Abstract
儿童慢性髓系白血病(chronic myeloid leukemia, CML)相较于成人侵袭性更强,具有独特的分子特征及更易发生CML急性淋巴细胞白血病变的特点。酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)的应用显著改善了儿童CML的预后。该文基于国际国内共识及临床经验,提出儿童CML的规范化诊疗建议,涵盖初始治疗选择、疗效评估、药物转换及不良反应管理。异基因造血干细胞移植(allogeneic hematopoietic stem cell transplantation, allo-HSCT)仅推荐用于儿童CML疾病进展或多线TKI治疗失败者。初诊CML加速期推荐以高剂量伊马替尼或二代TKI为初始治疗,达最佳反应者维持治疗,未达标者需更换TKI并考虑allo-HSCT。CML急变期诱导治疗需TKI联合化疗,并以allo-HSCT为核心治愈手段。该文通过3个典型病例,突出儿科CML治疗中常见但具挑战性的问题(应答不佳、药物不能耐受、疾病进展),旨在优化儿童CML治疗策略。此外,对实现无治疗缓解的目标,均需要进一步通过多中心临床研究来解决。
Keywords: 慢性髓系白血病, 诊断, 治疗, 酪氨酸激酶抑制剂, 异基因造血干细胞移植, 儿童
Abstract
Pediatric chronic myeloid leukemia (CML) is more aggressive than adult CML, with unique molecular characteristics and a higher propensity for lymphoid blast crisis. The application of tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis of pediatric CML. Based on international consensus and clinical experience, this article proposes standardized diagnosis and treatment recommendations for pediatric CML, covering initial therapy selection, efficacy evaluation, drug switching, and management of adverse effects. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is recommended only for patients with disease progression or failure of multiple lines of TKI therapy. For children newly diagnosed with CML in accelerated phase, high-dose imatinib or second-generation TKIs are recommended as first-line therapy. Those achieving optimal responses should continue maintenance therapy, while non-responders require switching to alternative TKIs and consider allo-HSCT. For blast-phase CML, induction therapy requires a combination of TKIs and chemotherapy, with allo-HSCT serving as the core curative intervention. This article highlights common but challenging problems (poor response, drug intolerance, and disease progression) in pediatric CML treatment using three typical cases, aiming to optimize treatment strategies. Furthermore, the goal of achieving treatment-free remission needs to be further addressed through multi-center clinical studies.
Keywords: Chronic myeloid leukemia, Diagnosis, Treatment, Tyrosine kinase inhibitor, Allogeneic hematopoietic stem cell transplantation, Child
慢性髓系白血病(chronic myeloid leukemia, CML)是一种获得性克隆性骨髓增殖性肿瘤,其特征为染色体t(9;22)(q34.1;q11.2)易位形成费城染色体(Philadelphia chromosome, Ph),并由此产生BCR::ABL1融合基因。儿童CML属于罕见疾病,全球年发病率为0.6~1.2例/百万人口,发病率与年龄呈正相关:在15岁以下儿童中占白血病病例的2%~3%,而在15~19岁青少年中占比升至9%[1-2]。CML的整个病程分为3个期:CML慢性期(chronic phase, CML-CP)、CML加速期(CML accelerated phases, CML-AP)和CML急变期(CML-blast-phase, CML-BP)。与成人相比,儿童CML表现出更高的侵袭性,白细胞计数(white blood cell count, WBC)更高,脾脏肿大更为显著,初诊时处于CML-AP或CML-BP的比例更高,可形成BCR::ABL1 P190融合基因且发病初期即伴随肿瘤驱动性体细胞突变的比例显著增高,儿童CML-BP更易急性淋巴细胞白血病变(acute lymphoblastic leukemia, ALL),即急淋变[3-4]。目前儿童CML诊治存在两大关键问题:一是缺乏针对儿童CML的预后评分系统;二是缺乏治疗方面的循证医学证据。21世纪以来,酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)的研发与应用彻底改变了CML的治疗模式,患儿可通过每日口服药物即可实现长期疾病控制。然而,由于儿童接受TKI治疗的时间较长,需特别关注药物选择、疗效评估、药物转换、长期不良反应以及停药探索等一系列问题。本文将基于国际、国内共识及临床实践经验[5-6],结合典型病例分析,系统探讨儿童CML的规范化诊疗路径。
1. 低危儿童CML-CP的诊治
病例1:男,6岁,因腹痛1周就诊。查体:中度贫血貌,肝脏肋下5 cm,脾脏肋下9 cm。血常规:WBC 521.1×109/L[参考值:(4~10)×109/L)],血红蛋白65 g/L(参考值:120~140 g/L),血小板计数254×109/L[参考值:(100~300)×109/L]。骨髓形态学及活检符合CML-CP的诊断,骨髓涂片原始粒细胞0.5%,外周血原始粒细胞1%。染色体核型为46,XY,t(9;22)(q34.1;q11.2)[20];BCR::ABL1 P210定量国际标准化比值(international scale, IS):骨髓90.715%、外周血213.947%。欧洲治疗与预后研究长期生存(European treatment and outcome study long term survival, ELTS)评分1.473 5,评低危组。使用伊马替尼(imatinib, IM)260 mg/(m2·d)初始治疗,治疗期间未发生明显药物毒性反应。治疗3、6和12个月后外周血BCR::ABL1 P210 IS值分别为:2.878%、1.259%和0.198%。其父母确认患儿每日规律服药,无漏服。突变分析未发现ABL1激酶突变。基于持续分子学应答及激酶突变检测结果,维持原治疗方案。治疗18个月后外周血BCR::ABL1 P210 IS值0.045%。患儿治疗及融合基因评估结果见图1。
图1. 病例1治疗前后BCR::ABL1 IS值变化情况 [CML-CP]CML慢性期;[CHR]完全血液学反应;[CCyR]完全细胞遗传学反应。.
1.1. 儿童CML-CP初始治疗管理
无症状高白细胞者予以静脉水化2.5~3 L/(m²·d)联合羟基脲20~40 mg/(kg·d),分2~3次口服。WBC>100×10⁹/L且伴器官损害(如脑/肺白细胞淤滞、阴茎异常勃起)者,立即行白细胞单采术或血液置换;血尿酸>476 μmol/L是应用别嘌醇的适应证[8]。确诊后(Ph+/BCR::ABL1 +)立即开始TKI治疗,并持续使用羟基脲至WBC<10×10⁹/L[9]。
1.2. TKI初始治疗
TKI已取代异基因造血干细胞移植(allogeneic hematopoietic stem cell transplantation, allo-HSCT)成为儿童CML-CP的一线标准治疗。近年来,国际上批准一代TKI IM;二代TKI达沙替尼(dasatinib, DAS)、尼洛替尼(nilotinib, NIL)和博舒替尼用于儿童 CML 治疗;三代TKI普纳替尼和奥雷巴替尼及变构抑制剂阿西米尼仍处于儿童CML的临床试验中。我国目前有前3种TKI,选择一线TKI时需综合权衡疗效、安全性、可及性、成本及治疗目标。
在儿童中,相较于其他TKI,临床医生对IM的疗效、毒性特征及合并症方面的了解更多。此外,药物可及性、给药便利性及经济因素也需考虑。IM与DAS均为每日1次给药,可与食物同服;而NIL需每日2次服用,且每次给药前后2 h需禁食。此类限制可能对低龄儿童及青少年的依从性构成挑战。而且二代TKI费用远高于一代TKI。
目前儿童CML患者一线治疗首选IM[260~340 mg/(m²·d),最大400 mg,每日1次][10-12]。儿科患者中尚无二代TKI与IM的随机对照研究,但二代TKI的分子缓解率似乎与成人相当。有限的儿科队列数据表明,二代TKI在治疗6个月和12个月时的分子学缓解深度更优,但至18个月时与IM相近[11,13-14]。迄今为止,二代TKI在儿科病例中严重不良反应(如DAS相关胸腔/心包积液)的报告罕见[13-14]。
成人中广泛用于预测预后的风险评分系统,如Sokal评分、EURO评分、EUTOS评分及ELTS评分在儿童中并不适用,但ELTS评分可有效识别无进展生存(progression-free survival, PFS)期较差的儿童CML-CP患者亚群[9,15-16]。ELTS<1.568 0为低危,1.568 0~2.218 5为中危,>2.218 5为高危,ELTS高危组患儿初始使用二代TKI可能PFS获益[15-16],因此有国际共识[7]建议二代TKI可作为儿童CML-CP ELTS高危组一线治疗方案,根据患儿耐受性可选用DAS 60 mg/(m²·d)(最大100 mg)、NIL 230 mg/(m²·d)(最大400 mg)或博舒替尼300 mg/(m²·d)(最大500 mg)[13,17-18]。但ELTS无法预测总生存(overall survival, OS)期[15],其在儿童CML的可行性仍需大样本的研究进一步证实。二代TKI虽可加速分子生物学反应但未显著改善OS率[13,18]。因此,笔者不推荐常规将二代TKI作为儿童CML-CP初始一线治疗。
1.3. 治疗反应评估与监测策略
TKI治疗反应评估基于血液学、细胞遗传学和分子生物学反应[19]。目前尚无儿科专用的治疗反应评估标准,既往参考美国国家综合癌症网络(National Comprehensive Cancer Network, NCCN)指南或欧洲白血病网络(European Leukemia Network, ELN)成人标准,需注意的是同一指标可能被NCCN列为“警示”、ELN判定为“治疗失败”,需结合指南灵活决策。笔者建议参考最新的儿童CML-CP诊治共识[7],治疗后评价指标及监测见表1和表2。常用的评价指标有:完全血液学反应(complete hematologic response, CHR)指疾病症状消失、无脾大、血常规及分类正常;完全细胞遗传学反应(complete cytogenetic response, CCyR)指骨髓Ph消失(分析≥20个中期细胞);主要分子反应(major molecular response, MMR)指BCR::ABL1 IS值≤0.1%,又称分子反应(molecular response, MR)3.0。未达CHR前每1~2周监测血常规,随后每3个月监测1次。未达完CCyR前每6个月骨髓穿刺复查染色体核型,此外在出现TKI治疗失败、疾病进展时也应及时监测。目前,实时定量聚合酶链反应检测BCR::ABL1转录水平IS是评估治疗反应的金标准,建议初始治疗前3个月每个月检测BCR::ABL1定量,随后每3~6个月检测。由于血液和骨髓中BCR::ABL1定量具有良好相关性,已获MMR者无需进行骨髓穿刺,可用外周血替代[20-21]。儿童CML-CP治疗疗效标准见表2,根据治疗反应评估的管理策略见图2。
表1.
儿童CML-CP治疗后评价指标及监测
评估项目 | 监测策略 |
---|---|
血常规及分类 | 治疗初期每1~2周1次,CHR后每3个月1次 |
骨髓染色体核型 | 每6个月1次,直至达CCyR/TKI治疗失败/疾病进展 |
BCR::ABL1转录本水平(IS) | 骨髓/外周血(初始每月1次共3次,后期每3个月1次),达MMR后采外周血 |
ABL1 激酶突变 | TKI治疗失败/疾病进展 |
B超肝脏及脾脏大小(肋缘下) | 每3个月1次直至达CHR |
血液肿瘤基因突变(二代基因组测序) | TKI治疗失败/疾病进展 |
代谢监测(肝肾功能、电解质、血糖及蛋白等) | TKI治疗初期每1~2个月检测,稳定后每3~6个月复查 |
注:[CHR]完全血液学反应;[CCyR]完全细胞遗传学反应;[TKI]酪氨酸激酶抑制剂;[MMR]主要分子反应,BCR::ABL1 IS值<0.1%;[IS]国际标准化比值。
表2.
儿童CML-CP治疗疗效标准[7]
疗效定义 | 3个月 | 6个月 | 12个月 | 其后的任何时点 |
---|---|---|---|---|
最佳反应 | ≤10% | ≤1% | ≤0.1% | ≤0.1% |
警示 |
>10% 并呈下降趋势 |
1%~10% 并呈下降趋势 |
0.1%~1% 并呈下降趋势 |
18~24个月未达或失去原有的≤0.1% |
治疗失败 |
>10% 并在随后的1~3个月证实 |
>10% | >1% | 三线治疗后未达≤0.1%或进展至加速/急变期 |
注:表中数据为BCR::ABL1 IS值。
图2. 儿童CML-CP管理策略 [TKI]酪氨酸激酶抑制剂;[allo-HSCT]异基因造血干细胞移植。.
特别注意,持续缓解者,达MR3.0但未达MR4.0(即BCR::ABL1 IS值≤0.01%)/MR4.5(即BCR::ABL1 IS值≤0.003 2%)建议继续维持原方案;缓慢应答者,BCR::ABL1转录水平持续下降但未达到里程碑标准可暂缓换药,继续监测基因转录水平,直到有更明确的治疗失败表现;治疗反应处于警告且转录水平未下降,需测定IM的血浆水平[22]。如果IM的血浆水平低于1 000 ng/mL,应考虑增加药物剂量,并持续调整直至达到MMR且血浆水平高于1 000 ng/mL[23-24]。二代TKI失败者优先选择三代TKI或入组阿西米尼试验(成人数据显示出高效性和良好的安全性[25-26])。不同TKI对特定突变的敏感性各异,因此选择替代TKI需依据具体突变类型。普纳替尼和奥雷巴替尼是唯二可有效靶向ABL1 T315I突变的TKI,但儿童尚未获批,且其安全剂量尚未明确。在开始三线治疗时,应启动供者查询等allo-HSCT准备。
TKI在儿童患者中引发的血液学及非血液学不良反应多为轻中度,暂停或减量后可逆,处理原则参考成人指南[19]。反复严重不良反应需换药,建议检测TKI血药浓度(评估代谢异常)[27]。此外,还需关注长期服用TKI药物对患儿生长发育、内分泌及心理的影响,建议每6个月进行专项评估。
病例1的诊疗规范,符合儿童CML-CP管理原则。患儿确诊后立即启动IM[260 mg/(m²·d)]治疗,剂量在推荐范围内,兼顾安全性与疗效;未盲目选择二代TKI,符合低危患儿一线治疗共识。分子学评估频率规范(3、6、12、18个月)。未过度依赖骨髓穿刺(达到MMR后采用外周血监测),减少创伤。当患儿对初始TKI治疗出现应答不佳时,根据指南及12个月时分子反应评定处于TKI耐药警示,但在此情况下至少应采取以下措施:(1)评估治疗依从性;(2)进行BCR::ABL1突变分析、细胞遗传学检测及骨髓BCR::ABL1转录水平测定。若BCR::ABL1转录水平骤升,需优先怀疑依从性差,而突变耐药通常表现为克隆缓慢扩增。该患儿ABL1激酶区突变阴性,排除了获得性耐药因素,服药依从性确认良好,考虑定量呈下降趋势,支持继续原方案治疗。监测BCR::ABL1持续下降,18个月达MMR,可长期维持原治疗并每3个月复查。
2. 儿童CML-AP的临床管理
病例2:女,6岁,因发现白细胞增高伴发热2周就诊。体格检查:中度贫血貌,肝脏肋下2 cm,脾脏肋下14 cm。血常规:WBC 60.6×109/L,血红蛋白79 g/L,血小板计数645×109/L。骨髓原粒细胞占11.5%,外周血原始粒细胞4%,结合形态学及活检结果,确诊为CML-AP。染色体核型46,XY,t(9;22)(q34.1;q11.2)[20]。BCR::ABL1 P210 IS值骨髓60.779%(DAS治疗7 d后),外周血31.442%(DAS治疗18 d后)。基因检测发现IDH2 p.R140Q突变(5.8%)。ELTS评分为1.793 3,评中危组。初始予DAS 60 mg/(m²·d)治疗,治疗期间出现3级贫血、4级血小板减少及4级粒细胞缺乏[28],且有反复肺部感染。虽治疗后3个月时达CHR,但骨髓BCR::ABL1 IS值仍为21.86%。因反复感染多次减量或停药,6个月时定量IS值升至44.70%,ABL1激酶区突变阴性。治疗7个月后因持续骨髓抑制及反复感染,换用NIL 230 mg/(m²·d)。换药后耐受良好,血常规正常,未再发生肺部感染,规律用药2个月时骨髓BCR::ABL1 IS值降至0.768%,3个月降至0.141%,14个月降至0.139%。患儿治疗及融合基因动态监测结果见图3。
图3. 病例2治疗前后BCR::ABL1 IS值变化情况 [CML-AP]CML加速期;[CHR]完全血液学反应;[CCyR]完全细胞遗传学反应。.
流行病学数据显示,TKI时代CML-CP年进展率已从20%降至1%~1.5%。儿童CML初诊时AP、BP占比分别为4%、3.5%,对应的5年OS率分别为94%、74%[29]。基于成人证据[30]及有限的儿童研究[29],尽管样本量有限,但数据表明大多数初诊CML-AP患儿无需allo-HSCT即可长期生存。儿童初诊CML-AP建议二代TKI,达最佳反应者维持治疗,可推迟allo-HSCT;未达最佳反应者需换用TKI并启动allo-HSCT评估。对二代TKI耐药或不耐受者可选择三代TKI或临床试验。治疗期间由CP进展为AP者需根据ABL1激酶突变、前期治疗史及合并症等情况调整TKI并立即启动allo-HSCT评估。尽管应立即启动HLA匹配供体搜索,但若患儿达到治疗反应里程碑,笔者不建议立即进行allo-HSCT。CML-AP的监测需结合外周血分子学反应评估及骨髓细胞遗传学分析。此外,对于一线IM治疗期间进展为CML-AP的患儿,若对二代TKI治疗反应良好且无二线治疗失败迹象,可推迟allo-HSCT[10,31-32]。儿童CML-AP的治疗流程见图4。
图4. 儿童CML进展期治疗流程 [TKI]酪氨酸激酶抑制剂;[allo-HSCT]异基因造血干细胞移植;[CML]慢性髓系白血病;[CML-AP]CML加速期;[CML-BP]CML急变期。.
病例2在DAS初始治疗虽达到CHR,但治疗3个月和6个月时BCR::ABL1 IS值仍>10%,根据指南处于治疗失败状态。分析原因为药物耐受性差,出现4级血液学毒性并反复感染,频繁停药导致治疗不充分。换用NIL后耐受性好,疗效显著改善,治疗3个月和6个月时均达到最佳反应,故维持当前治疗方案。现患儿已更换治疗14个月,虽未达MMR,但外周血BCR::ABL1转录水平呈持续下降趋势,建议继续NIL治疗并密切监测。
3. 儿童CML-BP临床管理
病例3:14岁女性,因间断鼻出血8 d,发现WBC增高6 d就诊。体格检查:中度贫血貌,肝肋下2 cm,脾肋下8 cm。血常规示WBC 378.48×109/L,血红蛋白62 g/L,血小板计数26×109/L,骨髓形态:外周血原始淋巴细胞90%,骨髓增生极度活跃,原始淋巴细胞占95%,为ALL骨髓象。流式细胞术证实为淋巴母细胞(CD19+、CD20+、TdT+、HLA-DR+)。染色体46,XX,t(9;22)(q34.1;q11.2)[5]/45,idem,-7,i(9)(q10)[15],荧光原位杂交(fluorescence in situ hybridization,FISH)发现CDKN2A基因缺失阳性,骨髓BCR::ABL P210 IS值91.8367%。诊断:ALL(普通B型,BCR::ABL P210阳性,CDKN2A缺失阳性,亚二倍体)。采用CCCG-ALL-2020方案VDLP(长春新碱、柔红霉素、培门冬酶及泼尼松)联合DAS(起始剂量120 mg/d,因骨髓抑制减量至100 mg/d)诱导化疗。治疗第19天骨髓流式检测微小残留病(minimal residual disease, MRD)0.04%,骨髓BCR::ABL P210 IS值12.843%。治疗期间并发深部肝念珠菌感染,调整抗真菌治疗(泊沙康唑肠溶片200 mg/100 mg交替)并减量DAS至50 mg/d。诱导化疗结束时,骨髓流式MRD转阴,但骨髓和外周血BCR::ABL P210 IS值分别为22.210%和8.850%,骨髓FISH可见中性粒细胞BCR::ABL1 +。修正诊断为CML-BP(急淋变)。ELTS评分12.512 2,评高危组。为获得更深的分子缓解,后更换TKI为奥雷巴替尼30 mg,隔日1次,经TKI治疗共8个月后行allo-HSCT,移植后+59 d复查骨髓BCR::ABL P210定量转阴,骨髓流式MRD阴性。随访至allo-HSCT后24个月,骨髓持续完全缓解,融合基因阴性。患儿治疗及融合基因评估结果见图5。
图5. 病例3治疗前后BCR::ABL1 IS值变化情况.
3.1. 儿童CML急变期的诊断要点
目前主要国际指南对CML-BP的骨髓/外周血原始细胞阈值的定义存在差异[19,33-35],ELN指南(2020)[19]要求原始细胞≥30%,而世界卫生组织(World Health Organization, WHO)标准(2022)[33]和国际共识分类(international consensus classification, ICC)(2022)[34]、NCCN指南(2023)[35]均采用原始细胞≥20%。针对儿童患者,各指南均未明确其阈值是否应低于成人,但WHO与ICC特别强调,若骨髓或外周血中原始淋巴细胞比例>5%,需高度警惕向急淋变进展,并需经免疫表型分析确认。笔者建议临床实践中优先依据WHO/ICC标准,因为原始细胞≥20%标准更贴近CML急变的生物学本质,且≥20%的阈值可更早识别疾病进展,避免延误治疗。若原始细胞比例在20%~30%之间且无明确急变临床表现,如新发髓外病变、染色体附加异常,需结合分子学(ABL1激酶区突变)和遗传学[染色体附加异常如i(17q)、+8]结果综合判断。确诊时需完成以下系统评估:血常规及分类、骨髓形态学/病理学、细胞遗传学、免疫分型、ABL1激酶突变检测、脑脊液细胞学检查及HLA分型。鉴别诊断要点如下。(1)初诊CML-BP急淋变与原发Ph+ ALL:初诊CML急淋变患者诱导化疗后常出现MRD检测结果不一致,流式细胞术/免疫球蛋白重链重排MRD水平低,而RT-PCR检测BCR::ABL1定量仍高;化疗后通过FISH检测髓系细胞中BCR::ABL1 +可确诊CML急淋变,而原发Ph+ ALL各方法的MRD结果一致。(2)初诊CML急髓变与原发Ph+急性髓系白血病(acute myeloid leukaemia, AML):优先考虑CML急髓变,原发BCR::ABL1 +AML极为罕见[6]。此外,CML急髓变可能表现为脾脏显著增大、骨髓/外周血嗜碱性粒细胞、嗜酸性粒细胞增多,而原发BCR::ABL1 + AML脾脏轻度增大或无增大,嗜碱性粒细胞增多罕见。
3.2. 儿童CML-BP的治疗
儿童CML-BP推荐采用TKI联合化疗序贯allo-HSCT的综合治疗。(1)继发性CML-BP:IM治疗后进展者,根据激酶域突变选择二代TKI;二代TKI进展或T315I突变者,建议使用普纳替尼或奥雷巴替尼。需注意普纳替尼与门冬酰胺酶联用可增加胰腺炎、肝毒性风险。(2)初诊CML-BP:首选二代TKI联合化疗快速诱导深度缓解,全程监测ABL1激酶区突变。若疗效欠佳,无论是否检出突变均应考虑换用普纳替尼或奥雷巴替尼[36-38]。
诱导化疗方案根据急变类型制定。(1)急淋变:采用Ph+ ALL方案联合TKI,第15天评估反应良好者可转为TKI单药维持,需联用中枢神经系统白血病预防。(2)急髓变:尚无标准方案,建议AML化疗方案1周期,TKI于化疗结束后启用[6]。需联用中枢神经系统白血病预防。是否追加化疗需评估缓解状态及供者情况[39-40]。这类患儿化疗后骨髓抑制较重,治疗中需平衡抗白血病强度与并发症管理。儿童CML-BP的治疗流程见图4。
儿童CML allo-HSCT适应证如下。(1)CML-CP:对≥3线TKI治疗失败或不耐受(尤其T315I突变者),建议短期桥接TKI治疗后尽快行allo-HSCT。(2)初诊CML-AP:二代TKI治疗失败者需考虑allo-HSCT。(3)初诊CML-BP:二代TKI联合化疗恢复至慢性期后,应尽早进行allo-HSCT。(4)继发进展期:TKI治疗中进展者需调整TKI后尽快行allo-HSCT。
CML-BP移植时机的决策需平衡MRD水平与疾病进展风险,首先allo-HSCT前缓解深度应达CCyR及以下水平(CCyR、MMR、BCR::ABL阴性者的5年生存率分别为12%、34%、72%[41],allo-HSCT前仍为CML-BP将显著增加移植相关死亡率[42-44])。儿童CML-BP患者使用TKI达CHR或CCyR能维持的时间较短,有研究显示allo-HSCT前中位时间为8.5个月(6~15个月),复发率高达15%~27%[6],因此建议CML-BP获得CHR即回到CML-CP期后3个月内完成allo-HSCT。
病例3充分展现了儿童CML-BP的诊疗复杂性。患儿初诊时呈现Ph+ ALL特征,但诱导化疗后骨髓/外周血BCR::ABL定量与流式MRD结果显著分离,通过中性粒细胞FISH检测最终修正诊断为CML-BP(急淋变)。治疗全程体现分层管理原则:针对严重骨髓抑制及深部真菌感染,动态调整DAS剂量并强化抗真菌治疗;遵循CML-BP治疗规范,采用二代/三代TKI联合化疗序贯allo-HSCT,成功实现疾病完全缓解。
4. 儿童CML的TKI停药管理
成人研究证实,深度持续分子缓解(MR4.0维持≥2年+TKI治疗≥3年)后停药可实现无治疗缓解(treatment-free remission, TFR),成功率约50%。但儿童CML更具侵袭性且生物学特性不同,小规模研究显示停药后结果并不理想[10,45]。且成人中可能出现的停药后反应,如肌肉骨骼痛[46]和神经认知障碍[47],尚无儿童数据。因此,目前儿童TKI停药仅建议在前瞻性临床试验中探索。
有限的研究表明,满足以下条件的CML-CP患儿(年龄<18岁)约50%可获得停药成功:(1)未出现疾病进展、治疗失败、预警征象或未接受过HSCT的CML-CP患儿;(2)IM持续治疗≥3年(治疗时间与成功率呈正相关);(3)维持深度分子学反应(MR4.0及以上)≥2年[48-50]。目前缺乏儿童减量停药与骤停的对比研究数据,二代TKI停药及二次停药经验亦有限[48]。建议仅对持续使用同种TKI≥3年(不耐受者可转换二线TKI)且符合以上标准者尝试停药[48-50]。
所有停药患儿需严密监测,一旦复发应立即重启TKI治疗。分子学复发定义为停药后任意时间点丧失MMR(BCR::ABL1 IS值>0.1%)。推荐停药后按以下方案监测:前6个月每月检测外周血BCR::ABL1转录水平,7~12个月每2个月检测1次,之后每3个月检测1次。若出现BCR::ABL1 IS值>1%或重启治疗3个月未达MMR,需行骨髓细胞遗传学分析及BCR::ABL1激酶区突变检测。多数复发患儿重启IM治疗后可在数周内恢复MMR[45,48]。基于现有循证医学证据,建议对儿童TKI停药实施严格的适应证把控及精准化监测,最好在临床试验中进行。
总之,儿童CML的管理强调多学科协作与个体化决策,通过规范化的分子监测、分层治疗和适时HSCT,最大化治疗获益。未来研究应聚焦于随访TKI治疗对儿童生长发育、内分泌及心理社会功能的长期影响;开发儿童特异性预后评分系统;制定TKI停药策略;探索新型疗法(嵌合抗原受体T细胞免疫疗法、变构抑制剂)在儿科的应用。
基金资助
中国医学科学院医学与健康科技创新工程项目(2023-I2M-C&T-B-106;2021-I2M-1-003)。
利益冲突声明
所有作者均声明无利益冲突。
作者贡献
安文彬负责文献检索、论文初稿撰写;杨文钰负责指导论文写作并修订论文内容。
参 考 文 献
- 1. Athale U, Hijiya N, Patterson BC, et al. Management of chronic myeloid leukemia in children and adolescents: recommendations from the Children's Oncology Group CML Working Group[J]. Pediatr Blood Cancer, 2019, 66(9): e27827. DOI: 10.1002/pbc.27827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Hijiya N, Suttorp M. How I treat chronic myeloid leukemia in children and adolescents[J]. Blood, 2019, 133(22): 2374-2384. DOI: 10.1182/blood.2018882233. [DOI] [PubMed] [Google Scholar]
- 3. Millot F, Suttorp M. Chronic Myeloid Leukemia in Children[M]//Alaggio R, Chan JKC, Hasle H. Haematolymphoid disorders: WHO classification book on paediatric tumours. 5th ed. Lyon: International Agency for Research on Cancer (IARC), 2023: 4-7. https://publications.iarc.fr/608. [Google Scholar]
- 4. Suttorp M, Millot F, Sembill S, et al. Definition, epidemiology, pathophysiology, and essential criteria for diagnosis of pediatric chronic myeloid leukemia[J]. Cancers (Basel), 2021, 13(4): 798. DOI: 10.3390/cancers13040798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. 中国医师协会血液科医师分会, 中华医学会儿科学分会血液学组 . 儿童慢性髓细胞性白血病诊疗专家共识[J]. 中华儿科杂志, 2022, 60(10): 973-978. DOI: 10.3760/cma.j.cn112140-20220508-00428. [DOI] [PubMed] [Google Scholar]
- 6. Sembill S, Ampatzidou M, Chaudhury S, et al. Management of children and adolescents with chronic myeloid leukemia in blast phase: international pediatric CML expert panel recommendations[J]. Leukemia, 2023, 37(3): 505-517. DOI: 10.1038/s41375-023-01822-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Millot F, Ampatzidou M, Moulik NR, et al. Management of children and adolescents with chronic myeloid leukemia in chronic phase: international pediatric chronic myeloid leukemia expert panel recommendations[J]. Leukemia, 2025, 39(4): 779-791. DOI: 10.1038/s41375-025-02543-4. [DOI] [PubMed] [Google Scholar]
- 8. de la Fuente J, Baruchel A, Biondi A, et al. Managing children with chronic myeloid leukaemia (CML): recommendations for the management of CML in children and young people up to the age of 18 years[J]. Br J Haematol, 2014, 167(1): 33-47. DOI: 10.1111/bjh.12977. [DOI] [PubMed] [Google Scholar]
- 9. Fischer MJ, Rheingold SR. Oncologic Emergencies[M]//Pizzo PA, Poplack DG. Principles and practices of pediatric oncology. 6th ed. Philadelphia: Lippencott Williams and Wilkins, 2011: 1125-1151. https://oncology.lwwhealthlibrary.com/book.aspx?bookid=1144. [Google Scholar]
- 10. Suttorp M, Schulze P, Glauche I, et al. Front-line imatinib treatment in children and adolescents with chronic myeloid leukemia: results from a phase III trial[J]. Leukemia, 2018, 32(7): 1657-1669. DOI: 10.1038/s41375-018-0179-9. [DOI] [PubMed] [Google Scholar]
- 11. Millot F, Baruchel A, Guilhot J, et al. Imatinib is effective in children with previously untreated chronic myelogenous leukemia in early chronic phase: results of the French national phase IV trial[J]. J Clin Oncol, 2011, 29(20): 2827-2832. DOI: 10.1200/JCO.2010.32.7114. [DOI] [PubMed] [Google Scholar]
- 12. Giona F, Putti MC, Micalizzi C, et al. Long-term results of high-dose imatinib in children and adolescents with chronic myeloid leukaemia in chronic phase: the Italian experience[J]. Br J Haematol, 2015, 170(3): 398-407. DOI: 10.1111/bjh.13453. [DOI] [PubMed] [Google Scholar]
- 13. Gore L, Kearns PR, de Martino ML, et al. Dasatinib in pediatric patients with chronic myeloid leukemia in chronic phase: results from a phase II trial[J]. J Clin Oncol, 2018, 36(13): 1330-1338. DOI: 10.1200/JCO.2017.75.9597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Hijiya N, Maschan A, Rizzari C, et al. The long-term efficacy and safety of nilotinib in pediatric patients with CML: a 5-year update of the DIALOG study[J].. Blood Adv, 2023, 7(23): 7279-7289. PMID: 37738125; DOI: 10.1182/bloodadvances.2023010122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Millot F, Guilhot J, Suttorp M, et al. Prognostic discrimination based on the EUTOS long-term survival score within the International Registry for Chronic Myeloid Leukemia in children and adolescents[J]. Haematologica, 2017, 102(10): 1704-1708. DOI: 10.3324/haematol.2017.170035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Millot F, De Keizer J, Metzler M, et al. Is the Eutos Long Term Survival (ELTS) Score a useful marker to predict outcome in children with newly diagnosed chronic myeloid leukemia (CML) in chronic phase (CP)? The experience of the international registry of childhood CML[J]. Blood, 2023, 142(S1): 448. DOI: 10.1182/blood-2023-173810. [DOI] [Google Scholar]
- 17. Hijiya N, Maschan A, Rizzari C, et al. Phase 2 study of nilotinib in pediatric patients with Philadelphia chromosome-positive chronic myeloid leukemia[J]. Blood, 2019, 134(23): 2036-2045. DOI: 10.1182/blood.2019000069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Brivio E, Pennesi E, Willemse ME, et al. Bosutinib in resistant and intolerant pediatric patients with chronic phase chronic myeloid leukemia: results from the phase I part of study ITCC054/COG AAML1921[J]. J Clin Oncol, 2024, 42(7): 821-831. DOI: 10.1200/JCO.23.00897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Hochhaus A, Baccarani M, Silver RT, et al. European Leukemia Net 2020 recommendations for treating chronic myeloid leukemia[J]. Leukemia, 2020, 34(4): 966-984. DOI: 10.1038/s41375-020-0776-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Lauseker M, Hanfstein B, Haferlach C, et al. Equivalence of BCR-ABL transcript levels with complete cytogenetic remission in patients with chronic myeloid leukemia in chronic phase[J]. J Cancer Res Clin Oncol, 2014, 140(11): 1965-1969. DOI: 10.1007/s00432-014-1746-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Branford S, Rudzki Z, Harper A, et al. Imatinib produces significantly superior molecular responses compared to interferon alfa plus cytarabine in patients with newly diagnosed chronic myeloid leukemia in chronic phase[J]. Leukemia, 2003, 17(12): 2401-2409. DOI: 10.1038/sj.leu.2403158. [DOI] [PubMed] [Google Scholar]
- 22. Millot F, Guilhot J, Baruchel A, et al. Impact of early molecular response in children with chronic myeloid leukemia treated in the French Glivec phase 4 study[J]. Blood, 2014, 124(15): 2408-2410. DOI: 10.1182/blood-2014-05-578567. [DOI] [PubMed] [Google Scholar]
- 23. Johnson-Ansah H, Maneglier B, Huguet F, et al. Imatinib optimized therapy improves major molecular response rates in patients with chronic myeloid leukemia[J]. Pharmaceutics, 2022, 14(8): 1676. DOI: 10.3390/pharmaceutics14081676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Picard S, Titier K, Etienne G, et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia[J]. Blood, 2007, 109(8): 3496-3499. DOI: 10.1182/blood-2006-07-036012. [DOI] [PubMed] [Google Scholar]
- 25. Hochhaus A, Wang J, Kim DW, et al. Asciminib in newly diagnosed chronic myeloid leukemia[J]. N Engl J Med, 2024, 391(10): 885-898. DOI: 10.1056/NEJMoa2400858. [DOI] [PubMed] [Google Scholar]
- 26. Hijiya N, Shimada H, Kapoor S, et al. Pharmacokinetics and safety of asciminib (ASC) in pediatric patients (pts) with Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia in chronic phase (CML-CP): interim results from the ASC4KIDS study[J]. J Clin Oncol, 2024, 42(16S): 6562. DOI: 10.1200/JCO.2024.42.16_suppl.6562. [DOI] [Google Scholar]
- 27. Janssen JM, Dorlo TPC, Steeghs N, et al. Pharmacokinetic targets for therapeutic drug monitoring of small molecule kinase inhibitors in pediatric oncology[J]. Clin Pharmacol Ther, 2020, 108(3): 494-505. DOI: 10.1002/cpt.1808. [DOI] [PubMed] [Google Scholar]
- 28. U.S. Department of Health and Human Services . Common Terminology Criteria for Adverse Events (CTCAE) v4.0[EB/OL]. (2010-06-14)[2025-02-13]. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_40.
- 29. Millot F, Guilhot J, Suttorp M, et al. Advanced phases at diagnosis of childhood chronic myeloid leukemia: the experience of the international registry for chronic myeloid leukemia (CML) in children and adolescents (I-CML-ped study)[J]. Blood, 2017, 130(S1): 316. DOI: 10.1182/blood.V130.Suppl_1.316.316. [DOI] [Google Scholar]
- 30. Kantarjian H, Cortes J, Kim DW, et al. Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib: 15-month median follow-up[J]. Blood, 2009, 113(25): 6322-6329. DOI: 10.1182/blood-2008-11-186817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Meyran D, Petit A, Guilhot J, et al. Description and management of accelerated phase and blast crisis in 21 CML pediatric patients[J]. Blood, 2015, 126(23): 2789. DOI: 10.1182/blood.V126.23.2789.2789. [DOI] [Google Scholar]
- 32. Chen J, Suttorp M, Hijiya N. How I treat chronic myeloid leukemia in children and adolescents[J]. Blood, 2025. Epub ahead of print. DOI: 10.1182/blood.2024026514. [DOI] [PubMed] [Google Scholar]
- 33. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms[J]. Leukemia, 2022, 36(7): 1703-1719. DOI: 10.1038/s41375-022-01613-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data[J]. Blood, 2022, 140(11): 1200-1228. DOI: 10.1182/blood.2022015850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. NCCN . Acute myeloid leukemia. Version 2.2025[EB/OL]. [2025-02-13]. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1411.
- 36. Millot F, Maledon N, Guilhot J, et al. Favourable outcome of de novo advanced phases of childhood chronic myeloid leukaemia[J]. Eur J Cancer, 2019, 115: 17-23. DOI: 10.1016/j.ejca.2019.03.020. [DOI] [PubMed] [Google Scholar]
- 37. Meyran D, Petit A, Guilhot J, et al. Lymphoblastic predominance of blastic phase in children with chronic myeloid leukaemia treated with imatinib: a report from the I-CML-ped study[J]. Eur J Cancer, 2020, 137: 224-234. DOI: 10.1016/j.ejca.2020.06.024. [DOI] [PubMed] [Google Scholar]
- 38. Sembill S, Göhring G, Schirmer E, et al. Paediatric chronic myeloid leukaemia presenting in de novo or secondary blast phase - a comparison of clinical and genetic characteristics[J]. Br J Haematol, 2021, 193(3): 613-618. DOI: 10.1111/bjh.17378. [DOI] [PubMed] [Google Scholar]
- 39. Deau B, Nicolini FE, Guilhot J, et al. The addition of daunorubicin to imatinib mesylate in combination with cytarabine improves the response rate and the survival of patients with myeloid blast crisis chronic myelogenous leukemia (AFR01 study)[J]. Leuk Res, 2011, 35(6): 777-782. DOI: 10.1016/j.leukres.2010.11.004. [DOI] [PubMed] [Google Scholar]
- 40. Copland M, Slade D, McIlroy G, et al. Ponatinib with fludarabine, cytarabine, idarubicin, and granulocyte colony-stimulating factor chemotherapy for patients with blast-phase chronic myeloid leukaemia (MATCHPOINT): a single-arm, multicentre, phase 1/2 trial[J]. Lancet Haematol, 2022, 9(2): e121-e132. DOI: 10.1016/S2352-3026(21)00370-7. [DOI] [PubMed] [Google Scholar]
- 41. Chen Z, Medeiros LJ, Kantajian HM, et al. Differential depth of treatment response required for optimal outcome in patients with blast phase versus chronic phase of chronic myeloid leukemia[J]. Blood Cancer J, 2017, 7(2): e521. DOI: 10.1038/bcj.2017.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Jain P, Kantarjian HM, Ghorab A, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: cohort study of 477 patients[J]. Cancer, 2017, 123(22): 4391-4402. DOI: 10.1002/cncr.30864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Niederwieser C, Morozova E, Zubarovskaya L, et al. Risk factors for outcome after allogeneic stem cell transplantation in patients with advanced phase CML[J]. Bone Marrow Transplant, 2021, 56(11): 2834-2841. DOI: 10.1038/s41409-021-01410-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Radujkovic A, Dietrich S, Blok HJ, et al. Allogeneic stem cell transplantation for blast crisis chronic myeloid leukemia in the era of tyrosine kinase inhibitors: a retrospective study by the EBMT chronic malignancies working party[J]. Biol Blood Marrow Transplant, 2019, 25(10): 2008-2016. DOI: 10.1016/j.bbmt.2019.06.028. [DOI] [PubMed] [Google Scholar]
- 45. Giona F, Saglio G, Moleti ML, et al. Treatment-free remission after imatinib discontinuation is possible in paediatric patients with chronic myeloid leukaemia[J]. Br J Haematol, 2015, 168(2): 305-308. DOI: 10.1111/bjh.13103. [DOI] [PubMed] [Google Scholar]
- 46. Saußele S, Richter J, Hochhaus A, et al. The concept of treatment-free remission in chronic myeloid leukemia[J]. Leukemia, 2016, 30(8): 1638-1647. DOI: 10.1038/leu.2016.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Claudiani S, Apperley JF, Deplano S, et al. Cognitive dysfunction after withdrawal of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia[J]. Am J Hematol, 2016, 91(11): E480-E481. DOI: 10.1002/ajh.24495. [DOI] [PubMed] [Google Scholar]
- 48. Millot F, Suttorp M, Ragot S, et al. Discontinuation of imatinib in children with chronic myeloid leukemia: a study from the international registry of childhood CML[J]. Cancers (Basel), 2021, 13(16): 4102. DOI: 10.3390/cancers13164102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Shima H, Kada A, Tanizawa A, et al. Discontinuation of tyrosine kinase inhibitors in pediatric chronic myeloid leukemia[J]. Pediatr Blood Cancer, 2022, 69(8): e29699. DOI: 10.1002/pbc.29699. [DOI] [PubMed] [Google Scholar]
- 50. Roy Moulik N, Keerthivasagam S, Chatterjee G, et al. Treatment-free remissions in children with chronic myeloid leukemia (CML): a prospective study from the Tata Memorial Hospital (TMH) pediatric CML (pCML) cohort[J]. Am J Hematol, 2025, 100(2): 210-217. DOI: 10.1002/ajh.27528. [DOI] [PMC free article] [PubMed] [Google Scholar]