present Swirski et al. (1997)
Tanzania Present De Lotto (1960), Green (1916), Swirski et al. (1997), Waller et al. (2007)
Togo Present Kondo et al. (2022, as cited in García Morales et al., 2016)
Tunisia Zaghouan Present Elimem et al. (2019)
Uganda Present De Lotto (1960), Kannan (1918), Swirski et al. (1997), Waller et al. (2007)
Zambia Present Cheng and Tao (1963), Malumphy and Treseder (2012)
Bangladesh Present Varshney (1985), Varshney (1992)
Brunei Present Kondo et al. (2022, as cited in García Morales et al., 2016); Waterhouse (1993)
Cambodia 1 Present Waller et al. (2007), Waterhouse (1993)
Hong Kong Present Malumphy and Treseder (2012), Martin and Lau (2011)
Japan Bonin Islands Present Kawai and Matsubara (1971)
India Present Easwaramoorthy and Jayaraj (1978), George et al. (2022), Mani et al. (2008), Omkar and Pervez (2016), Swirski et al. (1997), Varshney (1985), Waller et al. (2007)
India Andhra Pradesh Present Avasthi and Shafee (1991); Srinivasa (1987)
India Assam Present Avasthi and Shafee (1991), Varshney (1992)
India Bihar Present Kar et al. (2023), Kondo et al. (2022, as cited in García Morales et al., 2016)
India Himachal Pradesh Present Kondo et al. (2022, as cited in García Morales et al., 2016); Reddy et al. (2022)
India Karnataka Present Avasthi and Shafee (1991), Dubey et al. (2022), Joshi et al. (2017), Kannan (1918), Mani et al. (2008), Noyes (1988), Ponsonby (2009), Sathish et al. (2024), Tandon and Veeresh (1987), Varshney (1985)
India Kerala Present Balakrishnan et al. (1992), Mathew and Duraimurugan (2002), Samuel et al. (1981); Varshney (1992)
India Orissa Present Varshney (1992)
India Sikkim Present Joshi and Sangma (2015)
India Tamil Nadu Present Easwaramoorthy and Jayaraj (1977, 1978), Kumar et al. (2005), Mani et al. (2008), Noyes (1988), Ponsonby (2009), Santharam et al. (1977)
India Tripura Present Varshney (1992)
India Uttar Pradesh Present Khan and Agarwal (1976)
India West Bengal Present Kar et al. (2023)
Indonesia Present Holway et al. (2002)
Indonesia Aceh Tengah Present Syadida et al. (2024)
Indonesia Bali Present Gavrilov‐Zimin (2017)
Indonesia Bebesen Present Syadida et al. (2024)
Indonesia East Java Present Muhammad et al. (2024), Wuryantini et al. (2023)
Indonesia Java Present Wuryantini et al. (2023)
Indonesia Jawa Timur Present Ultee (1931), Wurth (1920)
Indonesia Lampung Present Susilo (2015)
Indonesia Nusatenggara Barat Present Van Hall (1919)
Indonesia Nusatenggara Timur Present Rostaman (1997)
Indonesia Sulawesi Tenggara Present Gavrilov‐Zimin (2013)
Indonesia Sumatra Present Ali (1971)
Iraq Present Hamdia et al. (2020)
Laos Present Choi et al. (2018), Suh and Bombay (2015)
Malaysia Present Waller et al. (2007)
Malaysia Sabah Present Kondo et al. (2022, as cited in García Morales et al., 2016)
Malaysia Sarawak Present Kondo et al. (2022, as cited in García Morales et al., 2016)
Malaysia West Malaysia Present Distribution Maps of Pests (1972)
Myanmar/Burma Present Cheng and Tao (1963), Choi et al. (2018), Waller et al. (2007)
Pakistan Present Sarwar (2006), Varshney (1992)
Philippines Present Waller et al. (2007)
Philippines Bataan Present Ali (1971), Mamet (1943)
Philippines Laguna Present Ali (1969)
Philippines Los Banos Present Ali (1969)
Philippines Luzon Present Ali (1969)
Philippines Manilla Present Ali (1969)
Philippines Rizal Present Ali (1969)
Singapore Present Kondo and Watson (2022, as cited in García Morales et al., 2016), Waterhouse (1993)
Sri Lanka Present Kannan (1918), Reimer et al. (1993), Varshney (1985), Waller et al. (2007)
Taiwan Present Lin et al. (2013), Swirski et al. (1997), Waller et al. (2007)
Thailand Chiang Mai Present Nakao et al. (1977), Smith et al. (2004)
Thailand Chiang Rai Present Saengyot (2016), Ueda et al. (2010)
Thailand Chiengmai Present Ali (1969)
Thailand Chon Buri Present Smith et al. (2004)
Thailand Mt. Sutep Present Ali (1969)
Vietnam Present Waller et al. (2007)
Yemen Present Malumphy and Treseder (2012), Waller et al. (2007)
Europe Portugal Azores Present Franco et al. (2011)
Portugal Madeira Present Carvalho and Aguiar (1997), Franco et al. (2011), Swirski et al. (1997)
North America Antigua and Barbuda Present Ballou (1916), Cheng and Tao (1963)
Bahamas Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Barbados Present Kondo and Watson (2022), as cited in García Morales et al., 2016), Reyne (1919), Skeete (1925)
Bermuda Present Hodgson and Hilburn (1991)
British Virgin Islands Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Cayman Islands Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Costa Rica Present Waller et al. (2007)
Cuba Present Swirski et al. (1997), Waller et al. (2007)
Cuba La Habana Present Rodríguez‐Tapia et al. (2022), Mestre Novoa et al. (2011)
Cuba Pinar Del Rio Present Hernandez Martinez et al. (2021), Mestre Novoa et al. (2011)
Cuba Playa Present Rodríguez‐Tapia et al. (2022)
Dominican Republic Present Waller et al. (2007)
El Salvador Present Quezada et al. (1972)
Grenada Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Guadeloupe Present Waller et al. (2007)
Guatemala Present Waller et al. (2007), Williams (2010)
Haiti Present Swirski et al. (1997), Waller et al. (2007)
Honduras Present Waller et al. (2007)
Jamaica Present Waller et al. (2007)
Martinique Present Waller et al. (2007)
Mexico Present Figueroa‐Figueroa et al. (2023), Koutouleas et al. (2023), Ruiz‐Orta et al. (2023)
Mexico Chiapas Present Caballero and Ramos‐Portilla (2018), Cowal et al. (2023), Gonthier et al. (2013), Hajian‐Forooshani et al. (2023), Hsieh et al. (2012), Iverson et al. (2018), Iverson et al. (2022), Jackson et al. (2012), Jackson et al. (2014), Jackson et al. (2016), Jha et al. (2009), Jiménez‐Soto et al. (2013), Liere and Perfecto (2008), Liere et al. (2014), Liere and Larsen (2010), Livingston et al. (2008), MacDonald et al. (2013), Marin and Perfecto (2013), Ong and Vandermeer (2014), Padilla et al. (2016), Perfecto and Vandermeer (2006), Rivera‐Salinas et al. (2018), Schmitt et al. (2020), Vandenberg et al. (2018)
Mexico Colima Present Miller (1996), Padilla et al. (2016)
Mexico Guanajuato Present Salas‐Araiza et al. (2020)
Mexico Morelos Present Padilla et al. (2016)
Mexico Michoacan Present Padilla et al. (2016)
Mexico Nayarit Present Medina‐Torres et al. (2013)
Montserrat Present Kondo and Watson (2022), as cited in García Morales et al., 2016), Nag Raj and George (1959), Nowell (1916)
Nicaragua Present Matus Miranda and Jiménez‐Martínez (2020)
Panama Present Waller et al. (2007)
Puerto Rico Present Hajian‐Forooshani et al. (2023), Swirski et al. (1997), Waller et al. (2007)
Saint Kitts and Nevis Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Saint Lucia Present Malumphy (2014)
Saint Vincent and the Grenadines Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Trinidad and Tobago Present Gullan (1997), as cited in García Morales et al., 2016)
U.S. Virgin Islands Saint Croix Present Beatty (1944), Swirski et al. (1997)
United States Florida Present Camacho and Chong (2015), Choi et al. (2018), Pellizzari and Porcelli (2014), Swirski et al. (1997)
United States Los Angeles Present Von Ellenrieder (2025)
Oceania Australia New South Wales Present Poole (2005)
Australia Northern Territory Present Poole (2005)
Australia Queensland Present, restricted distribution Bizumungu et al. (2020), Khan et al. (2007)
Australia Western Australia Present Poole (2005)
Cook Islands Present Waller et al. (2007)
Federated States of Micronesia Present Waller et al. (2007)
Fiji Present Waller et al. (2007), Yalemar (1999)
French Polynesia Present Malumphy and Treseder (2012)
Guam Present Ben‐Dov (1993), as cited in García Morales et al., 2016), Malumphy and Treseder (2012)
Kiribati Present Malumphy and Treseder (2012)
Nauru Present Ben‐Dov (1993), as cited in García Morales et al., 2016); Malumphy and Treseder (2012)
New Caledonia Present Waller et al. (2007)
Niue Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Northern Mariana Islands Present Mamet (1943), as cited in García Morales et al., 2016)
Palau Present Mamet (1943), as cited in García Morales et al., 2016)
Papua New Guinea Present Choi et al. (2018), Murphy (1991), Noyes (1988), Swirski et al. (1997), Waller et al. (2007)
Samoa Present Swirski et al. (1997), Waller et al. (2007)
Solomon Islands Present Williams and Watson (1990); as cited in García Morales et al., 2016)
Tonga Present Swirski et al. (1997), Waller et al. (2007)
Tuvalu Present Williams and Watson (1990); as cited in García Morales et al., 2016)
Vanuatu Present Swirski et al. (1997), Waller et al. (2007)
Other United Kingdom 2 England Present Malumphy and Treseder (2012), Pellizzari and Porcelli (2014)
South America Bolivia Present Boa and Bentley (2001), Waller et al. (2007)
Brazil Alagoas ‐ Vicosa Present Fernandes et al. (2012), Magalhães et al. (2010)
Brazil Amapa Present Silva et al. (2021)
Brazil Amazonas Present Murakami et al. (1984), Silva et al. (2021)
Brazil Bahia Present Dias Trindade (2011), Fornazier et al. (2017), Granara de Willink et al. (2010)
Brazil Distrito Federal Present Murakami et al. (1984)
Brazil Espirito Santo Present Fornazier et al. (2017), Granara de Willink et al. (2010), Silva et al. (2021)
Brazil Goias Present Kawai and Matsubara (1971), Murakami et al. (1984), Silva et al. (2021)
Brazil Mato Grosso Do Sul Present Murakami et al. (1984)
Brazil Minas Gerais Present Dias Trindade (2011), Fernandes et al. (2011), Fornazier et al. (2017), Granara de Willink et al. (2010), Murakami et al. (1984), Rosado et al. (2014), Silva et al. (2021), Waller et al. (2007)
Brazil Para Present Dias Trindade (2011), Fornazier et al. (2017), Wolff et al. (2016)
Brazil Parana Present Dias Trindade (2011), Fornazier et al. (2017)
Brazil Pernambuco Present Bondar (1928)
Brazil Rio de Janeiro Present Dias Trindade (2011), Fornazier et al. (2017), Silva et al. (2021)
Brazil Rio Grande Do Norte Present Dias Trindade (2011), Fernandes et al. (2011), Fornazier et al. (2017)
Brazil Rio Grande do Sul Present Dias Trindade (2011), Fornazier et al. (2017), Granara de Willink et al. (2010); Silva et al. (2021)
Brazil Rondonia Present Santos et al. (2023)
Brazil Santa Catarina Present Dias Trindade (2011), Fornazier et al. (2017)
Brazil Sao Paulo Present Almeida et al. (2018), Dias Trindade (2011), Fornazier et al. (2017), Nais and Busoli (2012), Silva et al. (2021), Souza et al., 2023
Brazil Present Li et al. (2010), Swirski et al. (1997), Waller et al. (2007)
Colombia Present Caballero et al. (2020), Dix‐Luna et al. (2018), Roba (1936), Waller et al. (2007)
Ecuador Present Causton et al. (2006), Lincango et al. (2010)
French Guiana Present Kondo and Watson (2022), as cited in García Morales et al., 2016)
Guyana Present Waller et al. (2007)
Hawaii Present Bach (1991), Hata and Hara (1992), Holway et al. (2002), Reimer et al. (1993), Yalemar (1999), Waller et al. (2007)
Hawaii Honolulu Present Charanasri and Nishida (1975), Hara et al. (2002)
Lesser Antilles Present Malumphy (2014)
Peru Present Waller et al. (2007)
Suriname Present Waller et al. (2007)
Trinidad and Tobago Present Jutsum et al. (1981), Swirski et al. (1997), Waller et al. (2007)
Venezuela Present Waller et al. (2007)
Venezuela Merida Present Hanks and Sadof (1990)
1

CABI (online); EPPO (online) declare that it is an invalid record.

2

Malumphy and Treseder (2012) reported that C. viridis was found in Cornwall, England, United Kingdom, in a greenhouse that mimics the environment of a tropical rainforest.

APPENDIX C. Import data

TABLE C.1 Fresh tamarinds, cashew apples, lychees, jackfruit, sapodilla plums, passion fruit, carambola and pitahaya (CN Code: 081090) imported in 100 kg into the EU (27) from regions where Coccus viridis is known to occur (Source: Eurostat accessed on 08/10/2024).

Country 2019 2020 2021 2022 2023
Angola 20,572.00 43,593.00 188,355.00 210,059.00 167,607.00
Australia 1250.00 0.00
Bangladesh 20,612.00 38,200.00 102,499.00 95,662.00 138,295.00
Benin 80.00
Brazil 96,663.00 122,026.00 175,862.00 401,369.00 316,578.00
Burkina Faso 523.00 350.00 210.00 827.00
Cambodia 110,117.00 71,282.00 205,628.00 261,020.00 309,382.00
Colombia 8,984,731.00 9,074,120.00 12,128,665.00 13,725,606.00 12,810,645.00
Congo 185.00 50.00 270.00 20.00 76.00
Costa Rica 1862.00 5.00 438.00 2651.00
Côte d'Ivoire 790.00 1019.00 4603.00 5145.00 6156.00
Cuba 207.00 23.00
Dominican Republic 82,348.00 60,484.00 48,038.00 40,782.00 66,830.00
Ethiopia 1920.00
French Polynesia 10.00
Ghana 526,803.00 677,925.00 541,615.00 346,750.00 115,493.00
Guatemala 856.00 6088.00 1520.00 558.00 1.00
Guinea 4913.00 1152.00 30.00 1739.00 1356.00
Guinea‐Bissau 430.00
Honduras 2.00 2045.00
India 11,869.00 75,433.00 7500.00 50,975.00 163,303.00
Indonesia 24,667.00 44,164.00 54,065.00 27,008.00 29,906.00
Jamaica 142.00
Japan 2.00 3.00 15.00
Kenya 48,100.00 69,714.00 68,097.00 21,057.00 13,967.00
Laos 46,973.00 23,857.00 15,078.00 8606.00 6842.00
Madagascar 16,452,438.00 13,580,960.00 14,276,791.00 13,173,261.00 13,223,375.00
Malaysia 1423,596.00 784,958.00 679,487.00 455,713.00 494,020.00
Mali 644.00 2528.00 2170.00 1514.00 227.00
Mauritius 116715.00 114,597.00 9528.00 210,607.00 171,513.00
Mexico 66,987.00 233,191.00 556,083.00 629,229.00 573,932.00
Myanmar/Burma 996.00
New Caledonia 33.00
Nicaragua 399.00 3196.00 3981.00
Nigeria 191.00 309.00 84.00 6.00 674.00
Pakistan 250.00 87.00
Panama 25.00 24.00 166.00
Peru 80,103.00 148,633.00 467,311.00 227,815.00 151,482.00
Philippines 88.00 56.00 103.00 578.00
Rwanda 1175.00 1728.00 412.00 515.00
Senegal 757.00 1.00
Singapore 2588.00 3.00 1.00
South Africa 2,721,568.00 1,990,315.00 2,345,808.00 4,238,329.00 1,686,041.00
Sri Lanka 10,462.00 8524.00 25,201.00 11,466.00 8800.00
St Lucia 70.00 20.00
Suriname 198.00 44.00 4596.00 302.00
Taiwan 2597.00 897.00 820.00 0.00
Tanzania 877.00 452.00 563.00 405.00 1.00
Thailand 1,490,021.00 1,013,875.00 1,050,459.00 1,025,834.00 1,273,883.00
Togo 636.00 1244.00 184.00 414.00 796.00
Uganda 66,657.00 57,189.00 64,551.00 37,673.00 20,717.00
United Kingdom 562,956.00 494,928.00 198,134.00 7140.00 11,381.00
United States 2.00 11.00 3854.00 6.00
Viet Nam 5,284,633.00 4,565,267.00 4,789,302.00 3,151,509.00 4493426.00
Zambia 352,604.00 308,769.00 764,211.00 712,545.00 544,350.00

TABLE C.2 Fresh or chilled celery (excl. celeriac) (CN Code: 070940) imported in 100 kg into the EU (27) from regions where Coccus viridis is known to occur (Source: Eurostat accessed on 08/10/2024).

Country 2019 2020 2021 2022 2023
Australia 3.00
Cambodia 10.00 39.00
Congo 12.00
Costa Rica 1.00
Guatemala 1960.00
Hong Kong 1.00
India 5005.00
Kenya 14.00
Laos 2941.00 2901.00 311.00
Malaysia 211.00 262.00 269.00
Mexico 4.00
Pakistan 2.00
Suriname 843.00 240.00 1643.00 962.00 931.00
Thailand 8617.00 6254.00 6914.00 3765.00 7674.00
United Kingdom 1,651,493.00 1,406,511.00 917,055.00 843,485.00 1,115,655.00
United States 59.00 0.00 17.00
Viet Nam 1.00 15.00 12.00

TABLE C.3 Citrus fruit, fresh or dried (CN Code: 0805) imported in 100 kg into the EU (27) from regions where Coccus viridis is known to occur (Source: Eurostat accessed on 08/10/2024).

Country 2019 2020 2021 2022 2023
Antigua and Barbuda 1983.00
Australia 1,064,540.00 234,347.00 409,742.00 378,445.00 167,570.00
Bangladesh 32,242.00 118,366.00 28,922.00 46,452.00 50,325.00
Belize 396,030.00 324,376.00 25,000.00 102,400.00
Bolivia 21,008.00 1,407,940.00 299,700.00
Brazil 82,213,446.00 90,259,026.00 106,211,108.00 117,870,096.00 118,009,773.00
Brunei 1512.00
Burkina Faso 3895.00 5352.00 7500.00 0.00
Cambodia 276.00 284.00 79.00 13,093.00 15,222.00
Colombia 13,691,485.00 17,219,770.00 19,496,308.00 20,764,483.00 18,136,325.00
Congo 197.00 20.00
Costa Rica 23,120.00 46,160.00 3520.00 21,870.00 24,480.00
Côte d'Ivoire 6.00
Cuba 342,211.00 55,603.00 1870.00
Dominican Republic 735,536.00 1,288,658.00 1,278,040.00 846,422.00 1,096,502.00
Ghana 26,157.00 12,986.00 22,139.00
Grenada 1.00
Guatemala 1,181,609.00 1,781,426.00 871,280.00 831,394.00 580,077.00
Guyana 2400.00
Haiti 3100.00 24,829.00 33,730.00 14,900.00 6615.00
Honduras 852,182.00 1,137,041.00 1,126,350.00 1,188,892.00 1,545,338.00
Hong Kong 227.00 100.00 2.00 42.00 774.00
India 8851.00 25,495.00 2237.00 16,485.00 34,505.00
Indonesia 83,673.00 86,454.00 87,268.00 89,040.00 87,903.00
Jamaica 240,955.00 164,687.00 244,176.00 171,886.00 98,478.00
Japan 31,924.00 16,250.00 18426.00 18,449.00 11,786.00
Kenya 3456.00 2.00 1.00 229.00
Laos 2023.00 95.00
Madagascar 716.00 2216.00 191.00 269.00 21,481.00
Malaysia 771.00 131.00
Mali 12.00
Mauritius 735.00
Mexico 44,374,354.00 34,964,863.00 18,418,248.00 13,546,146.00 7,171,991.00
Nigeria 10.00 20,000.00 6.00 5.00
Pakistan 59.00 27,200.00 107,740.00 88.00
Panama 65,040.00 0.00
Peru 36,925,164.00 41,836,228.00 54,598,470.00 38,870,148.00 53,895,781.00
Philippines 771.00 10.00 8.00
Singapore 3.00 0.00
South Africa 619,683,796.00 783,014,760.00 795,085,787.00 790,906,599.00 865,059,916.00
Sri Lanka 20.00 6010.00 3.00 2685.00 2291.00
Suriname 10.00 10,900.00 2500.00
Taiwan 1.00 0.00
Tanzania 3595.00 7550.00 13,227.00 3267.00 10,579.00
Thailand 62,493.00 19,487.00 24,531.00 12,673.00 66,960.00
Togo 42.00
Uganda 735.00 1188.00 912.00 662.00 121.00
United Kingdom 51,637,365.00 53,652,275.00 1,743,757.00 3,177,744.00 2,851,084.00
United States 17,775,545.00 14,860,892.00 11,411,050.00 6,451,065.00 5,716,376.00
Uruguay 40,277,868.00 33,446,813.00 43,324,833.00 21,610,225.00 21,651,365.00
Viet Nam 7,396,435.00 6,373,002.00 8,172,952.00 6,624,459.00 6,858,214.00
Yemen 240.00

TABLE C.4 Coconuts, Brazil nuts and cashew nuts, fresh or dried (CN Code: 0801) whether or not shelled or peeled imported in 100 kg into the EU (27) from regions where Coccus viridis is known to occur (Source: Eurostat accessed on 08/10/2024).

Country 2019 2020 2021 2022 2023
Angola 16.00
Australia 309.00 2.00 8.00 5.00 43.00
Bangladesh 443.00 1768.00 2248.00
Barbados 15,968.00
Benin 877,477.00 1,141,880.00 864,514.00 866,473.00 1,424,324.00
Bolivia 11,509,889.00 12,679,626.00 12,417,335.00 11,819,580.00 10,596,658.00
Brazil 5,992,459.00 7,571,561.00 4,556,033.00 4,152,015.00 4,649,943.00
Brunei 15,875.00 234.00
Burkina Faso 1,655,992.00 2,080,827.00 2,631,030.00 2,721,825.00 3,029,180.00
Cabo Verde 690.00
Cambodia 95.00 377.00 22,676.00 1357.00 15,698.00
Cayman Islands 5.00
Colombia 62.00 517.00 23,479.00 1856.00
Congo 8.00 7.00 88.00
Costa Rica 955,716.00 649,974.00 932,174.00 677,256.00 784,523.00
Côte d'Ivoire 22,293,219.00 21,472,815.00 27,233,981.00 31,718,380.00 32,403,316.00
Cuba 11,700.00
Dominican Republic 59,468.00 46,796.00 72,424.00 1789.00 117,878.00
Ethiopia 0.00 65.00
French Polynesia 105.00 0.00
Ghana 1,508,942.00 2,076,902.00 2,059,764.00 1,154,882.00 2,482,648.00
Guatemala 22.00 2.00 12.00 1.00
Guinea 75,919.00 16,576.00 31,967.00 9167.00 40,005.00
Guinea‐Bissau 305,173.00 441,520.00 422,509.00 601,669.00 625,574.00
Honduras 28,140.00 13,138.00 126,537.00 61,798.00 30,917.00
Hong Kong 24.00 45.00 145.00 420.00
India 20,569,306.00 17,213,865.00 12,696,809.00 10,908,874.00 17,492,121.00
Indonesia 25,964,402.00 23,872,048.00 35,425,962.00 26,154,760.00 18,716,828.00
Jamaica 26.00 7.00 2.00 1853.00
Japan 4.00 43.00
Kenya 24,449.00 119,189.00 173,417.00 93,192.00 231,198.00
Laos 23.00 0.00
Madagascar 42,635.00 52,437.00 99,183.00 72,193.00 109,692.00
Malaysia 232,906.00 441,177.00 836,684.00 795,478.00 736,363.00
Mali 100.00 13,201.00 1512.00 4549.00 144,455.00
Mauritius 176.00 2.00 172.00 413.00
Mexico 25.00 10.00 8230.00 189.00 1124.00
Myanmar/Burma 1000.00 6290.00 72,911.00 1.00
New Caledonia 162.00 481.00
Nicaragua 478,368.00 424,580.00 459,264.00 523,554.00 39,512.00
Nigeria 383,389.00 544,062.00 987,237.00 1,463,464.00 1,906,118.00
Pakistan 2460.00 2570.00 2733.00 945.00 4685.00
Panama 92.00 57,728.00
Papua New Guinea 1.00
Peru 231,831.00 366,935.00 597,431.00 513,361.00 584,728.00
Philippines 39,810,992.00 39,572,176.00 39,401,884.00 42,368,292.00 41,943,996.00
São Tomé and Principe 607.00 4903.00 8805.00 60.00 11235.00
Senegal 38,960.00 23,372.00 37,366.00 29,558.00 103,051.00
Seychelles 10.00 219.00 4.00
Sierra Leone 10.00 6000.00 3120.00
Singapore 726,220.00 384,387.00 704,764.00 363,926.00 355,174.00
South Africa 79.00 20,546.00 15,602.00 42,310.00 32,636.00
Sri Lanka 7,643,004.00 6,059,736.00 7,462,439.00 8,944,712.00 8,209,294.00
St Lucia 2.00 117.00
Suriname 5738.00 10.00 5.00 4266.00 3349.00
Taiwan 1.00 941.00 171.00 0.00
Tanzania 193,129.00 180,005.00 371,503.00 460,523.00 644,838.00
Thailand 5,901,335.00 3,516,102.00 3,207,159.00 3,481,209.00 2,994,346.00
Togo 571,447.00 634,680.00 863,266.00 850,715.00 592,411.00
Tonga 16,670.00
Uganda 361.00 190.00 410.00 111.00 3.00
United Kingdom 10,990,603.00 11,296,573.00 2,364,691.00 434,481.00 314,976.00
United States 51,155.00 84,558.00 145,747.00 43,641.00 198,006.00
Uruguay 37.00
Venezuela 180.00
Viet Nam 96,789,387.00 117,797,448.00 128,566,519.00 122,085,853.00 131,224,494.00
Virgin Islands, United States 15,876.00

TABLE C.5 Fresh or dried guavas, mangoes and mangosteens (CN Code: 080450) imported in 100 kg into the EU (27) from regions where Coccus viridis is known to occur (Source: Eurostat accessed on 08/10/2024).

Country 2019 2020 2021 2022 2023
Angola 65,815.00 35,150.00 52,266.00 45,471.00 44,197.00
Australia 1.00 9.00 154.00
Bangladesh 31,073.00 32391.00 153,810.00 255,142.00 544,216.00
Benin 22,679.00 259,032.00 416,137.00 420,608.00
Bolivia 4.00 33.00 1215.00
Brazil 143,756,920.00 157,704,399.00 179,901,286.00 157,087,614.00 177,107,128.00
Burkina Faso 6,535,419.00 6,440,444.00 6,034,055.00 10,738,440.00 7,744,022.00
Cambodia 153,379.00 90,449.00 63,164.00 143,658.00 323,075.00
Colombia 683,302.00 413,175.00 501,270.00 462,984.00 536,888.00
Comoros 9492.00
Congo 41.00 713.00 19,777.00 1189.00
Costa Rica 1,283,062.00 1495,059.00 2,398,426.00 1,718,682.00 1,403,652.00
Côte d'Ivoire 28,161,027.00 23,015,491.00 27,408,591.00 29,728,544.00 27,027,920.00
Cuba 10,334.00 23,060.00 13,511.00 23,056.00
Dominican Republic 11,850,800.00 11,048,133.00 16,121,709.00 11,994,703.00 17,548,354.00
Ethiopia 1450.00
French Polynesia 17.00 0.00
Ghana 1,113,806.00 3,029,655.00 1,526,344.00 2,461,354.00 2,493,594.00
Guam 22,400.00
Guatemala 1,095,340.00 809,952.00 756,728.00 63,943.00 82,942.00
Guinea 310,688.00 87,501.00 44,532.00 477,226.00 699.00
Honduras 4190.00 36.00 3330.00
Hong Kong 656.00 801.00 116.00 387.00
India 931,551.00 734,761.00 1,657,661.00 1,289,495.00 1,862,486.00
Indonesia 238,627.00 140,694.00 162,972.00 393,795.00 797,800.00
Japan 1.00 766.00 214.00 610.00
Kenya 1030.00 6653.00 149,711.00 478,067.00 837,406.00
Laos 80,650.00 52,532.00 28,598.00 17467.00 16,243.00
Madagascar 66.00 105.00 2064.00 140.00 8688.00
Malaysia 7272.00 4456.00 1901.00 198.00 964.00
Mali 9,182,906.00 8,545,870.00 5,809,670.00 6,935,451.00 6,110,213.00
Mexico 5,093,579.00 5,184,189.00 4,667,791.00 4,528,410.00 5,340,760.00
Myanmar/Burma 100.00
Nauru 22,176.00
New Caledonia 3.00
Nicaragua 22,400.00 22,400.00 1.00
Nigeria 195.00 3.00 2859.00 64.00 1380.00
Pakistan 2,920,733.00 1,619,650.00 1,973,288.00 1,733,987.00 2,969,906.00
Peru 101,283,488.00 118,783,517.00 120,772,601.00 123,412,675.00 110,065,216.00
Philippines 36,897.00 12,810.00 15,367.00 25,468.00 31,547.00
Rwanda 1859.00
Senegal 12,525,279.00 8,896,902.00 17,283,295.00 10,203,617.00 10,345,532.00
Sierra Leone 5506.00
Singapore 23.00 15.00 2.00 1.00 2.00
South Africa 1,211,695.00 865,628.00 577,796.00 2,261,245.00 1,303,033.00
Sri Lanka 81,383.00 42,316.00 54,013.00 95,135.00 50,289.00
St Kitts and Nevis 750.00
Suriname 17,170.00 28.00
Taiwan 1734.00 92.00 528.00 43.00 114.00
Tanzania 114.00 9.00 1642.00 679.00
Thailand 674,391.00 526,084.00 491,906.00 480,911.00 574,985.00
Togo 22,165.00 4000.00 562.00 132.00
Trinidad and Tobago 1.00 4.00
Uganda 66,225.00 38,956.00 66,880.00 69,893.00 43,041.00
United Kingdom 3,316,110.00 4,742,957.00 600,549.00 90,706.00 89,395.00
United States 8,258,054.00 8,285,221.00 5,111,101.00 6,254,963.00 6,491,125.00
United States Minor Outlying Islands 10,368.00 1728.00 2294.00
Venezuela 193,911.00 28,269.00 52,230.00 48,817.00 20,721.00
Viet Nam 154,669.00 96,531.00 276,109.00 474,589.00 494,692.00
Zambia 2304.00

TABLE C.6 Fresh or dried pineapples (CN Code: 080430) imported in 100 kg into the EU (27) from regions where Coccus viridis is known to occur (Source: Eurostat accessed on 08/10/2024).

Country 2019 2020 2021 2022 2023
Angola 3024.00 5111.00 20,054.00 80,225.00 45,340.00
Australia 0.00 1.00 0.00 112.00
Bangladesh 126.00 4.00 50.00 142.00
Benin 748,167.00 1,287,578.00 1,318,029.00 1,400,336.00 2,897,414.00
Brazil 63,905.00 28,066.00 13,429.00 5094.00 24,873.00
Burkina Faso 1968.00 357.00 1012.00 662.00
Cambodia 50.00 170.00 126.00 83.00
Colombia 5,366,349.00 4,213,678.00 5,758,981.00 1,447,884.00 250,794.00
Congo 7.00 46.00 1372.00 16,561.00
Costa Rica 754,305,071.00 665,502,534.00 723,161,071.00 677,294,138.00 684,401,153.00
Côte d'Ivoire 24,417,593.00 203,55,253.00 25,554,295.00 25,009,029.00 15,961,620.00
Cuba 199,842.00 97,685.00 86,955.00 24.00
Dominican Republic 2,056,635.00 2,052,591.00 2,689,446.00 1,328,677.00 309,720.00
French Polynesia 48.00 24.00 3.00
Ghana 11,472,371.00 11,193,458.00 10,674,211.00 7,274,723.00 4,066,227.00
Guatemala 6403.00 28,250.00 12,800.00 20.00 145,937.00
Guinea 7290.00 1995.00 350.00 2771.00
Guyana 2200.00
Honduras 1,526,316.00 3,297,712.00 3,517,421.00 3,170,498.00 3,019,664.00
Hong Kong 600.00 3.00
India 1152.00 100.00 1168.00 8136.00 2926.00
Indonesia 250.00 69.00 8192.00
Jamaica 41.00
Japan 1.00 16.00
Kenya 214,797.00 2,379,906.00 2,938,299.00 2,391,524.00 4,420,398.00
Madagascar 35.00 316.00 1976.00 1623.00 259.00
Malaysia 240.00 1040.00 36,000.00
Mauritius 1,572,437.00 884,538.00 1,656,713.00 1,276,510.00 1,210,605.00
Mexico 14,242.00 17,497.00 20,144.00 20,443.00 19,112.00
Myanmar/Burma 70,674.00 37,870.00 40,807.00
New Caledonia 46.00
Nigeria 24.00 1.00 800.00 12.00
Panama 7,237,124.00 6,477,159.00 3,940,575.00 8,914,458.00 9,925,135.00
Peru 325,455.00 58,517.00 38,213.00 279,704.00 15,522.00
Philippines 8603.00 56,604.00 78.00 1852.00 4849.00
Rwanda 16,237.00 11,120.00 15,940.00 4300.00 17,171.00
Singapore 29.00 92.00 34.00
South Africa 746,018.00 603,845.00 524,683.00 1128,095.00 844,916.00
Sri Lanka 267,519.00 263,602.00 167,054.00 199,287.00 18,265.00
St Kitts and Nevis 750.00
Suriname 11,250.00 1350.00 600.00
Taiwan 7.00 5.00 963.00 2038.00
Tanzania 15,083.00 18,737.00 194,129.00 33,473.00 17395.00
Thailand 805,649.00 882,872.00 905,425.00 1,134,665.00 877,612.00
Togo 2,619,588.00 1,591,463.00 1,811,040.00 1,248,095.00 964,497.00
Uganda 136,967.00 173,112.00 204,033.00 154,012.00 292,494.00
United Kingdom 26,869,483.00 19,038,328.00 765,890.00 80,917.00 120,921.00
United States 2828.00 5729.00 145,169.00 56,785.00 80.00
Venezuela 4.00
Viet Nam 2020.00 218.00 13,047.00 2675.00 9404.00

APPENDIX D. List of predator and parasitoid species of Coccus viridis

(Source: Iverson et al., 2018; Liere & Perfecto, 2008; Mani et al., 2008; Mani, 2022; Nais & Busoli, 2012; Neumann et al., 2010; Ponsonby, 2009; Siregar & Tulus, 2023; Waller et al., 2007)

Anicetus annulatus, A. ceylonensis (Hymenoptera: Encyrtidae), Aprostocetus gravans, A. minutus, A. purpureus, A. sicarius (Hymenoptera: Eulophidae), Azya lutipes (Coleoptera: Coccinellidae), Azya orbigera (Coleoptera: Coccinellidae), Cheilomenes sexmaculata (Coleoptera: Coccinellidae), Cheiloneuromyia javensis (Hymenoptera: Encyrtidae), Chilocorus adustus, C. angolensis, C. cacti, C. circumdatus, C. melanophthalmus, C. nigrita, C. politus, C. schioedtei (Coleoptera: Coccinellidae), Cephaleta australiensis, Cephaleta australiensis var. javensis (Hymenoptera: Pteromalidae), Cerapteroceroides sp. (Hymenoptera: Encyrtidae), Chilocorus adustus, C. angolensis, C. cacti, C. circumdatus, C. melanophthalmus, C. politus, C. schioedtei (Coleoptera: Coccinellidae), Chrysoperla externa (Neuroptera: Chrysopidae), Coccidiphaga scitula (Lepidoptera: Noctuidae) Coccophagus sp., C. rustii, C. bogoriensis, C. ceroplastae, C. cowperi, C. hawaiiensis, C. lycimnia, C. ochraceus (Hymenoptera: Aphelinidae), Cryptoblabes proleucella (Lepidoptera: Pyralidae), Cryptolaemus montrouzieri (Coleoptera: Coccinellidae), Curinus coeruleus (Coleoptera: Coccinellidae), Cybocephalus sp. (Coleoptera: Nitidulidae), Cycloneda sanguinea (Coleoptera: Coccinellidae), Diomus sp. (Coleoptera: Coccinellidae), Encarsia sp., Encarsia diaspidicola (Hymenoptera; Aphelinidae), Diadiplosis sp. (Diptera: Cecidomyiidae), Diversinervus silvestrii (Hymenoptera: Encyrtidae), Encyrtus aurantii (Hymenoptera: Encyrtidae), Eublemma costimacula, Eublemma rubra (Lepidoptera: Noctuidae), Exochomus ventralis (Coleoptera: Coccinellidae), Harmonia sp. (Coleoptera: Coccinellidae), Hyperaspis senegalensis, H. silvestrii (Coleoptera: Coccinellidae), Gahaniella saissetiae (Hymenoptera: Encyrtidae), Halmus chalybeus (Coleoptera: Coccinellidae), Jauravia pallidula (Coleoptera: Coccinellidae), Marietta caridei (Hymenoptera: Aphelinidae), Metaphycus baruensis, M. helvolus, M. lichtensiae, M. maculatus (Hymenoptera: Encyrtidae), Microterys nietneri (Hymenoptera: Encyrtidae), Myiocnema comperei (Hymenoptera: Aphelinidae), Neobrachista javae (Hymenoptera: Trichogrammatidae), Novius koebelei (Coleoptera: Coccinellidae), Olla v‐nigrum (Coleoptera: Coccinellidae), Orcus sp., Orcus janthinus (Coleoptera: Coccinellidae), Phrynocaria quadrivittata (Coleoptera: Coccinellidae), Prochiloneurus sp. (Hymenoptera: Encyrtidae), Promuscidea unfasciativentris (Hymenoptera: Aphelinidae), Pseudocaecillius elutus africanus (Psocodea: Pseudocaecilidae), Rhyzobius ventralis (Coleoptera: Coccinellidae), Scymnus sp. (Coleoptera: Coccinellidae), Synona inaequalis (Coleoptera: Coccinellidae), Tetrastichus sp., T. ibseni (Hymenoptera: Eulophidae), Telsimia sp. (Coleoptera: Coccinellidae).

APPENDIX E. Prisma 2009 Flow Diagram

Name of the Pest: Coccus viridis

Date of the search: 03/01/2025

Approved Literature Search String: “Coccus viridis” OR “Lecanium viride” OR “Lecanium viridis” OR “Eulecanium viridis” OR “green coffee scale” OR “escama verde” OR “green scale” OR “lapa‐verde” OR “ Cochenille verte du caféier” OR “cochinilla verde del café” OR “cochonilha‐verde” OR “groene dopluis” OR “Grüne Kaffeeschildlaus” OR “midori‐kata‐kaigaramushi” OR “escamas del café” OR “groene koffieluis” OR “groene dopluis”.

APPENDIX E.

From: Moher et al. (2009). For more information, visit www.prisma‐statement.org.

EFSA PLH Panel (EFSA Panel on Plant Health) , Vicent Civera, A. , Baptista, P. , Berlin, A. , Chatzivassiliou, E. , Cubero, J. , Cunniffe, N. , de la Peña, E. , Desneux, N. , Di Serio, F. , Filipiak, A. , Gonthier, P. , Hasiów‐Jaroszewska, B. , Jactel, H. , Landa, B. B. , Maistrello, L. , Makowski, D. , Milonas, P. , Papadopoulos, N. T. , … Sfyra, O. (2025). Pest categorisation of Coccus viridis . EFSA Journal, 23(7), e9582. 10.2903/j.efsa.2025.9582

Adopted: 25 June 2025

The declarations of interest of all scientific experts active in EFSA's work are available at https://open.efsa.europa.eu/experts

Note

1

An EPPO code, formerly known as a Bayer code, is a unique identifier linked to the name of a plant or plant pest important in agriculture and plant protection. Codes are based on genus and species names. However, if a scientific name is changed, the EPPO code remains the same. This provides a harmonised system to facilitate the management of plant and pest names in computerised databases, as well as data exchange between IT systems (EPPO, 2019; Griessinger & Roy, 2015).

REFERENCES

  1. Abd‐Rabou, S. , & Evans, G. A. (2021). An annotated checklist of the scale insects of Egypt (Hemiptera: Sternorrhyncha: Coccomorpha: Coccoidea). Acta Phytopathologica Et Entomologica Hungarica, 56(1), 25–57. [Google Scholar]
  2. Ali, S. M. (1969). A catalogue of the oriental Coccoidea. Indian Museum Bulletin, 4. [Google Scholar]
  3. Ali, S. M. (1971). A catalogue of the oriental Coccoidea (part V) (Insecta: Homoptera: Coccoidea) (with an index). Indian Museum Bulletin, 6, 7–82. [Google Scholar]
  4. Almeida, L. F. V. , Peronti, A. L. B. G. , Martinelli, N. M. , & Wolff, V. R. S. (2018). A survey of scale insects (Hemiptera: Coccoidea) in citrus orchards in São Paulo, Brazil. Florida Entomologist, 101(3), 353–363. 10.1653/024.101.0324 [DOI] [Google Scholar]
  5. Ambethgar, V. (2018). Strategic approaches for applications of entomopathogenic fungi to counter insecticide resistance in agriculturally important insect pests. Fungi and their Role in Sustainable Development: Current Perspective, 221–254. 10.1007/978-981-13-0393-7_13 [DOI] [Google Scholar]
  6. Anderson, T. J. (1917). Notes on insects injurious to coffee. Department of Agriculture, British East Africa, Nairobi Division of Entomology Bulletin, 2, 20–43. [Google Scholar]
  7. Arvanitoyannis, I. S. , & Stratakos, A. C. (2010). Irradiation of insects: Disinfestation. In Irradiation of food commodities (pp. 537–560). 10.1016/B978-0-12-374718-1.10013-6 [DOI] [Google Scholar]
  8. Avasthi, R. K. , & Shafee, S. A. (1991). Revision of the genus Coccus Linn. in India (Insecta: Homoptera: Coccidae). Zenodo. 10.5281/ZENODO.13650359 [DOI] [Google Scholar]
  9. Ayyar, P. N. K. (1935). The biology and economic status of the common black ant of South India Camponotus (Tanaemyrmex) compressus, Latr. Bulletin of Entomological Research, 26, 575–586. [Google Scholar]
  10. Bach, C. E. (1991). Direct and indirect interactions between ants (Pheidole megacephala), scales (Coccus viridis) and plants (Pluchea indica). Oecologia, 87(2), 233–239. 10.1007/BF00325261 [DOI] [PubMed] [Google Scholar]
  11. Baker, R. H. A. (2002). Predicting the limits to the potential distribution of alien crop pests. In Hallman G. J. & Schwalbe C. P. (Eds.), Invasive arthropods in agriculture: Problems and solutions (pp. 207–241). Science Publishers Inc. [Google Scholar]
  12. Balakrishnan, M. M. , Vinodkumar, P. K. , & Prakasan, C. B. (1992). A note on green scale‐ant association on coffee. Indian Coffee, 56, 5–6. [Google Scholar]
  13. Ballou, C. H. (1926). Los cóccidos de Cuba y sus plantas hospederas. Estación Central Agronómica de Cuba. [Google Scholar]
  14. Ballou, H. A. (1916). Report on the prevalence of some pests and diseases in the West Indies during 1915, Part I, Insect Pests. West Indian Bulletin, 16(1), 1–30. [Google Scholar]
  15. Barrera, J. F. (2008). Coffee pests and their management. In Capinera J. L. (Ed.), Encyclopedia of entomology. Springer. 10.1007/978-1-4020-6359-6_751 [DOI] [Google Scholar]
  16. Beatty, H. A. (1944). The insects of St. Croix, V.I. The Journal of Agriculture of the University of Puerto Rico, 28(3/4), 114–172. [Google Scholar]
  17. Ben‐Dov, Y. (1993). A systematic catalogue of the soft scale insects of the world (Homoptera: Coccoidea: Coccidae) (p. 536). Sandhill Crane Press Gainesville. [Google Scholar]
  18. Bethke, J. A. , & Wilen, C. A. (2010). UC IPM pest management guidelines: floriculture and ornamental nurseries, UCANR Publication 3392 . https://ipm.ucanr.edu/agriculture/floriculture‐and‐ornamental‐nurseries/soft‐scales/.
  19. Bizumungu, G. , & Majer, J. D. (2019). The distribution of ants in a Rwandan coffee plantation and their potential to control pests. African Entomology, 27(1), 159–166. 10.4001/003.027.0159 [DOI] [Google Scholar]
  20. Bizumungu, G. , Majer, J. D. , & Fay, H. A. C. (2020). The potential protective value of ants in northern Australian coffee plantations. International Journal of Pest Management, 66(3), 227–238. 10.1080/09670874.2019.1616129 [DOI] [Google Scholar]
  21. Boa, E. , & Bentley, J. W. (2001). Tree pests in Bolivia: Assessment and significance. Technical Report. 10.13140/RG.2.2.17232.12800 [DOI] [Google Scholar]
  22. Bondar, G. (1928). Coffee pests in Pernambuco. Correio Agrícola, 6, 256. [Google Scholar]
  23. Brugnara, E. C. , Castilhos, R. V. , & Sabião, R. R. (2022). Consequências da seca no Oeste Catarinense para a cultura dos citros na safra 2020/21. Agropecuária Catarinense, 35(2), 11–13. 10.52945/rac.v35i2.1231 [DOI] [Google Scholar]
  24. Caballero, A. , Ramos Portilla, A. , Vergara‐Navarro, E. , Serna, F. , & Rueda‐Ramírez, D. (2020). The scale insect (Hemiptera: Coccomorpha) collection of the entomological museum “Universidad Nacional Agronomía Bogotá”, and its impact on Colombian coccidology. Bonn Zoological Bulletin, 69, 165–183. 10.20363/BZB-2020.69.2.165 [DOI] [Google Scholar]
  25. Caballero, A. , & Ramos‐Portilla, A. A. (2018). Hypogeal scale insects (Hemiptera: Coccomorpha) of the coffee agro‐system in Chiapas state, Mexico, with description of a new species of Williamsrhizoecus Kozár and Konczné Benedicty (Rhizoecidae). JoBAZ, 79, 41. 10.1186/s41936-018-0054-2 [DOI] [Google Scholar]
  26. CABI . (online). Coccus viridis (soft green scale) Datasheet 14670 CABI crop protection compendium. CAB International. Accessed 22 August 2022. https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.14670.
  27. Camacho, E. R. , & Chong, J. H. (2015). General biology and current management approaches of soft scale pests (Hemiptera: Coccidae). Journal of Integrated Pest Management, 6(1), 17. 10.1093/jipm/pmv016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Carvalho, G. P. M. , Franco, J. C. , Aguiar, F. , & Soares, A. O. (1996). Insect pests of citrus in Portugal. In Proceedings of the International Society Citriculture 613 pp.
  29. Carvalho, P. J. , & Aguiar, A. M. F. (1997). [citrus pests in the Island of Madeira] Pragas dos citrinos na Ilha da Madeira Secretaria regional de Agricultura, Florestas e Pescs Madeira 411 pp.
  30. Causton, C. E. , Peck, S. B. , Sinclair, B. J. , Roque‐Albelo, L. , Hodgson, C. J. , & Landry, B. (2006). Alien insects: Threats and implications for conservation of Galápagos Islands. Annals of the Entomological Society of America, 99(1), 121–143. 10.1603/0013-8746(2006)099[0121:AITAIF]2.0.CO;2 [DOI] [Google Scholar]
  31. Charanasri, V. , & Nishida, T. (1975). Relative abundance of 3 coccinellid predators of green scale, Coccus‐viridis (green) on plumeria trees. Proceedings of the Hawaiian Entomological Society, 22(1), 27–32. [Google Scholar]
  32. Chazeau, J. (1981). Données sur la biologie de Coelophora quadrivittata [Col.: Coccinellidae], prédateur de Coccus viridis [Hom.: Coccidae] en Nouvelle‐Calédonie. Entomophaga, 26, 301–311. [Google Scholar]
  33. Cheng, C. H. , & Tao, C. C. C. (1963). Green Scale, Coccus viridis (Green). https://scholars.tari.gov.tw/handle/123456789/5981.
  34. Chiu, H. T. (1981). The citrus insect pest management in Taiwan. Citrus Research & Technology, 38, 527–528. 10.5555/19800576897 [DOI] [Google Scholar]
  35. Choi, J. , & Lee, S. (2020). Molecular phylogeny of the family Coccidae (Hemiptera, Coccomorpha), with a discussion of their waxy ovisacs. Systematic Entomology, 45, 396–414. 10.1111/syen.12404 [DOI] [Google Scholar]
  36. Choi, J. , Soysouvanh, P. , Lee, S. , & Hong, K. J. (2018). Review of the family Coccidae (Hemiptera: Coccomorpha) in Laos. Zootaxa, 4460(1), 1–62. 10.11646/zootaxa.4460.1.1 [DOI] [PubMed] [Google Scholar]
  37. Corseuil, E. , & Barbosa, V. M. B. (1971). A familia Coccidae no Rio Grande do Sul (Homoptera, Coccoidea) [the Coccidae family in the Rio Grande do Sul (Homoptera, Coccoidea)]. Arquivos do Museu Nacional, Rio de Janeiro, 54, 237–241. [Google Scholar]
  38. Cowal, S. , Morris, J. R. , Jiménez‐Soto, E. , & Philpott, S. M. (2023). Naturally occurring vegetation connectivity facilitates ant‐mediated coffee berry borer removal. Insects, 14(11), 869. 10.3390/insects14110869 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Culik, M. P. , Μartins, D. S. , & Ventura, J. A. (2007). Coccidae, Pseudococcidae, Ortheziidae, and Monophlebidae (Hemiptera: Coccoidea) of Espírito Santo, Brazil. Biota Neotropica, 7(3), 61–65. 10.1590/S1676-06032007000300006 [DOI] [Google Scholar]
  40. De Charmoy, D. D. E. , & Gebert, S. (1921). Insect pests of various minor crops and fruit trees in Mauritius. Bulletin of Entomological Research, 12(2), 181–190. [Google Scholar]
  41. De Lotto, G. (1960). The green scales of coffee in Africa south of the Sahara (Homoptera, Coccidae). Bulletin of Entomological Research, 51, 389–403. [Google Scholar]
  42. de Seabra, A. (1919). Studies of the diseases and parasites of cacao and other plants cultivated in the Island of san Thome. The new disease of cacao in S.Thome. Lisbon. xviii. 43 pp.
  43. Dekle, G. W. , & Fasulo, T. R. (2001). Coccus viridis (Green) (Insecta: Hemiptera: Coccidae). Bulletin (University of Florida Cooperative Extension Service) EENY‐253.
  44. Dias Trindade, T. (2011). New contribution on distribution and new hosts of Coccus viridis, Green 1889 (Hemiptera: Coccidae) in the state of Rio de Janeiro, Brazil. Entomotropica, 26(3), 147–152. https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐84873934288&partnerID=40&md5=b5e373b2727b40029a12e5085cd9ecf3. [Google Scholar]
  45. Diaz, A. , Abreu, N. , Martin, J. , & Suarez, G. M. (2004). Hemiptera associated with wild orchids. Fitosanidad, 8, 43–44. [Google Scholar]
  46. Distribution Maps of Pests . (1972). Pest: Coccus viridis (Green) Distribution Maps of Pests, Series A (Agricultural). Commonwealth Institute of Entomology. Map No. 305. Published at: 56 Queen's Gate, London, SW7 5JR. CABI Digital Library.
  47. Dix‐Luna, O. J. , Montes‐Rodríguez, J. M. , Kulikowski, A. J. , & Kondo, T. (2018). Alecanochiton marquesi (Hemiptera: Coccomorpha: Coccidae), a new record for Colombia and Costa Rica, and description of its first‐instar nymph. Caldasia, 40(2), 246–254. 10.15446/caldasia.v40n2.69451 [DOI] [Google Scholar]
  48. D'Souza, G. I. , Bhat, P. K. , & Balarammencxn, P. (1969). Canthium dicoccum Gaertn. Merr (Rubiaceae) and Alstonia scholaris Br. (Apocyanaceae)‐two new hosts of the green‐bug (Coccus viridis gr.) in South India. Indian Coffee, 33, 65. [Google Scholar]
  49. Dubey, V. K. , Kalleshwaraswamy, C. M. , Joshi, S. , & Shivanna, B. K. (2022). Diversity and diagnostics of sternorrhynchan insect pests infesting arecanut. Indian Journal of Entomology, 84(3), 509–515. 10.55446/IJE.2021.562022 [DOI] [Google Scholar]
  50. Easwaramoorthy, S. , & Jayaraj, S. (1977). Effect of temperature, pH, and media on growth of fungus Cephalosporium‐lecanii . Journal of Invertebrate Pathology, 29(3), 399–400. 10.1016/S0022-2011(77)80055-4 [DOI] [Google Scholar]
  51. Easwaramoorthy, S. , & Jayaraj, S. (1978). Effectiveness of the white halo fungus, Cephalosporium lecanii, against field populations of coffee green bug, Coccus viridis . Journal of Invertebrate Pathology, 32(1), 88–96. 10.1016/0022-2011(78)90178-7 [DOI] [Google Scholar]
  52. EFSA PLH Panel (EFSA Panel on Plant Health) , Jeger, M. , Bragard, C. , Caffier, D. , Candresse, T. , Chatzivassiliou, E. , Dehnen‐Schmutz, K. , Gregoire, J.‐C. , Jaques Miret, J. A. , MacLeod, A. , Navajas Navarro, M. , Niere, B. , Parnell, S. , Potting, R. , Rafoss, T. , Rossi, V. , Urek, G. , Van Bruggen, A. , Van Der Werf, W. , … Gilioli, G. (2018). Guidance on quantitative pest risk assessment. EFSA Journal, 16(8), 5350. 10.2903/j.efsa.2018.5350 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. EFSA PLH Panel (EFSA Panel on Plant Health) , Bragard, C. , Chatzivassiliou, E. , Di Serio, F. , Baptista, P. , Gonthier, P. , Jaques Miret, J. A. , Fejer Justesen, A. , MacLeod, A. , Magnusson, C. S. , Milonas, P. , Navas‐Cortes, J. A. , Parnell, S. , Reignault, P. L. , Stefani, E. , Thulke, H.‐H. , Van der Werf, W. , Vicent Civera, A. , Yuen, J. , … Potting, R. (2022). Scientific opinion on the commodity risk assessment of Jasminum polyanthum unrooted cuttings from Uganda. EFSA Journal, 20(5), 7300. 10.2903/j.efsa.2022.7300 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. EFSA PLH Panel (EFSA Panel on Plant Health) , Bragard, C. , Baptista, P. , Chatzivassiliou, E. , Di Serio, F. , Gonthier, P. , Jaques Miret, J. A. , Justesen, A. F. , MacLeod, A. , Magnusson, C. S. , Milonas, P. , Navas‐Cortes, J. A. , Parnell, S. , Potting, R. , Stefani, E. , Van der Werf, W. , Civera, A. V. , Yuen, J. , Zappalà, L. , … Thulke, H.‐. H. (2024). Standard protocols for plant health scientific assessments. EFSA Journal, 22(9), e8891. 10.2903/j.efsa.2024.8891 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. EFSA Scientific Committee , Hardy, A. , Benford, D. , Halldorsson, T. , Jeger, M. J. , Knutsen, H. K. , More, S. , Naegeli, H. , Noteborn, H. , Ockleford, C. , Ricci, A. , Rychen, G. , Schlatter, J. R. , Silano, V. , Solecki, R. , Turck, D. , Benfenati, E. , Chaudhry, Q. M. , Craig, P. , … Younes, M. (2017). Scientific Opinion on the guidance on the use of the weight of evidence approach in scientific assessments. EFSA Journal, 15(8), 4971. 10.2903/j.efsa.2017.4971 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ekesi, S. (2015). Arthropod pest composition and abundance on Citrus sinensis in the lowland and highland production locales of Kenya. Acta Horticulturae, 1065, 1019–1026. [Google Scholar]
  57. Elimem, M. , Guesmi, M. , Lahfef, C. , Jammeli, B. , Bessouda, B. , & Fersi, R. (2019). A preliminary checklist and survey of the diurnal entomofauna associated to Citrus orchards in the region of Mograne (Zaghouan) in Tunisia within environmental parameters. Journal of New Sciences, Sustainable Livestock Management, 11(2), 231–224. [Google Scholar]
  58. EPPO . (2019). EPPO codes. https://www.eppo.int/RESOURCES/eppo_databases/eppo_codes.
  59. EPPO (European and Mediterranean Plant Protection Organization) . (online). EPPO Global Database. Coccus Viridis. https://gd.eppo.int/taxon/COCCVI [Accessed 12/08/2024].
  60. EUROPHYT . (online). European Union Notification System for Plant Health Interceptions – EUROPHYT. https://ec.europa.eu/food/plant/plant_health_biosecurity/europhyt/index_en.htm.
  61. FAO (Food and Agriculture Organization of the United Nations) . (2013). ISPM (international standards for Phytosanitary measures) 11—Pest risk analysis for quarantine pests. FAO, Rome, 36 pp. https://www.ippc.int/sites/default/files/documents/20140512/ispm_11_2013_en_2014‐04‐30_201405121523‐494.65%20KB.pdf.
  62. FAO (Food and Agriculture Organization of the United Nations) . (2023). ISPM (international standards for Phytosanitary measures) No 5. Glossary of phytosanitary terms (p. 40). FAO. https://assets.ippc.int/static/media/files/publication/en/2023/07/ISPM_05_2023_En_Glossary_PostCPM‐17_2023‐07‐12_Fixed.pdf.
  63. Fernandes, F. L. , de Sena Fernandes, M. E. , Picanco, M. C. , Geraldo, G. C. , Demuner, A. J. , & da Silva, R. S. (2010). Coffee volatiles and predatory wasps (hymenoptera: Vespidae) of the coffee leaf miner Leucoptera coffeella . Sociobiology, 56(2), 455–464. [Google Scholar]
  64. Fernandes, F. L. , Picanco, M. C. , Fernandes, M. E. S. , Queiroz, R. B. , Xavier, V. M. , & Martinez, H. E. P. (2012). The effects of nutrients and secondary compounds of Coffea arabica on the behavior and development of Coccus viridis . Environmental Entomology, 41(2), 333–341. 10.1603/EN11003 [DOI] [PubMed] [Google Scholar]
  65. Fernandes, F. L. , Picanço, M. C. , Gontijo, P. C. , de Sena Fernandes, M. E. , Pereira, E. J. G. , & Semeão, A. A. (2011). Induced responses of Coffea arabica to attack of Coccus viridis stimulate locomotion of the herbivore. Entomologia Experimentalis et Applicata, 139(2), 120–127. 10.1111/j.1570-7458.2011.01113.x [DOI] [Google Scholar]
  66. Fernandes, I. M. (1987). Contribuiçao para o conhecimento da quermofauna da Guine‐Bissau. [contribution to knowledge of some coccids of Guinea‐Bissau.]. Garcia de Orta, Serial Zoology, 14(1), 31–37. [Google Scholar]
  67. Figueroa‐Figueroa, D. K. , Ramírez‐Dávila, J. F. , Lara‐Vázquez, F. , Mora‐Escamilla, M. , & Galacho‐Jiménez, F. B. (2023). Spatial distribution of Green scale and sooty Mould in coffee plantations in Amatepec, state of Mexico. Revista Fitotecnia Mexicana, 46(4), 419–428. 10.35196/RFM.2023.4.419 [DOI] [Google Scholar]
  68. Follett, P. A. (2009). Generic radiation quarantine treatments: The next steps. Journal of Economic Entomology, 102(4), 1399–1406. 10.1603/029.102.0401 [DOI] [PubMed] [Google Scholar]
  69. Follett, P. A. , & Griffin, R. L. (2012). Phytosanitary irradiation for fresh horticultural commodities: Research and regulations (2nd ed., pp. 227–254). Food Irradiation Research and Technology. 10.1002/9781118422557.ch13 [DOI] [Google Scholar]
  70. Fornazier, M. J. , Martins, D. S. , De Willink, M. C. G. , Pirovani, V. D. , Ferreira, P. S. F. , & Zanuncio, J. C. (2017). Scale insects (Hemiptera: Coccoidea) associated with Arabica coffee and geographical distribution in the neotropical region. Anais da Academia Brasileira de Ciências, 89(4), 3083–3092. 10.1590/0001-3765201720160689 [DOI] [PubMed] [Google Scholar]
  71. Franco, J. C. , Russo, A. , & Marotta, S. (2011). An annotated checklist of scale insects (Hemiptera: Coccoidea) of Portugal, including Madeira and Azores archipelagos. Zootaxa, 3004, 1–32. 10.11646/zootaxa.3004.1.1 [DOI] [Google Scholar]
  72. Frappa, C. (1928). Sur un ennemi du caféier a Madagascar (le bostriche du caféier). Agronomie Coloniale, 133, 15–20. [Google Scholar]
  73. Frappa, C. (1929). Au Sujet des Cochenilles du cafeier dans la Province de l'Itasy. Bulletin Économique de Madagascar, 26, 7–13. [Google Scholar]
  74. Fredrick, J. M. (1943). Some preliminary investigations of the green scale, Coccus viridis (Green), in south Florida. Florida Entomologist, 26, 12–15. 25–29. [Google Scholar]
  75. Ganhao, J. F. P. (1956). Cephalosporium lecanii Zimm. An Entomogenous Fungus of Cochineals. Brotéria, 25, 71–135. [Google Scholar]
  76. García Morales, M. , Denno, B. D. , Miller, D. R. , Miller, G. L. , Ben‐Dov, Y. , & Hardy, N. B. (2016). ScaleNet: A literature‐based model of scale insect biology and systematics. Database, 2016, bav118. 10.1093/database/bav118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. García‐Valente, F. , Ortega‐Arenas, L. D. , González‐Hernández, H. , Villanueva‐Jiménez, J. A. , López‐Collado, J. , González‐Hernández, A. , & Arredondo‐Bernal, H. C. (2009). Natural and induced parasitism of Anagyrus kamali against pink hibiscus mealybug on teak shoots in Bahia de Banderas, Nayarit. Agrociencia, 43(7), 729–738. https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐77649171432&partnerID=40&md5=a803372766f527dfb52ba9f23523fcc9 [Google Scholar]
  78. Gavrilov‐Zimin, I. (2017). Taxonomic and faunistic notes on scale insects (Homoptera: Coccinea) of Bali, Flores and New Guinea (Indonesia). Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea, 3, 141–149. [Google Scholar]
  79. Gavrilov‐Zimin, I. A. (2013). New scale insects (Homoptera: Coccinea) from Sulawesi and New Guinea, with some other additions to the Indonesian fauna. Tropical Zoology, 26(2), 64–86. 10.1080/03946975.2013.807570 [DOI] [Google Scholar]
  80. George, A. , Rao, C. N. , & Mani, M. (2022). Pests of citrus and their management. Trends in Horticultural Entomology, 551–575. 10.1007/978-981-19-0343-4_17 [DOI] [Google Scholar]
  81. Githae, M. , Ong'amo, G. O. , Nderitu, J. , Watson, G. E. , & Kinuthia, W. (2021). Diversity of scale insects (Hemiptera: Coccomorpha) attacking citrus trees in Machakos, Makueni, Kilifi and Kwale counties, Kenya. Journal of Agricultural Science and Practice, 6(3), 79–85. [Google Scholar]
  82. Gómez‐Menor Ortega, J. (1941). Cóccidos de la República Dominicana (Hem. Cocc.). Eos, Transactions of the American Geophysical Union, 16, 125–143. [Google Scholar]
  83. Gonthier, D. J. , Dominguez, G. M. , Witter, J. D. , Spongberg, A. L. , & Philpott, S. M. (2013). Bottom‐up effects of soil quality on a coffee arthropod interaction web. Ecosphere, 4(9), 1–15. 10.1890/ES13-00072.1 [DOI] [Google Scholar]
  84. González‐Hernández, H. , Johnson, M. W. , & Reimer, N. J. (1999). Impact of Pheidole megacephala (F.) (Hymenoptera: Formicidae) on the biological control of Dysmicoccus brevipes (Cockerell) (Homoptera: Pseudococcidae). Biological Control, 15(2), 145–152. 10.1006/bcon.1999.0714 [DOI] [Google Scholar]
  85. Granara de Willink, M. C. , Pirovani, V. D. , & Ferreira, P. S. F. (2010). Coccus species affecting Coffea arabica in Brazil (Coccoideae: Coccidae) and the Redescription of two species. Neotropical Entomology, 39(3), 391–399. 10.1590/S1519-566X2010000300013 [DOI] [PubMed] [Google Scholar]
  86. Green, E. E. (1916). Report on some Coccidae from Zanzibar, collected by Dr. W.M. Aders. Bulletin of Entomological Research, 6, 375–376. [Google Scholar]
  87. Green, P. W. C. , Davis, A. P. , Cossé, A. A. , & Vega, F. E. (2015). Can coffee chemical compounds and insecticidal plants Be harnessed for control of major coffee pests? Journal of Agricultural and Food Chemistry, 63(43), 9427–9434. 10.1021/acs.jafc.5b03914 [DOI] [PubMed] [Google Scholar]
  88. Griessinger, D. , & Roy, A.‐S. (2015). EPPO codes: a brief description. https://www.eppo.int/media/uploaded_images/RESOURCES/eppo_databases/A4_EPPO_Codes_2018.pdf.
  89. Gullan, P. J. (1997). 1.3.5 relationships with ants. Soft scale insects: Their biology, natural enemies and control [Vol. 7A] (p. 452). Elsevier. [Google Scholar]
  90. Hajian‐Forooshani, Z. , Perfecto, I. , & Vandermeer, J. (2023). Novel community assembly and the control of a fungal pathogen in coffee agroecosystems. Biological Control, 177, 105099. 10.1016/j.biocontrol.2022.105099 [DOI] [Google Scholar]
  91. Hamdia, Z. A. , Bassim, H. H. , & AbdulRahman, A. A. (2020). First record of Alternaria alternata isolate CVGCIPL isolated from Green scale insect (Coccus viridis) on citrus plants. Systematic Reviews in Pharmacy, 11(11), 1807–1812. [Google Scholar]
  92. Hanks, L. M. , & Sadof, C. S. (1990). The effect of ants on nymphal survivorship of Coccus‐viridis (Homoptera, Coccidae). Biotropica, 22(2), 210–213. 10.2307/2388415 [DOI] [Google Scholar]
  93. Hansen, J. D. , Hara, A. H. , Chan, H. T. , & Tenbrink, V. L. (1991). Efficacy of hydrogen‐cyanide fumigation as a treatment for pests of Hawaiian cut flowers and foliage after harvest. Journal of Economic Entomology, 84(2), 532–536. 10.1093/jee/84.2.532 [DOI] [Google Scholar]
  94. Hara, A. H. , Hata, T. Y. , Hu, B. K. , Kaneko, R. T. , & Tenbrink, V. L. (1994). Hot‐water immersion of cape jasmine cuttings for disinfestation of green scale (Homoptera: Coccidae). Journal of Economic Entomology, 87(6), 1569–1573. [Google Scholar]
  95. Hara, A. H. , Yalemar, J. A. , Jang, E. B. , & Moy, J. H. (2002). Irradiation as a possible quarantine treatment for green scale Coccus viridis (Green) (Homoptera: Coccidae). Postharvest Biology and Technology, 25(3), 349–358. 10.1016/S0925-5214(01)00187-9 [DOI] [Google Scholar]
  96. Hata, T. Y. , & Hara, A. H. (1992). Evaluation of insecticides against pests of red ginger in Hawaii. Tropical Pest Management, 38(3), 234–236. [Google Scholar]
  97. Hernandez Martinez, F. R. , Guanche Hernandez, L. , & Sanchez Acosta, C. (2021). Forest pests of urban trees “Reparto Hermanos Cruz”, Pinar del Rio, Cuba. AVANCES, 23(2), 220–233. [Google Scholar]
  98. Hodgson, C. J. , & Hilburn, D. J. (1990). List of plant hosts of Coccoidea recorded in Bermuda up to 1989 (p. 22). Bulletin No. 39. Department of Agriculture, Fisheries & Parks Hamilton. [Google Scholar]
  99. Hodgson, C. J. , & Hilburn, D. J. (1991). An annotated checklist of the Coccoidea of Bermuda. Florida Entomologist, 74(1), 133–146. [Google Scholar]
  100. Hollingsworth, R. G. (2005). Limonene, a citrus extract, for control of mealybugs and scale insects. Journal of Economic Entomology, 98(3), 772–779. 10.1603/0022-0493-98.3.772 [DOI] [PubMed] [Google Scholar]
  101. Holway, D. A. , Lach, L. , Suarez, A. V. , Tsutsui, N. D. , & Case, T. J. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181–233. 10.1146/annurev.ecolsys.33.010802.150444 [DOI] [Google Scholar]
  102. Hsieh, H.‐Y. , Liere, H. , Soto, E. J. , & Perfecto, I. (2012). Cascading trait‐mediated interactions induced by ant pheromones. Ecology and Evolution, 2(9), 2181–2191. 10.1002/ece3.322 [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Hutson, J. C. (1930). Half‐yearly report of the entomological division. Department of Agriculture, Ceylon. 2 pp.
  104. Iverson, A. , Burnham, R. , Perfecto, I. , Vandenberg, N. , & Vandermeer, J. (2022). A tropical lady beetle, Diomus lupusapudoves (Coleoptera: Coccinellidae), deceives potential enemies to predate an ant‐protected coffee pest through putative chemical mimicry. International Journal of Tropical Insect Science, 42(1), 947–953. 10.1007/s42690-021-00621-5 [DOI] [Google Scholar]
  105. Iverson, A. , Jackson, D. , Burnham, R. , Perfecto, I. , Vandenberg, N. , & Vandermeer, J. (2018). Species complementarity in two myrmecophilous lady beetle species in a coffee agroecosystem: Implications for biological control. BioControl, 63(2), 253–264. 10.1007/s10526-017-9865-1 [DOI] [Google Scholar]
  106. Jackson, D. , Skillman, J. , & Vandermeer, J. (2012). Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 61(1), 89–97. 10.1016/j.biocontrol.2012.01.004 [DOI] [Google Scholar]
  107. Jackson, D. , Vandermeer, J. , Perfecto, I. , & Philpott, S. M. (2014). Population responses to environmental change in a tropical ant: The interaction of spatial and temporal dynamics. PLoS One, 9(5), e97809. 10.1371/journal.pone.0097809 [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Jackson, D. , Zemenick, A. T. , Malloure, B. , Quandt, C. A. , & James, T. Y. (2016). Fine‐scale spatial genetic structure of a fungal parasite of coffee scale insects. Journal of Invertebrate Pathology, 139, 34–41. 10.1016/j.jip.2016.07.007 [DOI] [PubMed] [Google Scholar]
  109. Jha, S. , Vandermeer, J. H. , & Perfecto, I. (2009). Population dynamics of Coccus viridis, a ubiquitous ant‐tended agricultural pest, assessed by a new photographic method. Bulletin of Insectology, 62(2), 183–189. https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐77952073213&partnerID=40&md5=c82507703b829db92b429999a443de9a [Google Scholar]
  110. Jiménez‐Soto, E. , Cruz‐Rodríguez, J. A. , Vandermeer, J. , & Perfecto, I. (2013). Hypothenemus hampei (Coleoptera: Curculionidae) and its interactions with Azteca instabilis and Pheidole synanthropica (hymenoptera: Formicidae) in a shade coffee agroecosystem. Environmental Entomology, 42(5), 915–924. 10.1603/EN12202 [DOI] [PubMed] [Google Scholar]
  111. Joshi, S. , Rameshkumar, A. , & Mohanraj, P. (2017). New host‐parasitoid associations for some coccids (Hemiptera: Coccoidea) from India. Journal of Entomological Research, 41(2), 177–182. 10.5958/0974-4576.2017.00028.7 [DOI] [Google Scholar]
  112. Joshi, S. , & Sangma, R. H. C. (2015). Natural enemies associated with aphids and coccids from Sikkim, India. Journal of Biological Control, 29(1), 3–7. [Google Scholar]
  113. Jutsum, A. R. , Cherrett, J. M. , & Fisher, M. (1981). Interactions between the Fauna of citrus trees in Trinidad and the ants Atta‐Cephalotes and Azteca sp. Journal of Applied Ecology, 18(1), 187–195. 10.2307/2402488 [DOI] [Google Scholar]
  114. Kannan, K. K. (1918). An instance of mutation: Coccus viridis, Green, a mutant from Pulvinaria psidii, Maskell. Transactions of the Royal Entomological Society of London, 66(1–2), 130–148. 10.1111/j.1365-2311.1918.tb02591.x [DOI] [Google Scholar]
  115. Kar, A. , Majhi, D. , & Misra, D. K. (2023). First report of Coccus viridis (Green) as a pest of dragon fruit in West Bengal. Pest Management in Horticultural Ecosystems, 29(2), 304–306. [Google Scholar]
  116. Kawai, S. , & Matsubara, Y. (1971). A preliminary revision of the Coccoidea‐Fauna of the Ogasawara (Bonin) islands (Homoptera: Coccoidea). Applied Entomology and Zoology, 6(1), 11–26. 10.1303/aez.6.11 [DOI] [Google Scholar]
  117. Kertesz, V. , Pautasso, M. , Gobbi, A. , Golic, D. , Maiorano, A. , Sfyra, O. , & Stancanelli, G. (2024). EFSA standard protocol for pest categorisation. Zenodo. 10.5281/zenodo.12909423 [DOI] [Google Scholar]
  118. Khaladi, O. , Bouderbala, A. , Mahdjoubi, D. , Benada, M. , & Boumaaza, B. (2024). Exploring scale insects biodiversity in orange orchards: Insights from Guelma province, Algeria. Archives of Phytopathology and Plant Protection, 57(7), 555–567. 10.1080/03235408.2024.2375042 [DOI] [Google Scholar]
  119. Khan, I. , Din, S. , Khalil, S. K. , & Rafi, M. A. (2007). Survey of predatory Coccinellinids (Coleoptera: Coccinellidae) in the Chitral District, Pakistan. Journal of Insect Science, 7, 8P https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐33846594833&partnerID=40&md5=9d677807da6294a8583a08fd06fdaf92 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Khan, M. A. , & Agarwal, M. M. (1976). Praleurocerus‐indicus new‐species hymenoptera Encyrtidae from India. Oriental Insects, 10, 165–168. [Google Scholar]
  121. Kondo, T. , & Hardy, N. B. (2008). Synonymy of Etiennea Matilea Ferrero with Hemilecanium Newstead (Hemiptera: Coccidae), based on morphology of adult females, adult males and firstâ instar nymphs, and description of a new potential pest species from the Ryukyu archipelago, Japan. Entomological Science, 11, 189–213. [Google Scholar]
  122. Kondo, T. , & Watson, G. W. (Eds.). (2022). Encyclopedia of scale insect pests (608). CABI International. [Google Scholar]
  123. Kondo, T. , Watson, G. W. , & Gavrilov‐Zimin, I. A. (2022). Coccus (p. 608). Encyclopedia of Scale Insect Pests CABI Wallingford. [Google Scholar]
  124. Kottek, M. , Grieser, J. , Beck, C. , Rudolf, B. , & Rubel, F. (2006). World map of the Köppen_Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263. 10.1127/0941-2948/2006/0130 [DOI] [Google Scholar]
  125. Koutouleas, A. , Collinge, D. B. , & Ræbild, A. (2023). Alternative plant protection strategies for tomorrow's coffee. Plant Pathology, 72(3), 409–429. 10.1111/ppa.13676 [DOI] [Google Scholar]
  126. Krishnan, R. G. (1973). Green‐bug' on the Shevaroys. Indian Coffee, 37, 13–14. [Google Scholar]
  127. Kumar, S. , Regupathy, C. M. , & Regupathy, A. (2005). Risk assessment of neonicotinoids applied to coffee ecosystem. International Pest Control, 47, 82–87. [Google Scholar]
  128. Lapola, D. M. , Bruna, E. M. , De Willink, C. G. , & Vasconcelos, H. L. (2005). Ant‐tended Hemiptera in Amazonian myrmecophytes: Patterns of abundance and implications for mutualism function (Hymenoptera: Formicidae).
  129. Le Pelley, R. H. (1968). Pests of coffee Longmans (p. Xii + 590). [Google Scholar]
  130. Li, Z. , Alves, S. B. , Roberts, D. W. , Fan, M. , Delalibera, I. , Tang, J. , Lopes, R. B. , Faria, M. , & Rangel, D. E. N. (2010). Biological control of insects in Brazil and China: History, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Science and Technology, 20(2), 117–136. 10.1080/09583150903431665 [DOI] [Google Scholar]
  131. Liere, H. , & Larsen, A. (2010). Cascading trait‐mediation: Disruption of a trait‐mediated mutualism by parasite‐induced behavioral modification. Oikos, 119(9), 1394–1400. [Google Scholar]
  132. Liere, H. , & Perfecto, I. (2008). Cheating on a mutualism: Indirect benefits of ant attendance to a coccidophagous coccinellid. Environmental Entomology, 37(1), 143–149. 10.1603/0046-225X(2008)37[143:COAMIB]2.0.CO;2 [DOI] [PubMed] [Google Scholar]
  133. Liere, H. , Perfecto, I. , & Vandermeer, J. (2014). Stage‐dependent responses to emergent habitat heterogeneity: Consequences for a predatory insect population in a coffee agroecosystem. Ecology and Evolution, 4(16), 3201–3209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Light, S. S. (1928). Report of the entomologist [for 1927] Bulletin. Tea Research Institute of Ceylon, 25–34. [Google Scholar]
  135. Lim, G. T. , Kirton, L. G. , Salom, S. M. , Kok, L. T. , Fell, R. D. , & Pfeiffer, D. G. (2008). Host plants and associated trophobionts of the weaver ants Oecophylla spp. (hymenoptera: Formicidae) [review]. CAB reviews: Perspectives in agriculture, veterinary science, nutrition and natural Resources, 3, 3035. 10.1079/PAVSNNR20083035 [DOI] [Google Scholar]
  136. Lin, Y.‐P. , Kondo, T. , Gullan, P. , & Cook, L. G. (2013). Delimiting genera of scale insects: Molecular and morphological evidence for synonymising Taiwansaissetia Tao, Wong and Chang with Coccus Linnaeus (Hemiptera: Coccoidea: Coccidae). Systematic Entomology, 38(2), 249–264. 10.1111/j.1365-3113.2012.00664.x [DOI] [Google Scholar]
  137. Lincango, P. , Hodgson, C. , Causton, C. , & Miller, D. (2010). An updated checklist of scale insects (Hemiptera: Coccoidea) of the Galapagos Islands, Ecuador. Galapagos Research, 67, 3–7. [Google Scholar]
  138. Livingston, G. F. , White, A. M. , & Kratz, C. J. (2008). Indirect interactions between ant‐tended hemipterans, a dominant ant Azteca instabilis (Hymenoptera: Formicidae), and shade trees in a tropical agroecosystem. Environmental Entomology, 37(3), 734–740. 10.1603/0046-225X(2008)37[734:IIBAHA]2.0.CO;2 [DOI] [PubMed] [Google Scholar]
  139. Luziau, R. (1953). Contribution to the phytosanitary prospection of the Isle of Réunion. Phytoma, 6(46), 16–21. [Google Scholar]
  140. Macdonald, A. J. , Jackson, D. , & Zemenick, K. (2013). Indirect effects of a fungal Entomopathogen, Lecanicillium lecanii (Hypocreales: Clavicipitaceae), on a coffee agroecosystem ant community. Environmental Entomology, 42(4), 658–667. 10.1603/EN12287 [DOI] [PubMed] [Google Scholar]
  141. Magalhães, S. T. V. , Fernandes, F. L. , Demuner, A. J. , Picanço, M. C. , & Guedes, R. N. C. (2010). Leaf alkaloids, phenolics, and coffee resistance to the leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). Journal of Economic Entomology, 103(4), 1438–1443. 10.1603/EC09362 [DOI] [PubMed] [Google Scholar]
  142. Malumphy, C. (2014). An annotated checklist of scale insects (Hemiptera: Coccoidea) of Saint Lucia, Lesser Antilles. Zootaxa, 3846(1), 69–86. 10.11646/zootaxa.3846.1.3 [DOI] [PubMed] [Google Scholar]
  143. Malumphy, C. , & Treseder, K. (2012). Green coffee scale Coccus viridis (Hemiptera: Coccidae), new to Britain. British Journal of Entomology and Natural History, 25, 217–225. [Google Scholar]
  144. Mamet, J. R. (1943). A revised list of the Coccoidea of the islands of the western Indian Ocean, south of the equator. Mauritius Institute Bulletin, Port Louis, 2, 137–170. [Google Scholar]
  145. Mamet, R. J. (1978). Contribution à la connaissance de la faune entomologique d'Agalega (Océan Indien). [contribution to the knowledge of the entomological fauna of Agalega (Indian Ocean)]. Bulletin de la Société Entomologique de France, 83, 97–107. [Google Scholar]
  146. Mani, M. (2018). Hundred and sixty years of Australian lady bird beetle Crypotolaemus montrouzieri Mulsant ‐ a global view. Biocontrol Science and Technology, 28(10), 938–952. 10.1080/09583157.2018.1487029 [DOI] [Google Scholar]
  147. Mani, M. (2022). Pests and their Management in Loquat (Eriobotrya japonica). In Trends in Horticultural Entomology, 757–761. 10.1007/978-981-19-0343-4_28 [DOI] [Google Scholar]
  148. Mani, M. , Krishnamoorthy, A. , & Ramanujam, B. (2022). Trends in the biological control of horticultural crop pests in India. Trends in Horticultural Entomology, 243–281. 10.1007/978-981-19-0343-4_8 [DOI] [Google Scholar]
  149. Mani, M. , Visalakshy, P. N. G. , Krishnamoorthy, A. , & Venugopalan, R. (2008). Role of Coccophagus sp. in the suppression of the soft green scale Coccus viridis (Green) (Hompoptera: Coccidae) on sapota. Biocontrol Science and Technology, 18(7), 721–725. 10.1080/09583150802298769 [DOI] [Google Scholar]
  150. Marin, L. , & Perfecto, I. (2013). Spider diversity in coffee agroecosystems: The influence of agricultural intensification and aggressive ants. Environmental Entomology, 42(2), 204–213. 10.1603/EN11223 [DOI] [PubMed] [Google Scholar]
  151. Martin, J. H. , & Lau, C. S. K. (2011). The Hemiptera‐Sternorrhyncha (Insecta) of Hong Kong, China‐an annotated inventory citing voucher specimens and published records. Zootaxa, 2847(1), 1–122. [Google Scholar]
  152. Martinez, Z. , & Sanchez, J. D. (1981). Estudio biológico comparativo de Coccus viridis Green en café y citricos. Centro Agricola. Enero‐Abril. CDU [632.752.3: 582.28]: 633.131:634.3.
  153. Martorell, L. F. (1945). A survey of the forest insects of Puerto Rico. Journal of Agriculture of the University of Puerto Rico, 29(3), 70–608. [Google Scholar]
  154. Mascarenhas de Almeida, D. (1973). Coccoidea de Angola. 1‐ Revisao das especies conhecidas. Boletim Do Instituto de Investigacao Cientifica de Angola, Luanda, 10, 1–23. [Google Scholar]
  155. Mathew, D. , & Duraimurugan, P. (2002). Review on invasive pests in Indian horticultural ecosystem and their management. Plant Protection Bulletin (Faridabad), 54, 25–34. [Google Scholar]
  156. Matile‐Ferrero, D. (2006). Cochenilles des Antilles françaises et de quelques autres îles des Caraïbes [hemiptera, coccoidea]. Revue Française d'Entomologie, 28(4), 161–190. [Google Scholar]
  157. Matus Miranda, M. N. , & Jiménez‐Martínez, E. (2020). Evaluación de plaguicidas para el manejo de plagas del café Coffea arabica L. en Jinotega, Nicaragua. La Calera, 20(34), 20–28. 10.5377/calera.v20i34.9668 [DOI] [Google Scholar]
  158. Mau, R. F. L. , & Kessing, J. L. M. (1999). Coccus viridis (Green). UH‐CTAHR Integrated Pest Management Program. Knowledge Master Website. http://www.extento.hawaii.edu/kbase/crop/Type/c_viridi.htm.
  159. Medina‐Torres, R. , Juarez‐Lopez, P. , Salazar‐Garcia, S. , & Valdivia‐Bernal, R. (2013). Study of the main pests of nance [Byrsonima crassifolia (L.) HBK] in Nayarit, Mexico. Revista Mexicana de Ciencias Agrícolas, 4, 423–433. [Google Scholar]
  160. Melville, A. R. (1945). Mealybug; green scale, and Asterolecanium. Practical recommendations. Monthly Bulletin ‐ Coffee Board of Kenya, 10, 106–109. [Google Scholar]
  161. Mestre Novoa, N. , Hamon, A. , Evans, G. , Kondo, T. , Herrera, P. , Hernández Marrero, O. A. , & Alonso, A. A. (2011). Los cocoideos (Hemiptera: Sternorrhyncha: Coccoidea) presentes en la Cordillera de Guaniguanico, Pinar del Río, Cuba, y la relación Con Sus Hospedantes. Insecta Mundi, 0183, 1–25. [Google Scholar]
  162. Mille, C. , Henderson, R. C. , Cazères, S. , & Jourdan, H. (2016). Checklist of the scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) of New Caledonia. Zoosystema, 38(2), 129–176. [Google Scholar]
  163. Miller, N. E. (1931). Coccus (Lecanium) viridis, Green. The "Green. Scale" of Coffee. Sci. Ser. Dept. Agric. S. S. &. F. M. S., 1931, No. 7, 17–29 pp. ref. 15.
  164. Miller, D. , Rung, A. , Parikh, G. , Venable, G. , Redford, A. J. , Evans, G. A. , & Gill, R. J. (2014). Scale insects, edition 2. USDA APHIS Identification Technology Program (ITP). https://idtools.org/scales/ [Accessed 14‐10‐2024]. [Google Scholar]
  165. Miller, D. R. (1996). Checklist of the scale insects (Coccoidea: Homoptera) of Mexico. Proceedings of the Entomological Society of Washington, 98, 68–86. [Google Scholar]
  166. Miranda‐Calixto, A. , Loera‐Corral, O. , López‐Pérez, M. , & Figueroa‐Martínez, F. (2023). Improvement of Akanthomyces lecanii resistance to tebuconazole through UV‐C radiation and selective pressure on microbial evolution and growth arenas. Journal of Invertebrate Pathology, 198, 107914. 10.1016/j.jip.2023.107914 [DOI] [PubMed] [Google Scholar]
  167. Moher, D. , Liberati, A. , Tetzlaff, J. , Altman, D. G. , & The PRISMA Group . (2009). Preferred Reporting Items for Systematic Reviews and Meta‐Analyses: The PRISMA Statement. PLoS Medicine, 6(7), 1000097. 10.1371/journal.pmed1000097 [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Morstatt, H. (1913). Observations on the occurrence of plant diseases in 1912. Pflanzer, 9, 211–224. [Google Scholar]
  169. Moya‐Raygoza, G. , & Nault, L. R. (2000). Obligatory mutualism between Dalbulus quinquenotatus (Homoptera: Cicadellidae) and attendant ants. Annals of the Entomological Society of America, 93(4), 929–940. 10.1603/0013-8746(2000)093[0929:OMBDQH]2.0.CO;2 [DOI] [Google Scholar]
  170. Muhammad, F. , Rizali, A. , & Rahardjo, B. (2024). Ant communities and their trophobionts shape the incidence of pests and diseases in Indonesia's coffee agroforestry system. Biodiversitas Journal of Biological Diversity, 25, 1127–1134. 10.13057/biodiv/d250327 [DOI] [Google Scholar]
  171. Murakami, Y. , Abe, N. , & Cosenza, G. W. (1984). Parasitoids of scale insects and aphids on citrus in the Cerrados region of Brazil (hymenoptera: Chalcidoidea). Applied Entomology and Zoology, 19(2), 237–244. 10.1303/aez.19.237 [DOI] [Google Scholar]
  172. Murphy, S. T. (1991). Insect natural enemies of coffee green scales [Hemiptera: Coccidae] in Kenya and their potential for biological control of Coccus celatus and C. Viridis in Papua New Guinea. Entomophaga, 36(4), 519–529. 10.1007/BF02374434 [DOI] [Google Scholar]
  173. Nag Raj, T. R. , & George, K. V. (1959). An interesting entomogenous fungus on green bug of coffee. Current Science, 28(11), 452–453. [Google Scholar]
  174. Nais, J. , & Busoli, A. C. (2012). Morphological, behavioral and biological aspects of Azya luteipes Mulsant fed on Coccus viridis (Green) [note]. Scientia Agricola, 69(1), 81–83. 10.1590/S0103-90162012000100012 [DOI] [Google Scholar]
  175. Nakahara, S. (1981). List of the Hawaiian Coccoidea (Homoptera: Sternorhyncha). Proceedings of the Hawaiian Entomological Society, 23, 387–424. [Google Scholar]
  176. Nakao, S. I. , Takagi, S. , Tachikawa, T. , & Wongsiri, T. (1977). Scale insects collected on citrus and other plants and their hymenopterous parasites in Thailand. Insecta Matsumurana, 11, 61–72. [Google Scholar]
  177. National Plant Protection Organisation (NPPO) of Portugal . (2024). Re: EFSA request of information on pest status. 12 March 2024. E‐mail.
  178. Neumann, G. , Follett, P. A. , Hollingsworth, R. G. , & de León, J. H. (2010). High host specificity in Encarsia diaspidicola (hymenoptera: Aphelinidae), a biological control candidate against the white peach scale in Hawaii. Biological Control, 54(2), 107–113. 10.1016/j.biocontrol.2010.04.013 [DOI] [Google Scholar]
  179. Nowell, W. (1916). A new fungus on the Green scale. Agriculture News, 15, 302. [Google Scholar]
  180. Noyes, J. S. (1988). Metaphycus‐baruensis Spn (hymenoptera, Encyrtidae) parasitic in Green scales, Coccus spp (Hemiptera, Coccidae), on coffee in Kenya. Bulletin of Entomological Research, 78(1), 131–134. 10.1017/S0007485300016138 [DOI] [Google Scholar]
  181. Noyes, J. S. (2019). Universal Chalcidoidea database. World Wide Web Electronic Publication. https://www.nhm.ac.uk/chalcidoids.
  182. Olubayo, F. , Kilalo, D. , Obukosia, S. , Shibairo, S. , & Kasina, M. (2011). Homopteran pests complex of citrus (Citrus sinensis) in semi‐arid Kenya. International Journal of Sustainable Crop Production, 6(2), 23–28. https://profiles.uonbi.ac.ke/dchao/files/homoptera_pests_of_citrus.pdf. [Google Scholar]
  183. Omkar, O. , & Pervez, A. (2004). Predaceous coccinellids in India: Predator‐prey catalogue (coleoptera: Coccinellidae). Oriental Insects, 38(1), 27–61. 10.1080/00305316.2004.104173732004 [DOI] [Google Scholar]
  184. Omkar, & Pervez, A. (2016). Ladybird Beetles. Ecofriendly Pest Management for Food Security, 281–310. 10.1016/B978-0-12-803265-7.00009-9 [DOI] [Google Scholar]
  185. Ong, T. W. , & Vandermeer, J. H. (2014). Antagonism between two natural enemies improves biological control of a coffee pest: The importance of dominance hierarchies. Biological Control, 76, 107–113. 10.1016/j.biocontrol.2014.06.002 [DOI] [Google Scholar]
  186. Padilla, V. J. A. , Martínez, E. E. , Nápoles, J. R. , Hernández, H. G. , & Miranda, R. P. (2016). Scale insects (Hemiptera: Coccomorpha) on ornamental plants in greenhouses from the central zone of the Morelos State, Mexico. Interciencia, 41(8), 552–560. https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐84990033470&partnerID=40&md5=3bbaec274be91135d558cf74b9db18c8 [Google Scholar]
  187. Pellizzari, G. , & Porcelli, F. (2014). Alien scale insects (Hemiptera Coccoidea) in European and Mediterranean countries: The fate of new and old introductions. Phytoparasitica, 42(5), 713–721. 10.1007/s12600-014-0414-5 [DOI] [Google Scholar]
  188. Perfecto, I. , & Vandermeer, J. (2006). The effect of an ant‐hemipteran mutualism on the coffee berry borer (Hypothenemus hampei) in southern Mexico. Agriculture, Ecosystems and Environment, 117(2–3), 218–221. 10.1016/j.agee.2006.04.007 [DOI] [Google Scholar]
  189. Plank, H. K. , & Winters, H. F. (1949). Insect and other animal pests of cinchona and their control IE Puerto Rico. Bull. Fed. Exp. Stn. Puerto Rico. 16 pp.
  190. Ponsonby, D. J. (2009). Factors affecting utility of Chilocorus nigritus (F.) (Coleoptera: Coccinellidae) as a biocontrol agent. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4, 1–20. 10.1079/PAVSNNR20094046 [DOI] [Google Scholar]
  191. Poole, M. (2005). Green coffee scale Coccus viridis (Green) [Hemiptera: Coccidae] (p. 2). Government of Western Australia, Department of Agriculture, Farm Note 16/2005. [Google Scholar]
  192. Prinsloo, G. L. (1985). On the southern African species of Diversiner Vus [hymenoptera: Ncyr Tidae], with descriptions of two new species. Entomophaga, 30, 133–142. [Google Scholar]
  193. Quezada, J. R. , Cornejo, C. , Díaz de Mira, A. , & Hidalgo, F. (1972). [The main species of insects associated with citrus crops in El Salvador.] Ministerio de Agricultura y Ganaderia (p. 49). [Google Scholar]
  194. Radhakrishnan, B. (2022). Pests and their Management in tea. Trends in Horticultural Entomology, 1489–1511. 10.1007/978-981-19-0343-4_64 [DOI] [Google Scholar]
  195. Ramakrishna, A. T. V. (1919). A contribution to our knowledge of south Indian Coccidae. Bulletin of the Agricultural Research Institute, Pusa, 87, 1–50. [Google Scholar]
  196. Reddy, G. V. M. , Kumar, A. R. , Kumar, B. V. R. , & Dhanam, M. (2022). Pests and their Management in Coffee. In Trends in horticultural entomology (pp. 1513–1528). Springer Nature Singapore. 10.1007/978-981-19-0343-4_65 [DOI] [Google Scholar]
  197. Reimer, N. J. , Cope, M. L. , & Yasuda, G. (1993). Interference of Pheidole megacephala (hymenoptera: Formicidae) with biological control of Coccus viridis (Homoptera: Coccidae) in coffee. Environmental Entomology, 22(2), 483–488. 10.1093/ee/22.2.483 [DOI] [Google Scholar]
  198. Reyne, A. (1919). Some remarks on combating insects injurious to Liberian coffee. Bulletin van het Departement van Landbouw in Suriname, 37, 18. [Google Scholar]
  199. Rivera‐Salinas, I. S. , Hajian‐Forooshani, Z. , Jimenez‐Soto, E. , Antonio Cruz‐Rodríguez, J. , & Philpott, S. M. (2018). High intermediary mutualist density provides consistent biological control in a tripartite mutualism. Biological Control, 118, 26–31. 10.1016/j.biocontrol.2017.12.002 [DOI] [Google Scholar]
  200. Roba, R. P. (1936). The condition of the coffee plantations of Norte de Santander from the entomological point of view. Revista Cafetera de Colombia, 6, 2091–2095. [Google Scholar]
  201. Rodríguez‐Tapia, J. L. , Milán‐Vargas, O. , Zamora‐Rodríguez, V. , Hernández‐Espinosa, D. , & Rodríguez‐Vélez, J. (2022). Predation of Exochomus bicolor on Asian citrus psyllid and coffee Green scale under laboratory conditions. Southwestern Entomologist, 47(3), 723–728. 10.3958/059.047.0322 [DOI] [Google Scholar]
  202. Rosado, J. F. , Bacci, L. , Martins, J. C. , Silva, G. A. , Gontijo, L. M. , & Picanço, M. C. (2014). Natural biological control of green scale (Hemiptera: Coccidae): A field life‐table study. Biocontrol Science and Technology, 24(2), 190–202. 10.1080/09583157.2013.855165 [DOI] [Google Scholar]
  203. Rostaman, R. (1997). Pests and diseases of sandalwood in Kabupaten Kupang. Duta Rimba, 23, 41–48. [Google Scholar]
  204. Rubel, F. , Brugger, K. , Haslinger, K. , & Auer, I. (2017). The climate of the European Alps: Shift of very high resolution Köppen‐Geiger climate zones 1800‐2100. Meteorologische Zeitschrift, 26(2), 115–125. 10.1127/metz/2016/0816 [DOI] [Google Scholar]
  205. Ruiz‐Orta, A. , Tapia‐Rodríguez, A. , Figueroa‐Figueroa, D. K. , & Ramírez‐Dávila, J. F. (2023). Analysis of the spatial association of fumagina (Capnodium sp.) and Green scale (Coccus viridis) In Coffee in Sultepec, Mexico. Agrociencia, 57(7), 1482–1511. 10.47163/agrociencia.v57i7.2945 [DOI] [Google Scholar]
  206. Rutherford, A. (1914). Insects on rubber in 1913. Tropical Agriculture, 42, 41–44. [Google Scholar]
  207. Saengyot, S. (2016). Predatory thrips species composition, their prey and host plant association in northern Thailand. Agriculture and Natural Resources, 50(5), 380–387. 10.1016/j.anres.2015.10.002 [DOI] [Google Scholar]
  208. Salas‐Araiza, M. , Martínez‐Jaime, O. , Guzmán‐Mendoza, R. , Díaz‐García, J. , Guadalupe, M. , & Patiño, P. (2020). Fluctuación Poblacional De La Escama Blanda Coccus Viridis (Green, 1889) (Hemiptera: Coccidae) En Irapuato, Guanajuato, México, 7, 195–201. [Google Scholar]
  209. Samuel, S. D. , Venkatesulu, K. , & Chacko, M. J. (1981). Influence of insecticides on Cryptolaemus montrouzieri. 1. Effect of residues of Cythion, Ekalux, Lebaycid and Metacid on grub. Journal of Coffee Research, 11(4), 126–128. ref. 4. [Google Scholar]
  210. Santharam, G. , Easwaramoorthy, S. , Regupathy, A. , & Jayaraj, S. (1977). Possibility of increasing pathogenicity of White halo Fungys Cephalosporium‐lecanii on coffee Green bug Coccus‐viridis during summer. Journal of Plantation Crops, 5(2), 121–122. [Google Scholar]
  211. Santos, R. S. , da Costa, V. L. , da Silva, V. V. L. , & Souza, G. D. N. (2023). Occurrence of scale insect (Hemiptera: Coccidae) in coffee plantations (var. Conilon) in the state of acre, Brazil. Agrotropica, 35, 97–100. [Google Scholar]
  212. Sarwar, M. (2006). Occurrence of insect pests on guava (Psidium guajava) tree. Pakistan Journal of Zoology, 38, 197–200. [Google Scholar]
  213. Sathish, R. , Sree, K. B. , Rajesh, K. , Kumar, M. S. , Arunbabu, T. , & Priyadarshini, G. (2024). Pest succession of Sapota [Manilkara achras (mill.) Forsberg] under hill zone of Karnataka, India. Current Research Progress in Agricultural Sciences, 2, 104–110. 10.9734/bpi/crpas/v2/3798G [DOI] [Google Scholar]
  214. Sayers, E. W. , Cavanaugh, M. , Clark, K. , Pruitt, K. D. , Sherry, S. T. , Yankie, L. , & Karsch‐Mizrachi, I. (2024). GenBank 2024 update. Nucleic Acids Research, 52(D1), D134–D137. 10.1093/nar/gkad903 [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Schmitt, L. , Aponte‐Rolon, B. , & Perfecto, I. (2020). Evaluating community effects of a keystone ant, Azteca sericeasur, on Inga micheliana leaf litter decomposition in a shaded coffee agro‐ecosystem. Biotropica, 52(6), 1253–1261. 10.1111/btp.12833 [DOI] [Google Scholar]
  216. Schmutterer, H. , Pires, A. , & Koch, C. K. (1978). Pests of Cape Verde Islands. Zeitschrift Fur Angewandte Entomologie‐Journal of Applied Entomology, 86(3), 320–336. [Google Scholar]
  217. Shivaramu, K. , & Pillai, K. G. (2012). Efficacy of botanicals and insecticides against citrus green scale, Coccus viridis (Green) (Coccidae: Homoptera) on Coorg mandarin (Citrus reticulata). Insect Environment, 18(3). [Google Scholar]
  218. Silva, C. G. , & Parra, J. R. P. (1982). Biologia e danos de Coccus viridis (Green, 1889) (Homoptera‐Coccidae) em mudas de café (Coffea spp.). Anais da Sociedade Entomológica do Brasil, 11(2), 181–195. [Google Scholar]
  219. Silva, J. F. , Pereira, J. M. , Rocha, C. B. S. , & Peres, A. J. A. (2021). First record of Parasaissetia nigra and hemipters associated with mangabeira varieties Hancornia speciosa . Ciência Florestal, 31(4), 2023–2034. 10.5902/1980509848381 [DOI] [Google Scholar]
  220. Simberloff, D. , & Von Holle, B. (1999). Positive interactions of nonindigenous species: Invasional meltdown? Biological Invasions, 1(1), 21–32. 10.1023/A:1010086329619 [DOI] [Google Scholar]
  221. Singh, S. P. (1995). Use of entomopathogenic fungus, Verticillium lecanii (Zimm.) Viegas, insecticides and their combination for the control of green scale, Coccus viridis (Green). Indian Journal of Horticulture, 52(4), 259–266. [Google Scholar]
  222. Singh, S. P. , & Rao, N. S. (1977). Effectiveness of different contact insecticides against soft green scale, Coccus viridis Green (Coccidae:Homoptera) on citrus. Pesticides, 11, 33–36. [Google Scholar]
  223. Siregar, A. Z. , & Tulus. (2023). Use of yellow sticky trap (YST) and coffee experts (pakar kopi) reduces coffee pest attacks in Perteguhan hamlet, Telagah villages, Langkat District, North Sumatra. IOP Conference Series: Earth and Environmental Science. 10.1088/1755-1315/1241/1/012111 [DOI] [Google Scholar]
  224. Skeete, C. C. (1925). The cotton industry; entomological work. Report. Agricultural Department, Barbados. 5‐6; 9–10 pp.
  225. Smith, D. , Beattie, G. A. C. , & Broadley, R. H. (1997). Citrus pests and their natural enemies: Integrated Pest Management in Australia. In State of Queensland, Dept. of primary industries, and horticultural Research and Development Corp (p. 263). [Google Scholar]
  226. Smith, D. , Papacek, D. , & Neale, C. (2004). The successful introduction to Australia of Diversinervus sp. near stramineus compere (hymenoptera: Encyrtidae), Kenyan parasitoid of green coffee scale. General and Applied Entomology, 33, 33–39. [Google Scholar]
  227. Souza, I. L. , de Paulo, H. H. , Siqueira, M. A. , Costa, V. A. , Wengrat, A. P. G. D. S. , Peronti, A. L. B. G. , & Martinelli, N. M. (2023). Scale insects and natural enemies associated with Conilon coffee (Coffea canephora) in Sao Paulo state, Brazil. Agriculture‐Basel, 13(4), Article 829. 10.3390/agriculture13040829 [DOI] [Google Scholar]
  228. Srinivasa, M. V. (1987). New parasites and host plants of coffee green scale Coccus viridis (Green) Homoptera: Coccidae in south India. Journal of Coffee Research, 17, 122–123. [Google Scholar]
  229. State of Western Australia . (2007). Department of Agriculture and Food. Farmnote. Scale in citrus. By Sonya Broughton. Entomology Branch. Note 243. Replaces Farmnote 1/92. August 2007. https://citrusaustralia.com.au/wp‐content/uploads/fn2007_citrusscale_sbroughton.pdf.
  230. Styrsky, J. D. , & Eubanks, M. D. (2007). Ecological consequences of interactions between ants and honeydew‐producing insects. Proceedings of the Royal Society B: Biological Sciences, 274(1607), 151–164. 10.1098/rspb.2006.3701 [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Suh, S. , Hye Mi, Y. , & Ki‐Jeong, H. (2013). List of intercepted scale insects at Korean ports of entry and potential invasive species of scale insects to Korea (Hemiptera: Coccoidea). Korean Journal of Applied Entomology, 52(2), 160. [Google Scholar]
  232. Suh, S. J. (2023). Updated list of intercepted Coccidae (Hemiptera: Coccomorpha) at South Korean ports of entry and potential invasive species to South Korea.
  233. Suh, S. J. , & Bombay, K. (2015). Scale insects (Hemiptera: Coccoidea) found on dracaena and ficus plants (Asparagales: Asparagaceae, Rosales: Moraceae) from southeastern Asia. Insecta Mundi, 448, 1–10. [Google Scholar]
  234. Susilo, F. X. (2015). Preliminary study on Eublemma sp. (Eublemminae): A lepidopteran predator of Coccus viridis (Hemiptera: Coccidae) on coffee plants in Bandarlampung, Indonesia. Journal of Tropical Plant Pests and Diseases, 15(1), 10–16. 10.23960/J.Hptt.11510-16 [DOI] [Google Scholar]
  235. Swirski, E. , Ben‐Dov, Y. , & Wysoki, M. (1997). 3.3.4 Mango. In World Crop Pests, 7, 241–254. 10.1016/S1572-4379(97)80087-5 [DOI] [Google Scholar]
  236. Syadida, Q. , Pramayudi, N. , & Jauharlina, J. (2024). Pengaruh Kerapatan Pohon Penaung Terhadap Serangan Kutu Tempurung Hijau (Coccus viridis Green) pada Perkebunan Kopi Arabika di Kabupaten Aceh Tengah. Journal Ilmiah Mahasiswa Pertanian, 9(1), 687–698. [Google Scholar]
  237. Tandon, P. L. , & Veeresh, G. K. (1987). Appropriate transformation for the population counts of citrus Green scale, Coccus‐viridis (Green) (Coccidae, Homoptera). Insect Science and its Application, 8(2), 255–257. 10.1017/S1742758400007311 [DOI] [Google Scholar]
  238. Tandon, P. L. , & Veeresh, G. K. (1988). Inter‐tree spatial distribution of Coccus viridis (Green) on mandarin. International Journal of Tropical Agriculture, 6(3–4), 270–275. [Google Scholar]
  239. Tao, C. C.‐c. , Wong, C.‐y. , & Chang, Y.‐c. (1983). Monograph of Coccidae of Taiwan, Republic of China (Homoptera: Coccoidea). Journal of the Taiwan Museum, 36, 57–107. [Google Scholar]
  240. Toy, S. J. , & Newfield, M. J. (2010). The accidental introduction of invasive animals as hitchhikers through inanimate pathways: A New Zealand perspective. Revue Scientifique et Technique (International Office of Epizootics), 29(1), 123–133. [DOI] [PubMed] [Google Scholar]
  241. TRACES‐NT . (online). TRADE Control and Expert System. https://webgate.ec.europa.eu/tracesnt.
  242. Ueda, S. , Quek, S.‐P. , Itioka, T. , Murase, K. , & Itino, T. (2010). Phylogeography of the Coccus scale insects inhabiting myrmecophytic Macaranga plants in Southeast Asia. Population Ecology, 52(1), 137–146. 10.1007/s10144-009-0162-4 [DOI] [Google Scholar]
  243. Ultee, A. J. (1931). Report of the Malang (Java) Experiment Station for 1930 (p. 51). Mededelingen Van Het Proefstation Malang. [Google Scholar]
  244. Vadivelu, S. , David, B. V. , & Rajamohan, N. (1976). Pests of Crossandra (CrossandraInfundibuliformis) in South India. Pesticides (Bombay), 10, 1239–1240. [Google Scholar]
  245. Van der Goot, P. (1916). Further investigations regarding the economic importance of the Gramang‐ant. Meded. v. h. Proefstation Midden‐Java, 122. [Google Scholar]
  246. Van Hall, C. J. J. (1919). Diseases and pests of cultivated plants in the Dutch east indies in 1918. Mededelingen Van het Laboratorium voor Plantenziekten. 49 pp.
  247. van Harten, A. , Cox, J. M. , & Williams, D. J. (1990). Scale insects of the Cape Verde Islands (Homoptera: Coccoidea). Courier Forschungsinstitut Senckenberg, 129, 131–137. [Google Scholar]
  248. Vandenberg, N. J. , Iverson, A. , & Liere, H. (2018). A new species of myrmecophilous lady beetle in the genus Diomus (Coleoptera: Coccinellidae: Diomini) from Chiapas, Mexico that feeds on green coffee scale, Coccus viridis (Green) (Hemiptera: Coccidae). Zootaxa, 4420(1), 113–122. 10.11646/zootaxa.4420.1.6 [DOI] [PubMed] [Google Scholar]
  249. Vandermeer, J. , Armbrecht, I. , de la Mora, A. , Ennis, K. K. , Fitch, G. , Gonthier, D. J. , Hajian‐Forooshani, Z. , Hsieh, H.‐Y. , Iverson, A. , Jackson, D. , Jha, S. , Jiménez‐Soto, E. , Lopez‐Bautista, G. , Larsen, A. , Li, K. , Liere, H. , MacDonald, A. , Marin, L. , Mathis, K. A. , … Perfecto, I. (2019). The community ecology of herbivore regulation in an agroecosystem: Lessons from complex systems. Bioscience, 69(12), 974–996. 10.1093/biosci/biz127 [DOI] [Google Scholar]
  250. Varshney, R. K. (1985). A review of Indian coccids (homoptera: Coccoidea). Oriental Insects, 19(1), 1–101. 10.1080/00305316.1985.10433701 [DOI] [Google Scholar]
  251. Varshney, R. K. (1992). A check list of the scale insects and mealy bugs of South Asia. Part‐1. Records of the Zoological Survey of India, Occasional Paper (No. 139): 1–152.
  252. Vayssière, P. (1913). Note sur les coccides de l'Afrique occidentale. Annales Du Service Des Épiphyties, 1, 424–432. [Google Scholar]
  253. Vieira, R. M. D. S. , Carmona, M. M. , & Pita, M. D. S. (1983). Sobre os coccídeos do Arquipélago da Madeira (Homoptera‐Coccoidea). Boletim do Museu Municipal do Funchal, 35. [Google Scholar]
  254. Vieira, R. M. S. (1953). Duas especies de Coccideos novas para a Madeira. Boletim da Sociedade Portuguesa de Ciencias Naturais [2 A SER], 4, 205–208. [Google Scholar]
  255. Visalaksy, P. N. G. , Swathi, C. , Darshana, C. N. , Pillai, K. G. K. , & Moorthy, A. K. (2014). Natural epizootic of pink fungus, Paecilomyces lilacinus (Thom) Samson on green scale, Coccus viridis (Green). Pest Management in Horticultural Ecosystems, 20, 240–241. [Google Scholar]
  256. Viswanathan, P. R. K. (1971). New hosts on Coccus viridis from India. Journal of Coffee Research, 1, 15. [Google Scholar]
  257. Von Ellenrieder, N. (2025). New records of scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) from California with an updated checklist for the state. The Pan‐Pacific Entomologist, 101(1), 15–50. 10.3956/2024-101.1.15 [DOI] [Google Scholar]
  258. Vranjic, J. A. (1997). Effects on host plant. In Ben‐Dov Y. & Hodgson C. J. (Eds.), Soft scale insects: Their biology, natural enemies and control (Vol. 7A, pp. 323–336). Elsevier Science B.V. [Google Scholar]
  259. Waller, J. M. , Bigger, M. , & Hillocks, R. J. (2007). Coffee pests (p. 434). Diseases and their Management. Crop Protection Programme. [Google Scholar]
  260. Waterhouse, D. F. (1993). The major arthropod pests and weeds of agriculture in Southeast Asia: Distribution, importance and origin. Monograph No 21, vi + 141 pp. [Google Scholar]
  261. Waterhouse, D. F. , & Sands, D. P. A. (2001). Classical biological control of arthropods in Australia. ACIAR Monograph, 77, 560. [Google Scholar]
  262. Waterston, J. (1916). Notes on Cocoid‐infestlng Chalcidoidea ‐ I. Bulletin of Entomological Research, 7, 137–144. [Google Scholar]
  263. Williams, D. J. (1985). Some scale insects (Hom., Coccoidea) from the Island of Nauru. Entomologist's Monthly Magazine, 121, 53. [Google Scholar]
  264. Williams, D. J. , & Watson, G. W. (1990). The scale insects of the tropical South Pacific region. Part 3: The soft scales (Coccidae) and other families. In The scale insects of the tropical South Pacific region. Part 3: The soft scales (Coccidae) and other families (p. 267). CAB International. [Google Scholar]
  265. Williams, M. L. (2010). Annotated list of the scale insects of Guatemala. Entomologia Hellenica, 19(2), 144–152. 10.12681/eh.11583 [DOI] [Google Scholar]
  266. Wolff, V. R. , Kondo, T. , Peronti, A. L. , & Noronha, A. C. (2016). Scale insects (Hemiptera: Coccoidea) on Myrciaria dubia (Myrtaceae) in Brazil. Neotropical Entomology, 45(3), 274–279. 10.1007/s13744-016-0365-2 [DOI] [PubMed] [Google Scholar]
  267. Wurth, T. (1920). The Malang Experiment Station report for 1919. Malang. 21 pp.
  268. Wuryantini, S. , Endarto, O. , Cahyo Wicaksono, R. , Istianto, M. , Hussain, Z. , & Triasih, U. (2023). Bioinsecticide activity of neem oil and tobacco extract mixture against citrus aphids and Green scale on citrus. E3S Web of Conferences, 432, 00036. 10.1051/e3sconf/202343200036 [DOI] [Google Scholar]
  269. Yalemar, J. A. (1999). Irradiation as a Possible Quarantine Treatment for Green Scales, Coccus viridis (Green) (Homoptera: Coccidae) and Yellow Flower Thrips, Frankliniella schultzei (Trybom) (Thysanoptera: Thripidae). Master thesis.

Articles from EFSA Journal are provided here courtesy of Wiley

RESOURCES