Skip to main content
Toxics logoLink to Toxics
. 2025 Jun 30;13(7):559. doi: 10.3390/toxics13070559

Research Progress on Chemical Compositions, Pharmacological Activities, and Toxicities of Quinone Compounds in Traditional Chinese Medicines

Zhe Li 1,2, Rui Yao 1,2, Hong Guo 2, Wenguang Jing 2, Xiaohan Guo 2, Xiaoqiu Liu 1,*, Yingni Pan 1, Pei Cao 3, Lei Zhang 3, Jianbo Yang 2,*, Xianlong Cheng 2, Feng Wei 2
Editor: Andrey A Toropov
PMCID: PMC12298499  PMID: 40711004

Abstract

With the continuous development of research on natural medicines, quinone compounds have become increasingly important in the research field of chemical constituents of natural treatments. However, there is a lack of in-depth and systematic collation of their types, distribution, pharmacological activities, and potential toxicities. This article comprehensively reviews the structural types, biogenetic pathways, extraction and separation methods, structural identification techniques, pharmacological activities, and toxicities of quinone compounds. It is found that the main difficulties in the research of quinone compounds lie in the cumbersome traditional separation and structural identification processes, as well as the insufficient in-depth studies on the mechanisms of their activities and toxicities. This review aims to provide a reference for research on quinone compounds in natural products and offer ideas and suggestions for subsequent in-depth exploration of the pharmacological activities of quinone compounds, prevention and control of their toxicities, and the realization of rational drug use.

Keywords: quinones, chemical components, synthetic pathway, pharmacological activities, toxicity

1. Introduction

Quinone compounds are an important class of chemical constituents in natural medicines. They refer to natural organic compounds with an unsaturated cyclohexanedione structure within the molecule or are easily transformed into such structures [1]. According to the differences in their structures, quinone compounds are mainly classified into benzoquinones, naphthoquinones, phenanthraquinones, and anthraquinones [2], among which anthraquinones and their derivatives are the most numerous types. Quinone compounds are widely distributed in plants of families such as Polygonaceae Juss., Rubiaceae Juss., Leguminosae Lindl., Rhamnaceae Juss., and Liliaceae Juss., and are also present in the metabolites of some lower plants such as lichens and fungi. They possess various biological activities, including purgative, antibacterial, anti-tumor, diuretic, and hemostatic effects. In recent years, significant breakthroughs have been achieved in the research and development of new drugs derived from natural quinone compounds across multiple fields. For example, sodium tanshinone IIA sulfonate, a drug for treating coronary heart disease [3], and buparvaquone, an antimalarial drug [4]. In recent years, remarkable progress has been made in the research on the pharmacological activities of quinone chemical constituents in traditional Chinese medicines. However, quinone compounds have many adverse reactions, such as hepatotoxicity, nephrotoxicity, and carcinogenicity, which require widespread attention. Traditional Chinese medicines containing anthraquinone components may cause adverse reactions, such as melanosis coli, drug-induced liver injury, and drug-induced kidney injury in clinical practice [5]. Zhou Xujun’s analysis of 130 patients with melanosis coli showed that among 108 patients with constipation, 97 had a history of taking anthraquinone laxatives. Among them, 73 patients were grade III, and the medication duration was 1–4 years [6]. Wang Xiong [7] conducted a retrospective analysis of 12 inpatients with drug-induced liver injury caused by taking Pleuropterus multiflorus (Thunb.) Nakai and its related preparations were admitted to the Department of Hepatology of the First Affiliated Hospital of Hunan University of Chinese Medicine from January 2017 to March 2024. The severity classification was as follows: 8 cases; grade 1, 3 cases; and grade 3, and 1 case was at grade 4. All patients with grade 3 and above liver injury received traditional Chinese medicine prescriptions, and liver injury in those who took proprietary Chinese medicines was mostly mild. After discontinuing the related preparations and receiving symptomatic supportive treatments, such as liver protection and transaminase level reduction, all patients improved and were discharged from the hospital. The occurrence of drug-induced kidney injury may be related to Aloe vera (Haw.) Berg, Senna alexandrina Mill., Astragalus membranaceus (Fisch.) Bunge, Reynoutria japonica Houtt., Senna obtusifolia (L.) H. S. Irwin and Barneby [8]. Zhao Fengbo [9] analyzed 172 patients with renal parenchymal acute kidney injury (AKI). The results showed that 39 cases were caused by the consumption of Chinese herbal medicines. Among the causative herbal medicines, Aloe vera (Haw.) Berg containing anthraquinone components was included.

The dynamic changes in the number of literature, to a certain extent, reflect the academic community’s attention and research progress on quinone compounds. This article conducted searches in the China National Knowledge Infrastructure (CNKI) and Web of Science databases. In CNKI, the advanced search method was adopted, with “quinones (exact)” as the search term; in the Web of Science, the search condition is set as: Topic = “quinone”. The search period was set from 1995 to 2024. After the search, 62,241 literature were obtained, among which 7927 were included in CNKI and 54,314 were included in the Web of Science. The number of references on quinone compounds has generally shown an upward trend. An increasing number of new quinone compounds have been extracted, separated, and identified, and their pharmacological activities and synthesis pathways have been further elucidated. This review elaborates on the chemical constituents, synthesis pathways, pharmacological activities, and toxicities of quinone compounds in traditional Chinese medicine, with the aim of providing scientific references for subsequent research on the pharmacological activities of quinone compounds, toxicity prevention and control, and safety evaluation standards.Figure 1 introduces the number of references based on quinone compounds.

Figure 1.

Figure 1

The number of references based on quinones.

2. Progress in Chemical Composition Research

2.1. Structure Type and Distribution

2.1.1. Benzoquinones

Benzoquinones are structurally divided into two major groups: ortho-benzoquinone and para-benzoquinone, and compounds with pro-benzoquinone structures are unstable; therefore, most naturally occurring benzoquinone compounds are para-benzoquinone derivatives [10]. The substituents of benzoquinone are more varied and are usually classified into small and large groups. Common small groups include hydroxyl, methoxy, carboxyl, and smaller hydrocarbon groups containing less than three carbons, while large groups include saturated or unsaturated chain hydrocarbons containing more than three carbon atoms, benzene rings, and more complex carbon-containing substituents. Figure 2 introduces the classification of the skeletal structures of quinone compounds.

Figure 2.

Figure 2

Classification of the skeletal structures of quinone compounds.

Benzoquinones can be categorized into small-molecule benzoquinones, advanced straight-chain hydrocarbon benzoquinones, isopentenyl benzoquinones, furanobenzoquinones, flavonoid benzoquinones, terpene benzoquinones, and benzoquinones based on the nature of the substituent groups [11]. Small-molecule benzoquinones are common small-molecule substituents, such as hydroxyl, methoxy, and alkyl groups, which are attached to the parent nucleus of the benzoquinone. A total of 14 types of small-molecule benzoquinones have been identified, and examples of small-molecule benzoquinones include 2-methyl-p-quinone, 2, 6-dimethoxy-1, 4-benzoquinone, and others. Advanced straight-chain hydrocarbon benzoquinones have at least one advanced straight-chain aliphatic hydrocarbon attached to the parent nucleus of the benzoquinone, and nine types have been found, such as primin and arnebifuranone. Isopentenyl benzoquinones have a variable number of isopentenyl groups attached to the parent nucleus of the benzoquinone, of which 12 have been found, such as omphalone, 3-bydroxy-2-methyl-5-(3-methyl-2-butenyl)benzo-1,4-quinone. Furobenzoquinones are compounds formed by the fusion of a benzoquinone with a furan ring, of which there are three. An example of a furan-based benzoquinone is cyperaquinone. Flavonoid benzoquinones are structurally characterized by a skeleton similar to that of flavonoids, with the difference that the B ring of this class of compounds is not a benzene ring, but a benzoquinone and its derivatives, of which there are four, such as cyclofissoquinone and bodimoquinone. Terpene quinones are compounds with a terpene skeleton but with a benzoquinone structure in the molecule. There are four kinds, such as 3-acetoxymo-quinone. Biphenylquinone is a dimer consisting of two identical or different benzoquinones linked by a carbon-carbon bond, there are seven kinds. Examples of biphenylquinones include methylvilangin and lanciaquinone.

graphic file with name toxics-13-00559-i001.jpg

1,4 Benzoquinone was synthesized using a two-step process. In the first step, compound 1 was reacted with paraformaldehyde in different solvents (37% hydrochloric acid, 47% hydrogen bromide, morpholine, and piperidine) for 2 h at 35 °C to give compounds 2a2d in high yields. The second step involved the oxidation of compounds 1a1d with cerium ammonium nitrate (CAN) at room temperature to obtain the desired compounds 2a2d in good yields. This method is short, high-yield, and easy to post-process [12]. Figure 3 introduces the synthetic pathways of quinone compounds.

Figure 3.

Figure 3

Synthetic pathways of quinone compounds.

Benzoquinones are found in Leguminosae Lindl., Asteraceae L., Comfreyaceae L., Araceae Juss., and some fungi. Among them, four isopentenyl-substituted benzoquinones were isolated from Nephthea chabrolii Audouin, one small-molecule benzoquinone, one high-level straight-chain hydrocarbon benzoquinone, and two isopentenyl-substituted benzoquinones from Arnebia euchroma (Royle) I.M. Johnst., and four small-molecule benzoquinones from Antrodia cinnamomea T. T. Chang & W. N. Chou. Three flavonoid benzoquinones were isolated from Dalbergia odorifera T. Chen. Two biphenoquinones and one advanced straight-chain hydrocarbon benzoquinone were isolated from Myrsine africana L. var. acuminata C. Y. Wu et C. Chen (synonym). Two isopentenyl-substituted benzoquinones were isolated from Atractylodes koreana (Nakai) Kita. Two terpene benzoquinones were isolated from Helianthus annuus L. Two advanced straight-chain hydrocarbon benzoquinones were isolated from Embelia ribes Burm. f. Table 1 presents the names and molecular formulas of benzoquinone compounds.

Table 1.

Names and molecular formulas of the benzoquinone compounds.

No. Name Resource Molecular Classification Ref.
1 2-methyl-p-quinone Blaps rynchopetera Fairmaire C7H6O2 small molecule benzoquinone [13]
2 2,5-dimethyl-3-methoxy-p-benzoquinone Fluridobulus penneri C9H10O3 small molecule benzoquinone [14]
3 2, 6-dimethoxy-1, 4-benzoquinone Atractylodes macrocephala Koidz C8H8O4 small molecule benzoquinone [15]
4 aurantiogliocladin Arnebia euchroma (Royle) I.M. Johnst. C10H12O4 small molecule benzoquinone [16]
5 2-hydroxy-3-methoxy-5-methyl-p-benzoquinone Antrodia cinnamomea T. T. Chang & W. N. Chou C8H8O4 small molecule benzoquinone [17]
6 2-methoxy-6-methyl-p-benzoquinone Antrodia cinnamomea T. T. Chang & W. N. Chou C8H8O3 small molecule benzoquinone [17]
7 2,3-dimethoxy-5-methyl-p-benzoquinone Antrodia cinnamomea T. T. Chang & W. N. Chou C9H10O4 small molecule benzoquinone [17]
8 2-hydroxy-5-methoxy-3-methyl-p-benzoquinone Antrodia cinnamomea T. T. Chang & W. N. Chou C8H8O4 small molecule benzoquinone [17]
9 anserinone A Podospora anserina (Rabenh.) Niessl C11H12O4 small molecule benzoquinone [18]
10 anserinone B Podospora anserina (Rabenh.) Niessl C11H14O4 small molecule benzoquinone [18]
11 2-hydroxy-3-methyl-5-methoxy-p-benzoquinone Pterospermum heterophyllum Hance C8H8O4 small molecule benzoquinone [14]
12 2.3-dimethyl-5, 6-dimethoxy-p-benzoquinone Gliocladium penicilloides Corda C10H12O4 small molecule benzoquinone [14]
13 2, 5-dimethoxy-3, 6-dimethyl-p-benzoquinone Neonectria fuckeliana (C. Booth) Castl. & Rossman C10H12O4 small molecule benzoquinone [14]
14 thymoquinone Nigella sativa L. C10H12O2 small molecule benzoquinone [19]
15 primin Miconia lepidota DC. C12H16O3 advanced straight-chain hydrocarbon benzoquinone [20]
16 embelin Embelia ribes Burm. f C17H26O4 advanced straight-chain hydrocarbon benzoquinone [21]
17 2,5-dihydroxy-3-tridecyl-1, 4-benzoquinone Embelia ribes Burm. f. C19H30O4 advanced straight-chain hydrocarbon benzoquinone [21]
18 myrsinone Myrsine africana L. var. acuminata C. Y. Wu et C. Chen (synonym) C17H26O4 advanced straight-chain hydrocarbon benzoquinone [14]
19 idebenone - C19H30O5 advanced straight-chain hydrocarbon benzoquinone [22]
20 2-methoxy-6-nonadecyl-1,4-benzoquinone Miconia lepidota DC. C26H44O3 advanced straight-chain hydrocarbon benzoquinone [23]
21 (-)-a-tocospirone Gynura japonica (Thunb.) Juel C29H50O4 advanced straight-chain hydrocarbon benzoquinone [24]
22 maesaquinone Maesa japonica (Thunb.) Moritzi C26H42O4 advanced straight-chain hydrocarbon benzoquinone [25]
23 paphionone Paphiopedilum exul (Ridl.) Rolfe C20H30O5 advanced straight-chain hydrocarbon benzoquinone [26]
24 isopentenyl p-benzoquinone Phagnalon purpurescens Sch. Bip. C11H12O2 isopentenyl benzoquinone [14]
25 3,5,6-trimethoxy-2-isopentene-p-benzoquinone Dendrobium nobile Lindl. C14H18O5 isopentenyl
benzoquinone
[14]
26 omphalone Lentinellus micheneri (Berk. & M. A. Curtis) Pegler C11H8O3 isopentenyl benzoquinone [27]
27 2(E) -2-geranyl-6-methyl p-benzoquinone Atractylodes koreana (Nakai) Kita. C17H22O2 isopentenyl benzoquinone [14]
28 2-(Z) -2-geranyl-6-methyl p-benzoquinone Atractylodes koreana (Nakai) Kita. C17H22O2 isopentenyl benzoquinone [14]
29 amebifuranone Arnebia euchroma (Royle) I.M. Johnst C18H20O5 isopentenyl benzoquinone [14]
30 arnebinone Arnebia euchroma (Royle) I.M. Johnst C18H22O4 isopentenyl benzoquinone [14]
31 chabrolobenzoquinone E Nephthea chabrolii Audouin C27H38O3 isopentenyl benzoquinone [28]
32 chabrolobenzoquinone F Nephthea chabrolii Audouin C29H40O4 isopentenyl benzoquinone [28]
33 chabrolobenzoquinone G Nephthea chabrolii Audouin C27H38O3 isopentenyl benzoquinone [28]
34 chabrolobenzoquinone H Nephthea chabrolii Audouin C29H42O5 isopentenyl benzoquinone [28]
35 atrovirinone Garcinia atroviridis Griffith ex T. Anderson C25H28O8 isopentenyl benzoquinone [29]
36 cyperaquinone Cyperus nipponicus Franch. & Sav. C14H10O4 furanobenzoquinone [30]
37 albidin Penicillium albidum Sopp C10H8O4 furanobenzoquinone [14]
38 graphisquinone Graphis scripta (L.) Ach. C11H10O5 furanobenzoquinone [14]
39 chrysoquinane Euphorbia esula L. C19H16O9 flavonoid benzoquinone [14]
40 claussequinone Dalbergia odorifera T.Chen C16H16O5 flavonoid benzoquinone [14]
41 bowdichione Dalbergia odorifera T.Chen C16H10O6 flavonoid benzoquinone [14]
42 donoherbivol-cyclocledoquinone Dalbergia odorifera T.Chen C32H28O9 flavonoid benzoquinone [14]
43 3-Acetoxymo-quinone Cordia oncocalyx (Allemão) Baill. C12H14O4 terpenebenzoquinone [31]
44 glanduline A Helianthus annuus L. C15H20O2 terpenebenzoquinone [14]
45 glanduline B Helianthus annuus L. C15H18O2 terpenebenzoquinone [14]
46 methylvilangin Myrsine africana L. var. acuminata C. Y. Wu et C. Chen (synonym) C36H54O8 biphenylquinone [25]
47 methylanhydrovilangin Myrsine africana L. var. acuminata C. Y. Wu et C. Chen (synonym) C16H52O7 biphenylquinone [25]
48 lanciaquinone Ardisia japonica (Thunb.) Bl. C27H36O7 biphenylquinone [32]
49 neonambiquinone A Neonothopanus nambi (Speg.) R. H. Petersen & Krisai C19H14O6 biphenylquinone [33]
50 volucrisporin Volucrispora aurantiaca Haskins C18H12O4 biphenylquinone [34]
51 oosporein Beauveria bassiana (Bals.-Criv.) Vuill. C14H18O8 biphenylquinone [35]
52 biembelin Rapanea melanophloeos (L.) Meisn. C34H50O8 biphenylquinone [14]
53 embenones A Knema globularia (Lam.) Warb. C15H18O4 other [35]
54 embenones B Knema globularia (Lam.) Warb. C15H20O4 other [35]
55 triaziquone Artemisia sieberi. J C12H13N3O2 other [36]
56 aziridyl benzoquinone - C16H22N2O6 other [37]
57 erectquione B Hypericum erectum Sol. ex R.Br. C29H40O6 other [38]
58 erectquione C Hypericum erectum Sol. ex R.Br. C25H34O6 other [38]
59 Atromentin Ascocoryne sarcoides C18H12O6 other [39]
60 Erectquione A Hypericum erectum Sol. ex R.Br. C21H28O4 ortho-benzoquinone [38]

graphic file with name toxics-13-00559-i002.jpg

graphic file with name toxics-13-00559-i003.jpg

graphic file with name toxics-13-00559-i004.jpg

2.1.2. Naphthoquinones

Naphthoquinones can be structurally divided into three types: α(1,4) naphthoquinone, β(1,2) naphthoquinone, and amphi(2,6) naphthoquinone, of which most naturally occurring naphthoquinones are α-naphthoquinone derivatives [40]. They are mostly orange or orange-red crystals, and a few are purple.

graphic file with name toxics-13-00559-i005.jpg

Common naphthoquinone substituents include hydroxyl, methoxy, aliphatic, and aromatic hydrocarbons. Naphthoquinones can be categorized based on the type of substituents as small-molecule-substituted naphthoquinones, benzoisochromanquinones, furanonaphthoquinones, isopentenyl naphthoquinones, etc. [11]. Small-molecule naphthoquinones are common small-molecule substituents, such as hydroxyl, methoxy, and alkyl groups, attached to the parent nucleus of naphthoquinone. Currently, 24 small-molecule-substituted naphthoquinones have been identified, including juglone and plumbagin; 20 benzoisochroman quinones, including davidianone A and mansonin A; 28 furano-naphthoquinones, including arthoniafurone B and cribrarione A; and 23 isopentenyl naphthoquinones, including lapachol and crassiflorone.

There are two mainstream methods for synthesizing 2-methyl-1,4-naphthoquinone. The first method uses 2-methylnaphthalene as the raw material and glacial acetic acid as the solvent, and 2-methyl-1,4-naphthoquinone is obtained via one-step oxidation with chromium trioxide. The main advantage of this method is that 2-methylnaphthalene is inexpensive, and the route is only one step. 2-Methylnaphthalene hydroquinone is obtained by Diels-Alder cycloaddition of butadiene and methylbenzoquinone, followed by oxidation with chromic anhydride to obtain 2-methyl-1,4-naphthoquinone [41].

graphic file with name toxics-13-00559-i006.jpg

Naphthoquinones are mainly distributed in plants of the families Ulmaceae Mirb., Persicaceae Raf., and Albiziaceae Raf., in addition to some microorganisms and marine organisms. Among them, 20 naphthoquinones were isolated from Rhinacanthus nasutus (L.) Kurz, containing six benzoisochromanquinones and eight isoprenoid naphthoquinones; 7 naphthoquinones were isolated from Cordia curassavica (Jacq.) Roem. & Schult; Five naphthoquinones, containing one small-molecule naphthoquinone, and three furanoquinones were isolated from Plumbago zeylanica L.; four naphthoquinones were isolated from Chirita eburnea Hance; four benzoisochromanquinones were isolated from Ulmus pumila L.; three small-molecule naphthoquinones were isolated from Diospyros maritima Blume; three small-molecule naphthoquinones and three benzisochromanquinones were isolated from Ulmus davidiana Planch. Table 2 presents the names and molecular formulas of naphthoquinone compounds.

Table 2.

Names and molecular formulas of naphthoquinone compounds.

No. Name Resource Formula Classification Ref.
61 3-bromoplumbagin Diospyros maritima Blume C11H7BrO3 small molecule naphthoquinones [42]
62 3-(2-hydroxyethyl)plumbagin Diospyros maritima Blume C13H12O4 small molecule naphthoquinones [42]
63 6-(1-ethoxyethyl)plumbagin Diospyros maritima Blume C15H16O4 small molecule naphthoquinones [43]
64 juglone Juglans regia L. C10H6O3 small molecule naphthoquinones [14]
65 2-methyl-1, 4-naphthoquinone Juglans regia L. C11H8O2 small molecule naphthoquinones [14]
66 lawsone Lythrum salicaria L. C10H6O4 small molecule naphthoquinones [14]
67 2-amino-1.4-naphthoquinone Laurus nobilis L. C10H7NO3 small molecule naphthoquinones [14]
68 plumbagin Plumbago zeylanica L. C11H8O3 small molecule naphthoquinones [14]
69 isoplumbagin Impatiens balsamina L. C11H8O3 small molecule naphthoquinones [14]
70 chimaphilin Pyrola soldanellifolia Andres C12H10O3 small molecule naphthoquinones [14]
71 7-methyl juglone Diospyros usambarensis Engl. C11H8O3 small molecule naphthoquinones [14]
72 2-methoxy-6-acetyl-7-methyljuglone Pleuropterus multiflorus (Thunb.) Nakai C13H12O5 small molecule naphthoquinones [44]
73 2-methoxystypandrone Rumex japonicus Houtt C14H12O5 small molecule naphthoquinones [45]
74 2-butanoyl-3,6,8-trihydroxy-1,4-naphthoquinone
6-O-sulfate
Oxycomanthus japonicus J. F. W. Mller C14H11NaO9S small molecule naphthoquinones [46]
75 2-butanoyl-3,6,8-trihydroxy-1,4-naphthoquinone Oxycomanthus japonicus J. F. W. Mller C14H12O6 small molecule naphthoquinones [46]
76 cribrarione B Cribraria cancellata (Batsch) Nann.-Bremek. C12H10O6 small molecule naphthoquinones [47]
77 fusarnaphthoquinoe A Fusarium spp. C15H18O7 small molecule naphthoquinones [48]
78 7-carbomethoxy-2,8-dimethoxy-5-hydroxy-l,4-naphthoquinone Penicillium raistrickii Stolk & Scott C14H13O7 small molecule naphthoquinones [49]
79 2,7-dimethoxy-5-hydroxy-1,4-naphthoquinone Penicillium raistrickii Stolk & Scott C12H10O5 small molecule naphthoquinones [49]
80 8-formyl-7-hydroxy-5-isopropyl-2-methoxy-3-methyl-1,4-naphthoquinone Ceiba pentandra (L.) Gaertn. C16H16O5 small molecule naphthoquinones [50]
81 2,7-dihydroxy-8-formyl-5-isopropyl-3-methyl-1.4-naphthoquinone Ceiba pentandra (L.) Gaertn. C15H14O5 small molecule naphthoquinones [50]
82 7-hydroxy-5-isopropyl-2-methoxy-3-methylnaphthoquinone Bombax malabaricum DC. C15H16O4 small molecule naphthoquinones [51]
83 lanigerone Salvia lanigera Poir. (Lamiaceae) C14H14O3 small molecule naphthoquinones [52]
84 salvigerone Salvia lanigera Poir. (Lamiaceae) C21H26O4 small molecule naphthoquinones [52]
85 droserone Plumbago capensis Thunb C11H8O4 small molecule naphthoquinones [53]
86 davidianone A Ulmus davidiana Planch. C15H12O4 benzoisochromanquinone [54]
87 davidianone B Ulmus davidiana Planch. C16H12O5 benzoisochromanquinone [54]
88 davidianone C Ulmus davidiana Planch. C17H16O5 benzoisochromanquinone [54]
89 mansonone E Ulmus pumila L. C15H14O3 benzoisochromanquinone [55]
90 mansonone F Ulmus pumila L. C15H12O3 benzoisochromanquinone [55]
91 mansonone H Ulmus pumila L. C15H14O4 benzoisochromanquinone [56]
92 mansonone I Ulmus pumila L. C15H14O4 benzoisochromanquinone [57]
93 rhinacanthone Rhinacanthus nasutus (L.) Kurz C15H14O3 benzoisochromanquinone [58]
94 rhinacanthin A Rhinacanthus nasutus (L.) Kurz C15H14O4 benzoisochromanquinone [59]
95 rhinacanthin O Rhinacanthus nasutus (L.) Kurz C24H26O5 benzoisochromanquinone [58]
96 rhinacanthin P Rhinacanthus nasutus (L.) Kurz C24H26O5 benzoisochromanquinone [58]
97 rhinacanthin S Rhinacanthus nasutus (L.) Kurz C24H24O5 benzoisochromanquinone [58]
98 rhinacanthin T Rhinacanthus nasutus (L.) Kurz C24H26O5 benzoisochromanquinone [60]
99 mansonin A Mansonia altissima A. Chev. C17H18O5 benzoisochromanquinone [60]
100 mansonin B Mansonia altissima A. Chev. C17H18O6 benzoisochromanquinone [60]
101 5-methoxy-3,4-dehydroxanthomegnin Paepalanthus latipes Silveira C16H12O7 benzoisochromanquinone [61]
102 pyranokunthone A Stereospermum kunthianum Cham. C20H20O4 benzoisochromanquinone [62]
103 4-O-methyl erythrostominone Cordyceps unilateralis (Tul.) Sacc. var. clavata (Y. Kobayasi) C18H18O8 benzoisochromanquinone [63]
104 halawanone A Streptomyces Schröter C23H22O9 benzoisochromanquinone [64]
105 pyranokunthone B Stereospermum kunthianum Cham. C20H20O4 benzoisochromanquinone [62]
106 (3a,3′a,4β,β)-3,3′-dimethoxy-cis-[4,4′-bis(3,4,5,10-tetra-hydro-1H-naphtho(2,3-clpyran)]-5.5.10,10-tetraone Pentas longiflora Oliv. C28H22O8 benzoisochromanquinone [65]
107 arthoniafurone B Arthonia cinnabarina Ach. C14H10O5 furanonaphthoquinone [66]
108 fusarnaphthoquinone B Fusarium Link C15H16O5 furanonaphthoquinone [48]
109 arthoniafurone A Arthonia cinnabarina (DC.) Wallr. C14H8O5 furanonaphthoquinone [66]
110 cribrarione A Cribraria purpurea Schwein. C13H10O7 furanonaphthoquinone [67]
111 8-hydroxy-1-methylnaphtho[2,3-c]furan-4,9-dione Bulbine capitata Poelln. C13H8O4 furanonaphthoquinone [68]
112 5,8-dihydroxy-1-methylnaphtho[2,3-c]furan-4,9-dione Aloe ferox Mill. C13H8O5 furanonaphthoquinone [69]
113 5,8-dihydroxy-1-hydroxymethylnaphtho[2,3-c]furan-4,9-dione Aloe ferox Mill. C13H8O6 furanonaphthoquinone [69]
114 avicequinone A Avicennia alba Blume C15H14O5 furanonaphthoquinone [70]
115 avicequinone B Avicennia alba Blume C12H6O3 furanonaphthoquinone [70]
116 avicequinone C Avicennia alba Blume C15H12O4 furanonaphthoquinone [70]
117 avicequinone D Avicennia alba Blume C15H12O5 furanonaphthoquinone [70]
118 avicequinone E Mendoncia cowanii (S. Moore) Benoist C15H14O5 furanonaphthoquinone [71]
119 2-(1′-methylethenyl)naphtho[2,3-b]furan-4,9-dione Newbouldia laevis (P. Beauv.) Seem. ex Bureau C15H10O3 furanonaphthoquinone [72]
120 2-isopropenyl-9-methaxy-1,8-dioxa-dicyclopenta[b,g]naphthal-ene-4,10-dione Plumbago zeylanica L. C18H12O5 furanonaphthoquinone [73]
121 9-hydroxy-2-isopropenyl-1,8-dioxa-dicyclopenta[b,g]naphthal-ene-4,10-dione Plumbago zeylanica L. C17H10O5 furanonaphthoquinone [74]
122 2-(1-hydroxy-l-methyl-ethyl)-9-methoxy-1,8-dioxa-dicyclo-penta[b,g]naphthalene-4,10-dione Plumbago zeylanica L. C18H14O6 furanonaphthoquinone [73]
123 (R)-7-hydroxy-a-dunnione Chirita eburnea Hance C15H14O4 furanonaphthoquinone [74]
124 (R)-8-hydroxy-a-dunnione Chirita eburnea Hance C15H14O4 furanonaphthoquinone [74]
125 (R)-a-7,8-dihydroxy-a-dunnione Chirita eburnea Hance C15H14O5 furanonaphthoquinone [74]
126 (R)-7-methoxy-6,8-dihydroxy-a-dunnione Chirita eburnea Hance C16H16O6 furanonaphthoquinone [74]
127 7,8-dimethoxydunnione Sinningia leucotricha (Hoehne) H. E. Moore C17H18O5 furanonaphthoquinone [75]
128 dehydro-a-isodunnione Tectona grandis L. f. C15H12O3 furanonaphthoquinone [76]
129 5-hydroxy-7-methoxydehydroiso-a-lapachone Newbouldia laevis (P. Beauv.) Seemann ex Bureau C16H14O5 furanonaphthoquinone [77]
130 glycoquinone Glycosmis pentaphylla (Retz.) Corrêa C20H24O4 furanonaphthoquinone [78]
131 (2R)-6,8-dihydroxy-a-dunnione Lysionotus pauciflorus Maxim. C15H14O5 furanonaphthoquinone [79]
132 balsaminone D Impatiens balsamina L. C20H14O7 furanonaphthoquinone [80]
133 (2R)-6-hydroxy-7-methoxy-dehydroiso-α-lapachone Spermacoce latifolia Aubl. C15H14O5 furanonaphthoquinone [81]
134 crassiflorone Diospyros crassiflora Hiern C21H12O6 furanonaphthoquinone [82]
135 lapachol Tabebuia avellanedae Lorentz ex Griseb. C15H14O3 isopentenyl naphthoquinone [83]
136 hydroxysesamone Sesamum indicum L. C15H14O5 isopentenyl naphthoquinone [84]
137 2,3-epoxysesamone Sesamum indicum L. C15H14O5 isopentenyl naphthoquinone [84]
138 lantalucratin D Lantana involucrata L. C17H18O5 isopentenyl naphthoquinone [85]
139 lantalucratin E Lantana involucrata L. C17H18O6 isopentenyl naphthoquinone [85]
140 lantalucratin F Lantana involucrata L. C17H18O7 isopentenyl naphthoquinone [85]
141 butylalkannin Arnebia hispidissima (Sieber ex Lehm.) A.DC. C20H22O6 isopentenyl naphthoquinone [86]
142 alkannin Arnebia hispidissima (Sieber ex Lehm.) A.DC. C6H16O5 isopentenyl naphthoquinone [86]
143 rhinacanthin B Rhinacanthus nasutus (L.) Kurz C25H28O5 isopentenyl naphthoquinone [59]
144 rhinacanthin C Rhinacanthus nasutus (L.) Kurz C25H30O5 isopentenyl naphthoquinone [58]
145 rhinacanthin G Rhinacanthus nasutus (L.) Kurz C25H30O6 isopentenyl naphthoquinone [58]
146 rhinacanthin H Rhinacanthus nasutus (L.) Kurz C25H30O6 isopentenyl naphthoquinone [58]
147 rhinacanthin I Rhinacanthus nasutus (L.) Kurz C25H30O6 isopentenyl naphthoquinone [58]
148 rhinacanthin J Rhinacanthus nasutus (L.) Kurz C25H28O6 isopentenyl naphthoquinone [58]
149 rhinacanthin K Rhinacanthus nasutus (L.) Kurz C25H32O7 isopentenyl naphthoquinone [58]
150 rhinacanthin L Rhinacanthus nasutus (L.) Kurz C25H32O8 isopentenyl naphthoquinone [58]
151 cordiaquinone A Cordia curassavica (Jacq.) Roem. & Schult C21H26O3 isopentenyl naphthoquinone [87]
152 chabrolonaphthoquinone A Nephthea chabrolii Milne Edwards & Haime C27H32O4 isopentenyl naphthoquinone [88]
153 chabrolonaphthoquinone B Nephthea chabrolii Milne Edwards & Haime C29H38O5 isopentenyl naphthoquinone [28]
154 6,8-dihydroxy-2,7-dimethoxy-3-(1,1-dimethylprop-2-enyl)-1,4-naphthoquinones Lysionotus pauciflorus Maxim. C17H18O6 isopentenyl naphthoquinone [79]
155 7-hydroxy-2-O-methyldunniol Sinningia conspicua (Seem.) Focke C16H15O4 isopentenyl naphthoquinone [89]
156 7-methoxy-2-O-methyldunniol Sinningia conspicua (Seem.) Focke C17H17O4 isopentenyl naphthoquinone [89]
157 3,5,8-tribydroxy-6-methoxy-2-(5-oxohexa-
1,3-dienyl-1.4-naphthoquinone
Cordyceps unilateralis (Tul.) Petch C17H14O7 isopentenyl naphthoquinone [63]
158 rhinacanthin D Rhinacanthus nasutus (L.) Kurz C23H20O7 other [58]
159 rhinacanthin M Rhinacanthus nasutus (L.) Kurz C22H20O5 other [90]
160 rhinacanthin N Rhinacanthus nasutus (L.) Kurz C27H24O7 other [58]
161 rhinacanthin Q Rhinacanthus nasutus (L.) Kurz C28H26O7 other [58]
162 rhinacanthin U Rhinacanthus nasutus (L.) Kurz C17H18O5 other [58]
163 rhinacanthin V Rhinacanthus nasutus (L.) Kurz C25H22O6 other [58]
164 cordiaquinone E Cordia curassavica (Jacq.) Roemer&Schultes C21H24O3 other [87]
165 cordiaquinone B Cordia curassavica (Jacq.) Roemer&Schultes C21H24O3 other [87]
166 cordiaquinone K Cordia curassavica (Jacq.) Roemer&Schultes C21H22O3 other [87]
167 cordiaquinone F Cordia curassavica (Jacq.) Roemer&Schultes C26H30O5 other [87]
168 cordiaquinone G Cordia curassavica (Jacq.) Roemer&Schultes C21H26O4 other [87]
169 cordiaquinone H Cordia curassavica (Jacq.) Roemer&Schultes C21H26O4 other [87]
170 cordiaquinone J Cordia curassavica (Jacq.) Roemer&Schultes C21H24O3 other [87]
171 isagarin Pentas longiflora C15H12O4 other [91]
172 3-hydroxy-2-metoxy-8,8,10-trimethyl-8H-antracen-1,4,5-trione Byrsonima microphylla A.Juss. C18H16O5 other [92]
173 3,7-dihydroxy-2-methoxy-8,8,10-trimethyl-
7,8-dihydro-6H-antracen-1,4,5-trione
Byrsonima microphylla A.Juss. C18H18O6 other [92]
174 sterekunthal A Stereospermum kunthianum Cham. C20H18O5 other [62]
175 stereiqunone C Stereospermum kunthianum Cham. C19H16O3 other [93]
176 sterequinone E Stereospermum personatum (Hassk.) Chatterjee C19H16O4 other [93]
177 sterekunthal B Stereospermum personatum (Hassk.) Chatterjee C20H18O4 other [62]
178 sterequinone B Stereospermum personatum (Hassk.) Chatterjee C21H20O5 other [93]
179 3,8′-biplumbagin Diospyros maritima Blume C22H14O6 other [43]
180 isozeylanone Plumbago zeylanica L. C22H14O6 other [94]
181 ethylidene-3,3′-biplumbagin Diospyros maritima Blume C24H18O6 other [43]
182 ethylidene-3,6′-biplumbagin Diospyros maritima Blume C24H18O6 other [43]
183 ethylidene-6,6′-biplumbagin Diospyros maritima Blume C24H18O6 other [95]
184 balsaminone E Impatiens balsamina L. C22H16O5 other [80]
185 adenophyllone Heterophragma adenophyllum Seem C30H22O5 other [96]
186 dilapachone Heterophragma adenophyllum Seem C30H26O6 other [96]
187 fusarnaphthoquinone C Fusarium spp. C29H26O11 other [48]
188 hygrocin A Streptomyces hygroscopicus Jensen C28H31NO8 other [97]
189 hygrocin B Streptomyces hygroscopicus Jensen C28H29NO8 other [97]
190 lippisidoquinone Lippia sidoides Cham. C30H26O5 other [98]
191 phytonadione Anethum graveolens L. C31H46O2 other [99]
192 maritinone Diospyros anisandra S.F.Blake C22H14O6 other [100]

graphic file with name toxics-13-00559-i007.jpg

graphic file with name toxics-13-00559-i008.jpg

graphic file with name toxics-13-00559-i009.jpg

graphic file with name toxics-13-00559-i010.jpg

graphic file with name toxics-13-00559-i011.jpg

graphic file with name toxics-13-00559-i012.jpg

graphic file with name toxics-13-00559-i013.jpg

2.1.3. Phenanthrenequinones

Phenanthrenequinones are an important class of natural products widely distributed in nature. These compounds are characterized by a tricyclic structure containing three rings and are classified mainly based on variations in the oxygen substitution site of the parent structure. Depending on the oxygen substitution site, phenanthrenequinones can be classified as para-oxygen substituted 1,4 phenanthrenequinone (para-phenanthrenequinone), pro-oxygen substituted 9,10 phenanthrenequinone (o-phenanthrenequinone I), and 3,4 phenanthrenequinone (o-Phenanthrenequinone II) [101].

graphic file with name toxics-13-00559-i014.jpg

The “one-pot method has become a powerful example of resource and energy efficiency, as well as environmental sustainability. The ability to perform multiple synthetic transformations in a single reaction vessel. The pot method reduces chemical waste and makes the overall operation more environmentally friendly. Pompy Sarkar discovered the synthesis of 9,10-phenanthrenequinone by the one-pot method. In the initial step, 2-bromobenzaldehyde (1a) was coupled with 2-formylphenylboronic acid (2) under standard Pd(0) conditions. The appearance of 3a was observed under standard Suzuki reaction conditions. The resulting product was then treated with Cu salt and TBHP. This combination leads to the formation of 9,10-phenanthrenequinone [102].

graphic file with name toxics-13-00559-i015.jpg

Phenanthrenequinone is mainly found in plants of Labiatae Juss., Orchidaceae Juss., and Senecio L., as well as in Streptomyces Waksman & Henrici. Among them, 11 phenanthrenequinones were isolated from Salvia miltiorrhiza Bunge, comprising one para-phenanthrenequinone and 10 type II o-phenanthrenequinones; six para-phenanthrenequinones were isolated from Dendrobium nobile Lindl.; and three phenanthrenequinones, comprising one para-phenanthrenequinone and two type II o-phenanthrenequinones, were isolated from Salvia trijuga Diels. Table 3 introduces the names and molecular formulas of phenanthraquinone compounds.

Table 3.

Names and molecular formulas of phenanthraquinone compounds.

No. Name Resource Formula Classification Ref.
193 trijuganone A Salvia trijuga Diels. C18H14O4 para-phenanthrenequinone [103]
194 bauhinione Bauhinia variegata L. C17H16O4 para-phenanthrenequinone [104]
195 ochrone A Coelogyne ochracea Lindl. C13H12O4 para-phenanthrenequinone [105]
196 stemanthraquinone Stemona tuberosa Lour. C16H14O4 para-phenanthrenequinone [106]
197 dioscoreanone Dioscorea membranacea Pierre C16H12O5 para-phenanthrenequinone [107]
198 denbinobin Dendrobium nobile Lindl. C16H12O5 para-phenanthrenequinone [108]
199 7-hydroxy-5,6-dimethoxy-1,4-phenanthrenequinone Dendrobium moniliforme (L.) Sw. C16H12O5 para-phenanthrenequinone [109]
200 moniliformin Fusarium verticillioides (Sacc.) Nirenberg C16H10O6 para-phenanthrenequinone [110]
201 phenanobiles A Dendrobium nobile Lindl. C14H8O5 para-phenanthrenequinone [101]
202 phenanobiles B Dendrobium nobile Lindl. C16H13O5 para-phenanthrenequinone [101]
203 phenanobiles C Dendrobium nobile Lindl. C14H10O4 para-phenanthrenequinone [101]
204 6,7-dihydroxy-2-methoxy-1,4-phenanthrenedione Dioscorea opposita Thunb. C15H10O5 para-phenanthrenequinone [101]
205 pyranospiranthoquinone Spiranthes sinensis (Pers.) Ames C20H18O5 para-phenanthrenequinone [14]
206 ephemeranthoquinone Flickingeria comata (Bl.) Hawkes. C15H12O4 para-phenanthrenequinone [111]
207 annoquinone A Annona montana Macfad. C15H10O3 para-phenanthrenequinone [112]
208 danshenxinkun C Salvia miltiorrhiza Bunge C21H20O4 para-phenanthrenequinone [110]
209 cypripediquinone A Cypripedium macranthum Sw. C17H14O5 o-phenanthrenequinone I [111]
210 bulbophyllanthrone Bulbophyllum odoratissimum (J. E. Sm.) Lindl. C17H14O6 o-phenanthrenequinone I [112]
211 Sch6 86 31 Spiromyces sp. C19H16O4 o-phenanthrenequinone I [14]
212 biruloquinone Mycosphaerella rubella (Westend.) C17H10O7 o-phenanthrenequinone I [14]
213 danshenxinkun A Salvia miltiorrhiza Bunge C18H16O4 o-phenanthrenequinone II [113]
214 danshenxinkun B Salvia miltiorrhiza Bunge C16H12O3 o-phenanthrenequinone II [113]
215 danshenxinkun D Salvia miltiorrhiza Bunge C18H16O3 o-phenanthrenequinone II [113]
216 cryptotanshinone Salvia miltiorrhiza Bunge C19H20O3 o-phenanthrenequinone II [113]
217 tanshinone I Salvia miltiorrhiza Bunge C18H12O3 o-phenanthrenequinone II [113]
218 dihydrotanshinone I Salvia miltiorrhiza Bunge C18H14O3 o-phenanthrenequinone II [113]
219 tanshinone IIA Salvia miltiorrhiza Bunge C19H18O3 o-phenanthrenequinone II [113]
220 hydroxytanshinone IIA Salvia miltiorrhiza Bunge C19H18O4 o-phenanthrenequinone II [113]
221 tanshinone IIB Salvia miltiorrhiza Bunge C19H18O4 o-phenanthrenequinone II [113]
222 miltirone Salvia miltiorrhiza Bunge C18H17O2 o-phenanthrenequinone II [113]
223 trijuganone B Salvia trijuga Diels. C18H16O3 o-phenanthrenequinone II [103]
224 trijuganone C Salvia trijuga Diels. C20H20O5 o-phenanthrenequinone II [103]

graphic file with name toxics-13-00559-i016.jpg

graphic file with name toxics-13-00559-i017.jpg

2.1.4. Anthraquinones

Anthraquinones are the most abundant natural quinones [1]. Anthraquinones include anthraquinone derivatives, their reduction products, oxyanthrone or anthrone, and derivatives of their dimers. In anthraquinones, positions 1, 4, 5, and 8 are referred to as α-positions, positions 2, 3, 6, and 7 are referred to as β-positions, and positions 9 and 10 are referred to as meso-positions. The substituents of anthraquinones include methyl, hydroxymethyl, carboxyl, aldehyde, hydroxyl, and methoxy groups. Compared with benzoquinone and naphthoquinone, anthraquinone substituents contain fewer carbons, generally no more than six carbons, and the complexity and diversity of substituents are not as great as those of benzoquinone and naphthoquinone.

There are two main biosynthetic pathways for anthraquinones in medicinal plants: the polyketide pathway and the mangiferyl/pho-succinyl benzoic acid pathway [114,115,116,117]. The polyketide pathway uses acetyl coenzyme A and malonyl coenzyme A as substrates to generate anthraquinones via polyketide synthase III. The mangiferolic acid/o-succinylbenzoic acid pathway uses isobranchialic acid, α-ketoglutaric acid, and thiamine diphosphate as substrates to synthesize anthraquinones in a series of reactions catalyzed by o-succinylbenzoic acid synthase [118].

Polyketide pathway (top) and mangiferyl/phosuccinobenzoic acid pathway (bottom)

graphic file with name toxics-13-00559-i018.jpg

Based on the structure of the parent nucleus, anthraquinones can be categorized into two main groups: monoanthraquinones and dianthraquinones [119]. The vast majority of natural anthraquinones are found in higher plants, fungi, and lichens. Among higher plants, quinones are most abundant in the Rubiaceae Juss., and anthraquinones are more abundant in the Fabaceae Lindl. and Rhamnaceae Juss., Polygonaceae Juss., Zygophyllaceae R. Br., and Liliaceae Juss. Anthraquinones are more abundant in Aspergillus Micheli ex Fries and Penicillium spp. among molds. Twenty-one anthraquinones were found in Pleuropterus multiflorus (Thunb.) Nakai, including four rhodopsin-type anthraquinones, three anthraquinone glycosides, and 14 dianthrone compounds; Seventeen anthraquinones were found in Rheum palmatum L., containing five rhodopsin-anthraquinones, two anthraquinones oxidized, one anthrone, and seven dianthrones; thirteen anthraquinones, including three anthraquinones oxidized and nine anthraquinones, were isolated from the plant Harungana madagascariensis Lam. ex Poir.; ten anthraquinones were isolated and obtained from the plant Galium sinaicum (Delile ex Decne.) Boiss., which contains seven alizarin-type anthraquinones. Nine anthraquinones, including eight anthraquinones (including three anthraquinone glycosides) and one oxidized anthracenol, were identified in the plant Picramnia antidesma Sieber ex Steud.Ten anthraquinones, including three alizarin-type anthraquinones and three anthraquinone oxidizers, were found in Rubia cordifolia L.; Seven anthraquinones, including five rhodopsin-type anthraquinones and two rhodopsin-type anthraquinone glycosides, were found in the Bulbine frutescens (L.) Willd. Seven anthraquinones, including six alizarin-type anthraquinones, were found in the Prismatomeris tetrandra (Roxb.) K. Schum. Six anthraquinones have been found in Stereospermum colais (Buch.-Ham. ex Dillwyn) Mabb., and five dianthrones have been found in the Senna alexandrina Milll.

Monoanthraquinones

The vast majority of natural anthraquinones contain hydroxyl groups, and mono-anthracene-nucleated anthraquinones are usually classified into rhodopsin- and chrysophanol-types based on the substitution position of the hydroxyl group [1]. Anthraquinones with hydroxyl groups on both benzene rings belong to the rhodopsin type, such as chrysazin and chrysophorol. Anthraquinones with a hydroxyl group on one benzene ring are of the chrysin type, such as alizarin and digitolutein. Some anthraquinones also exist as glycosides. Table 4 presents the names and molecular formulas of anthraquinone compounds.

graphic file with name toxics-13-00559-i019.jpg

Table 4.

Names and molecular formulas of anthraquinone compounds.

No. Name Resource Formula Classification Ref.
225 chrysazin Rheum palmatum L. C14H8O4 rhodopsin-type anthraquinone [14]
226 chrysophanol Rheum palmatum L. C15H10O4 rhodopsin-type anthraquinone [14]
227 emodin Rheum palmatum L. C15H10O5 rhodopsin-type anthraquinone [120]
228 isochrysophanol Rheum palmatum L. C15H12O4 rhodopsin-type anthraquinone [14]
229 Rhein Rheum palmatum L. C15H8O6 rhodopsin-type anthraquinone [14]
230 4-hydroxymethyl chrysazin Tripterygium wilfordii Hook. f C15H12O5 rhodopsin-type anthraquinone [14]
231 1,8-dihydroxy-4-methylanthraquinone cyanobacterium C15H10O4 rhodopsin-type anthraquinone [121]
232 monodictyquinone A Monodictys cerebriformis G. Z. Zhao & T. Y. Zhang C16H12O5 rhodopsin-type anthraquinone [122]
233 carviolin Penicillium Link ex Fr. C16H12O6 rhodopsin-type anthraquinone [123]
234 1-O-methylemodin Senna obtusifolia (L.) H. S. Irwin & Barneby. C16H12O5 rhodopsin-type anthraquinone [124]
235 ω-acetylcarviolin Zopfiella longicaudata (Ces.) Sacc. C18H14O7 rhodopsin-type anthraquinone [125]
236 ω-hydroxyemodin Zopfiella longicaudata (Ces.) Sacc. C15H10O6 rhodopsin-type anthraquinone [46]
237 lunatin Curvularia lunata (Wakker) Boedijn C15H10O6 rhodopsin-type anthraquinone [125]
238 ptilometric acid 6-O-sulfate Tropiometra afra macrodiscus (Hartlaub) C18H13NaO10S rhodopsin-type anthraquinone [46]
239 ptilometric acid Tropiometra afra macrodiscus (Hartlaub) C18H14O7 rhodopsin-type anthraquinone [46]
240 cassanthraquinone A Cassia siamea Lam. C20H14O6 rhodopsin-type anthraquinone [126]
241 ventilanone L Ventilago denticulata Willd. C18H14O7 rhodopsin-type anthraquinone [127]
242 ventilanone M Ventilago denticulata Willd. C18H16O6 rhodopsin-type anthraquinone [127]
243 1,8-dihydroxy-3-succinic acid monoethyl ester-6-methylanthraquinone - C19H13O8 rhodopsin-type anthraquinone [128]
244 Aloe emodin Pleuropterus multiflorus (Thunb.) Nakai C15H10O5 rhodopsin-type anthraquinone [44]
245 emodin methyl ether Pleuropterus multiflorus (Thunb.) Nakai C16H12O5 rhodopsin-type anthraquinone [44]
246 ω-hydroxyemodin 8-methyl ether Pleuropterus multiflorus (Thunb.) Nakai C16H12O6 rhodopsin-type anthraquinone [44]
247 emodin 8-methyl ether Pleuropterus multiflorus (Thunb.) Nakai C16H12O5 rhodopsin-type anthraquinone [44]
248 vismiaquinone C Vismia martiana Rchb.f. C21H20O5 rhodopsin-type anthraquinone [129]
249 asparasone A Aspergillus parasiticus Speare C18H14O8 rhodopsin-type anthraquinone [130]
250 laurentiquinone A Vismia laurentii De Wild. C22H20O7 rhodopsin-type anthraquinone [131]
251 laurenquinone A Vismia laurentii De Wild. C22H20O7 rhodopsin-type anthraquinone [132]
252 3-O-(2-hydroxy-3-methylbut-3-enyl)-emodin Vismia guineensis (L.) Choisy C20H18O6 rhodopsin-type anthraquinone [133]
253 3-O-(2-methoxy-3-methylbut-3-enyl)-emodin Vismia guineensis (L.) Choisy C21H20O6 rhodopsin-type anthraquinone [133]
254 3-O-(E-3-hydroxymethylbut-2-enyl)-emodin Vismia guineensis (L.) Choisy C20H18O6 rhodopsin-type anthraquinone [133]
255 3-O-(3-hydroxymethyl-4-hydroxybut-2-enyl)-emodin Vismia guineensis (L.) Choisy C20H18O7 rhodopsin-type anthraquinone [133]
256 pruniflorone J Cratoxylum formosum (Jack) Dyer C25H26O6 rhodopsin-type anthraquinone [134]
257 araliorhamnone A Araliorhamnus vaginata H.Perrier C18H12O8 rhodopsin-type anthraquinone [135]
258 laurenquinone B Vismia laurentii De Wild. C22H18O7 rhodopsin-type anthraquinone [132]
259 laurentiquinone C Vismia laurentii De Wild. C24H20O9 rhodopsin-type anthraquinone [136]
260 ploiariquinone A Ploiarium alternifolium (Szyszył.) Melch. C25H24O5 rhodopsin-type anthraquinone [137]
261 4′-demethylknipholone Bulbine capitata Poelln. C23H16O8 rhodopsin-type anthraquinone [138]
262 knipholone Kniphofia foliosa Hochst. C24H18O8 rhodopsin-type anthraquinone [139]
263 isoknipholone Kniphofia foliosa Hochst. C24H18O8 rhodopsin-type anthraquinone [140]
264 knipholone-6-methyl ether Bulbine capitata Poelln. C25H20O8 rhodopsin-type anthraquinone [68]
265 gaboroquinone A Bulbine frutescens (L.) Willd. C24H18O9 rhodopsin-type anthraquinone [141]
266 gaboroquinone B Bulbine frutescens (L.) Willd. C24H18O9 rhodopsin-type anthraquinone [141]
267 sodium ent-knipholone 6′-O-sulfate Bulbine frutescens (L.) Willd. C24H17NaO11S rhodopsin-type anthraquinone [142]
268 sodium 4′-O-demethylknipholone 6′-O-sulfate Bulbine frutescens (L.) Willd. C23H15NaO11S rhodopsin-type anthraquinone [142]
269 sodium isoknipholone 6-O-sulfate Bulbine frutescens (L.) Willd. C24H17NaO11S rhodopsin-type anthraquinone [142]
270 11-hydroxysulfurmycinone Streptomyces sp. C23H20O10 rhodopsin-type anthraquinone [143]
271 blanchaquinone Streptomyces sp. C22H20O7 rhodopsin-type anthraquinone [143]
272 brasiliquinone D Nocardia brasiliensis Lindenberg & Cohn C28H29NO8 rhodopsin-type anthraquinone [144]
273 cratoxyarborequinone A Cratoxylum sumatranum (Jack) Blume C44H46O9 rhodopsin-type anthraquinone [144]
274 cratoxyarborequinone B Cratoxylum sumatranum(Jack) Blume C49H54O9 rhodopsin-type anthraquinone [145]
275 floribundone Senna septemtrionalis (Viv.) H. S. Irwin & Barneby. C32H22O10 rhodopsin-type anthraquinone [146]
276 phaeosphenone Phaeosphaeria sp. C30H26O10 rhodopsin-type anthraquinone [147]
277 R-(-)-skyrin-6-O-β-xylopyranoside Hypericum perforatum L. C35H26O14 rhodopsin-type anthraquinone [148]
278 8-O-β-D-glucopyranosyl-1,1′,8′-trihydroxy-
3,3′-dimethyl-2,7′-bianthraquinone
Eremurus chinensis O.Fedtsch. C36H28O13 rhodopsin-type anthraquinone [149]
279 floribundiquinone A Berchemia polyphylla var. leioclada (Hand.-Mazz.) Hand.-Mazz. C32H26O10 rhodopsin-type anthraquinone [150]
280 floribundiquinone B Berchemia polyphylla var. leioclada (Hand.-Mazz.) Hand.-Mazz. C32H26O10 rhodopsin-type anthraquinone [150]
281 floribundiquinone C Berchemia polyphylla var. leioclada (Hand.-Mazz.) Hand.-Mazz. C31H24O9 rhodopsin-type anthraquinone [150]
282 floribundiquinone D Berchemia polyphylla var. leioclada (Hand.-Mazz.) Hand.-Mazz. C32H26O10 rhodopsin-type anthraquinone [150]
283 anhydrophlegmacin-9′,10′-quinone Cassia torosa Cav. C32H26O10 rhodopsin-type anthraquinone [151]
284 isosengulone Senna multiglandulosa (Jacq.) H.S.Irwin & Barneby. C32H22O10 rhodopsin-type anthraquinone [152]
285 icterinoidin A Dermocybe icterinoides (Peck) Hesler & A.H. Sm. C30H22O10 rhodopsin-type anthraquinone [153]
286 icterinoidin B Dermocybe icterinoides (Peck) Hesler & A.H. Sm. C30H22O10 rhodopsin-type anthraquinone [153]
287 febrifuquinoe Psorospermum febrifugum Spach. C40H38O10 rhodopsin-type anthraquinone [154]
288 chaetomanone Chaetomium globosum Kunze C31H24O12 rhodopsin-type anthraquinone [155]
289 bulbineloneside A Bulbinella floribunda (Aiton) T.Durand & Schinz. C30H28O13 rhodopsin-type anthraquinone [156]
290 bulbineloneside B Bulbinella floribunda (Aiton) T.Durand & Schinz. C28H24O12 rhodopsin-type anthraquinone [156]
291 bulbineloneside C Bulbinella floribunda (Aiton) T.Durand & Schinz. C28H24O12 rhodopsin-type anthraquinone [156]
292 bulbineloneside D Bulbinella floribunda (Aiton) T.Durand & Schinz. C29H26O13 rhodopsin-type anthraquinone [156]
293 alizarin Rubia cordifolial L. C14H8O4 alizarin-type anthraquinone [14]
294 alizarin 2-methyl ether Rubia cordifolia L. C15H10O4 alizarin-type anthraquinone [14]
295 digitolutein Ventilago goughii Gamble C16H14O4 alizarin-type anthraquinone [14]
296 6-ethylalizarin Galium spurium L. C15H12O4 Alizarin-type anthraquinone [14]
297 altersolanol A Stemphylium botryosum var. lactucum C16H13O7 alizarin-type anthraquinone [14]
298 rubiawallin A Rubia wallichiana Decne C16H12O5 alizarin-type anthraquinone [157]
299 1,4-dihydroxy-2,3-dimethoxyanthraquinone Hedyotis herbacea L. C16H12O6 alizarin-type anthraquinone [158]
300 2-methoxy-1,3,6-trihydroxyanthraquinone Morinda citrifolia L. C15H10O6 alizarin-type anthraquinone [159]
301 6-methylanthragallol 3-methyl ether Galium sinaicum (Delile ex Decne.) Boiss. C16H12O5 alizarin-type anthraquinone [160]
302 7-methylanthragallol 1,3-dimethyl ether Galium sinaicum (Delile ex Decne.) Boiss. C17H14O5 alizarin-type anthraquinone [160]
303 7-methylanthragallol 2-methyl ether Galium sinaicum (Delile ex Decne.) Boiss. C16H12O5 alizarin-type anthraquinone [160]
304 7-formylanthragallol 1,3-dimethyl ether Galium sinaicum (Delile ex Decne.) Boiss. C17H12O6 alizarin-type anthraquinone [160]
305 8-hydroxy-6,7-dimethoxy-2-methyl-9,10-anthraquinone Prismatomeris tetrandra (Roxb.) K. Schum. C17H14O5 alizarin-type anthraquinone [161]
306 1,3-dihydroxy-5,6-dimethoxy-2-methyl-9,10-anthraquinone Prismatomeris tetrandra (Roxb.) K. Schum. C17H14O6 alizarin-type anthraquinone [162]
307 3-dihydroxy-1,5,6-trimethoxy-2-methyl-9,10-anthraquinone Prismatomeris tetrandra (Roxb.) K. Schum. C18H16O6 alizarin-type anthraquinone [162]
308 6-hydroxy-1, 2, 3-trimethoxy-7-methylanthracene-9, 10-dione Prismatomeris tetrandra (Roxb.) K. Schum. C18H16O6 alizarin-type anthraquinone [162]
309 6-(hydroxymethyl)-1, 2,3-trimethoxyanthracene-9, 10-dione Prismatomeris tetrandra (Roxb.) K. Schum. C18H16O6 alizarin-type anthraquinone [163]
310 7-hydroxy-6-(hydroxymethyl)-1, 2-dimethoxyanthracene-9,10-dione Prismatomeris tetrandra (Roxb.) K. Schum. C17H14O6 alizarin-type anthraquinone [163]
311 8-hydroxyanthragallol 2,3-dimethyl ether Galium sinaicum (Delile ex Decne.) Boiss. C16H12O6 alizarin-type anthraquinone [160]
312 copareolatin 5,7-dimethyl ether Galium sinaicum (Delile ex Decne.) Boiss. C17H14O6 alizarin-type anthraquinone [160]
313 copareolatin 6,7-dimethyl ether Galium sinaicum (Delile ex Decne.) Boiss. C17H14O6 alizarin-type anthraquinone [160]
314 5,15-dimethylmorindol Morinda citrifolia L. C17H14O6 alizarin-type anthraquinone [164]
315 1,5,15-tri-O-methylmorindol Morinda citrifolia L. C18H16O6 alizarin-type anthraquinone [165]
316 (2R)-6-hydroxy-7-methoxy-dehydroiso-α-lapachone Spermacoce alata Aubl. C15H10O6 alizarin-type anthraquinone [81]
317 ventilanone N Ventilago denticulata Willd. C16H12O6 alizarin-type anthraquinone [127]
318 3,4,8-trihydroxy-1-methylanthra-9,10-quinone-2-carboxylic acid methyl ester Eleutherine plicata Herb. C17H12O7 alizarin-type anthraquinone [166]
319 4,8-dihydroxy-3-methoxy-1-methylanthra-9,10-quinone-2-carboxylic acid methyl ester Eleutherine plicata Herb. C18H14O7 alizarin-type anthraquinone [167]
320 2-hydroxyemodin 1-methyl ether Senna tora (L.) Roxb. C16H12O6 alizarin-type anthraquinone [168]
321 araliorhamnone B Araliorhamnus vaginata H.Perrier C19H14O8 alizarin-type anthraquinone [135]
322 bostrycoidin Fusarium solani (Mart.) Sacc. C15H11NO5 alizarin-type anthraquinone [169]
323 6-methoxylucidinω-ethyl ether Prismatomeris tetrandra (Roxb.) K. Schum. C18H16O6 other [161]
324 guinizarin Galium sinaicum (Delile ex Decne.) Boiss. C14H8O4 other [14]
325 pachybasin Rheum moorcroftianum Royle C15H10O3 other [14]
326 2-hydroxy-3-methyl-anthraquinone Hedyotis diffusa Willd. C15H10O3 other [14]
327 tectoquinone Acatypha india L. C15H10O2 other [14]
328 1-hydroxyanthraquinone Morinda officinalis How C15H10O2 other [14]
329 2-methylol anthraquinone Morinda parvifolia Bartl. ex DC. C15H10O3 other [14]
330 5-hydroxy-2-methyl-anthraquinone Rubia tinctorum Linn. C15H10O3 other [14]
331 barleriaquinone I Barleria buxifolia L. C15H10O3 other [14]
332 barleriaquinone II Barleria buxifolia L. C16H10O5 other [14]
333 2-methylquinizarin Galium sinaicum (Delile ex Decne.) Boiss. C15H12O4 other [14]
334 damnacanthol Damnacanthus major Siebold & Zucc. C16H14O5 other [14]
335 ziganein Salvia przewalskii Maxim. C15H10O4 other [14]
336 1-amino-2,4-dibromoanthraquinone - C14H7Br2NO2 other [14]
337 munjistin methyl ester Salvia miltiorrhiza Bunge C16H10O6 other [116]
338 fridamycin E Spiroplectammina parvula Schwager C20H20O7 other [14]
339 soranjidiol Morinda elliptica (Hook.f.) Ridl. C15H10O4 other [14]
340 ω-hydroxy-phomarin Digitalis cariensis Boiss. ex Jaub. & Spach C15H10O5 other [14]
341 rubiawallin C Rubia wallichiana Decne C16H10O5 other [157]
342 2-formyl-1-hydroxyanthraquinone Morinda elliptica (Hook.f.) Ridl. C15H8O4 other [170]
343 sterequinone F Stereospermum colais (Buch.-Ham. ex Dillwyn) Mabb. C19H16O3 other [170]
344 sterequinone H Stereospermum colais (Buch.-Ham. ex Dillwyn) Mabb. C19H18O3 other [171]
345 1-acetoxy-3-methoxy-9,10-anthraquinone Rubia cordifolia L. C17H12O5 other [172]
346 ophiohayatone C Ophiorrhiza hayatana Ohwi C15H8O5 other [173]
347 munjistin-1-O-methyl ether Rhynchotechum vestitum Wall. ex Clatke C16H10O6 other [174]
348 1,3-dimethoxy-2-methoxymethylanthraquinone Coussarea macrophylla (Mart.) Müll.Arg. C18H16O5 other [175]
349 1-hydroxy-2-hydroxymethyl-3-methoxyanthraquinone Rubia wallichiana Decne C16H12O5 other [157]
350 2-n-butoxymethyl-1,3-dihydroxyanthraquinone Morinda angustifolia Roxb. C19H18O5 other [176]
351 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone Saprosma scortechinii King & Gamble C17H12O6 other [177]
352 rubiawallin B Rubia wallichiana Decne C16H12O4 other [157]
353 1,7-dihydroxy-2-hydroxymethyl-9,10-anthraquinone Hemiboea subcapitata Clarke C15H10O5 other [178]
354 sterequinone G Stereospermum colais (Buch.-Ham. ex Dillwyn) Mabb. C20H18O4 other [171]
355 anthrakunthone Stereospermum kunthianum Cham. C19H16O4 other [62]
356 3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone Knoxia valerianoides Thorel ex Pitard C15H10O5 other [179]
357 ophiohayatone A Ophiorrhiza hayatana Ohwi C16H12O5 other [173]
358 pustuline Heterophyllaea pustulata Hook.f. C16H12O4 other [180]
359 6-hydroxyxanthopurpurin Galium sinaicum (Delile ex Decne.) Boiss. C14H8O5 other [160]
360 3-methoxycarbonyl-1,5-dihydroxyanthraquinone Engelhardia roxburghiana Wall. C16H10O6 other [181]
361 1,3,6-trihydroxy-2-methoxymethyl-9,10-anthraquinone Saprosma scortechinii King & Gamble C16H12O6 other [177]
362 1-methoxy-3,6-dihydroxy-2-hydroxymethyl-9,10-anthra-quinone Saprosma scortechinii King & Gamble C16H12O6 other [177]
363 aloesaponarin I Aloe camperi Schweinf. C17H12O6 other [182]
364 aloesaponarin I 3-methyl ether Aloe camperi Schweinf. C18H14O6 other [183]
365 alatinone Cassia alata L. C15H10O5 other [184]
366 przewalskinone B Cassia italica Mill. C16H12O5 other [185]
367 2-Methyl-1-nitroanthraquinone - C15H9NO4 other [186]
368 3,8-dihydroxy-6-methoxy-1-methylanthra-9,10-quinone-2-carboxylic acid methyl ester Gladiolus gandavensis Van Houtte C18H14O7 other [187]
369 ventilanone O Ventilago denticulata Willd. C16H12O6 other [127]
370 scorpinone Amorosia littoralis Mantle & D.Hawksw. B.R. C16H13NO4 other [188]
371 1-amino-2-methylanthraquinone - C15H11NO2 other [189]
372 dielsiquinone Guatteria dielsiana R.E.Fr. C15H11NO4 other [190]
373 marcanine B Goniothalamus marcanii Craib C16H13NO4 other [129]
374 marcanine C Goniothalamus marcanii Craib C16H13NO5 other [123]
375 marcanine D Goniothalamus marcanii Craib C15H11NO5 other [129]
376 marcanine E Goniothalamus marcanii Craib C16H13NO5 other [129]
377 araliorhamnone C Araliorhamnus vaginata H.Perrier C17H10O7 other [135]
378 laurentiquinone B Vismia laurentii De Wild. C22H18O7 other [136]
379 sterequinone I Stereospermum personatum (Hassk.) Chatterjee C20H18O4 other [171]
380 sterequinone A Stereospermum colais (Buch.-Ham. ex Dillwyn) Mabb. C19H14O2 other [93]
381 sterequinone D Stereospermum colais (Buch.-Ham. ex Dillwyn) Mabb. C20H16O3 other [93]
382 2-hydroxymethyl-10-hydroxy-1,4-anthraquinone Hedyotis herbacea Lour. C15H10O4 other [190]
383 2,3-dimethoxy-9-hydroxy-1,4-anthraquinone Hedyotis herbacea Lour. C16H12O5 other [163]
384 9,10-dimethoxy-2-methylanthra-1,4-quinone - C17H14O4 other [191]
385 physcion Rheum palmatum L. C16H12O5 other [192]
386 2-aminoanthraquinone - C14H9NO2 other [193]
387 kengaquinone Harungana madagascariensis Lam. ex Poir. C25H26O5 other [194]
388 newbouldiaquinone Newbouldia laevis (P.Beauv.) Seem. ex Bureau C25H14O5 other [195]
389 newbouldiaquinone A Newbouldia laevis (P.Beauv.) Seem. ex Bureau C25H14O6 other [196]
390 tectograndone Tectona grandis L. f. C30H20O10 other [197]
391 (S)-5,5′-bisoranjidiol Heterophyllaea pustulata Hook.f. C30H18O8 other [180]
392 presengulone Senna sophera (L.) Roxb. C32H26O10 other [198]
393 scutianthraquinone A Scutia myrtina (L.) Roxb. C39H32O13 other [199]
394 scutianthraquinone B Scutia myrtina (L.) Roxb. C38H30O13 other [199]
395 scutianthraquinone C Scutia myrtina (L.) Roxb. C34H24O12 other [199]
396 scutianthraquinone D Scutia myrtina (L.) Roxb. C61H53O20 other [199]
397 mitoxantrone - C22H28N4O6 Other [200]
398 sulfemodin 8-O-β-D-glucoside Rheum palmatum L. C21H20O13S anthraquinone glycosides of rhodopsin type [201]
399 1-methyl-8-hydroxyl-9,10-anthraquinone-3-O-β-D-glucopyranoside Rheum palmatum L. C22H19O11 anthraquinone glycosides of rhodopsin type [202]
400 4′-O-demethylknipholone-4′-O-β-D-glucoside Bulbine frutescens (L.) Willd. C29H26O13 anthraquinone glycosides of rhodopsin type [142]
401 sodium-4′-O-demethylknipholone-4′-β-D-gluc-opyranoside 6′-O-sulfate Bulbine frutescens (L.) Willd. C29H25NaO16S anthraquinone glycosides of rhodopsin type [142]
402 aloin Aloe vera (L.) Burm.f. C21H22O9 anthraquinone glycosides of rhodopsin type [203]
403 emodin-1-O-β-gentiobioside Cassia obtusifolia C27H30O15 anthraquinone glycosides of rhodopsin type [204]
404 knipholone-8-β-D-gentiobioside Bulbine narcissifolia C36H38O18 anthraquinone glycosides of rhodopsin type [205]
405 bulbineloneside E Bulbinella floribunda C34H34O17 anthraquinone glycosides of rhodopsin type [156]
406 emodin-8-O-β-D-glucopyranoside Pleuropterus multiflorus (Thunb.) Nakai C21H20O10 anthraquinone glucoside [44]
407 emodin methyl ether-8-O-β-D-glucopyranoside Pleuropterus multiflorus (Thunb.) Nakai C22H22O10 anthraquinone glucoside [44]
408 polygonum multiflorum ethyl Pleuropterus multiflorus (Thunb.) Nakai C21H22O9 anthraquinone glucoside [44]
409 halawanone C Streptomycete C21H20O7 anthraquinone glucoside [64]
410 nepalenside A Rumex nepalensis Spreng. C21H22O11 anthraquinone glucoside [206]
411 nepalenside B Rumex nepalensis Spreng. C21H22O11 anthraquinone glucoside [206]
412 rubiadin-3-O-β-glucoside Rhynchotechum vestitum Wall. ex C. B. Clarke C21H20O9 anthraquinone glucoside [174]
413 lucidin-3-O-β-glucoside Rhynchotechum vestitum Wall. ex C. B. Clarke C21H20O10 anthraquinone glucoside [174]
414 lasianthuoside A Lasianthus acuminatissimus Miq. C22H22O10 anthraquinone glucoside [207]
415 lasianthuoside B Lasianthus acuminatissimus Miq. C23H24O10 anthraquinone glucoside [207]
416 lasianthuoside C Lasianthus acuminatissimus Miq. C28H32O14 anthraquinone glucoside [208]
417 putorinoside A Putoria calabrica Pers. C22H22O12 anthraquinone glucoside [209]
418 putorinoside B Putoria calabrica Pers. C22H22O11 anthraquinone glucoside [209]
419 1,3-dihydroxy-2-carbomethoxy-9,10-anthraquinone3-O-β-primeveroside Saprosma scortechinii King & Gamble C27H28O15 anthraquinone glucoside [177]
420 1.3,6-trihydroxy-2-hydroxymethyl-9,10-anthraquinone 3-O-β-primeveroside Saprosma scortechinii
King & Gamble
C26H28O15 anthraquinone glucoside [177]
421 emodin-6-O-β-D-glucopyranoside Reynoutria japonica Houtt. C21H20O10 anthraquinone glucoside [210]

Anthraquinones, in a broad sense, include anthraquinone derivatives and their products with different degrees of reduction, such as oxyanthrone and anthrone. The reduction of anthraquinone in an acidic environment produces anthranol and its reciprocal isomer, anthrone. The hydroxyl derivatives of anthranol (or anthrone) often co-exist with the corresponding hydroxyl anthraquinone in plants in either the free or bound state. Table 5 presents the names and molecular formulas of oxanthrol and anthrone compounds.

graphic file with name toxics-13-00559-i020.jpg

Table 5.

Names and molecular formulas of oxanthrol and anthrone compounds.

No. Name Resource Formula Classification Ref.
422 rubiasin A Rubia cordifolia L. C15H16O2 oxyanthrone [211]
423 rubiasin B Rubia cordifolia L. C15H16O2 oxyanthrone [211]
424 rubiasin C Rubia cordifolia L. C15H16O2 oxyanthrone [211]
425 1-oxo-4(S),9-dihydroxy-8-methoxy-6-hydroxymethyl-1,2,3,4-tetrahydroanthracene Eremurus chinensis O.Fedtsch. C16H16O5 oxyanthrone [149]
426 aloesaponol III-8-methyl ether Eremurus persicus (Jaub. & Spach) Boiss. C16H16O4 oxyanthrone [212]
427 kenganthranol A Harungana madagascariensis Lam. ex Poir. C30H36O5 oxyanthrone [194]
428 kenganthranol B Harungana madagascariensis
Lam. ex Poir.
C25H28O5 oxyanthrone [194]
429 kenganthranol C Harungana madagascariensis
Lam. ex Poir.
C26H30O6 oxyanthrone [194]
430 10-hydroxycascaroside C Rheum australe D. Don C27H32O14 oxyanthrone glycoside [213]
431 10-hydroxycascaroside D Rheum australe D. Don C27H32O14 oxyanthrone glycoside [213]
432 mayoside Mycobacterium microti C26H24O11 oxyanthrone glycoside [214]
433 mayoside B Mycobacterium microti C26H24O11 oxyanthrone glycoside [214]
434 mayoside C Picramnia teapensis Tul. C33H34O16 oxyanthrone glycoside [215]
435 mayoside E Picramnia latifolia Tul. C27H24O9 oxyanthrone glycoside [216]
436 rubanthrone A Rubus ulmifolius Schott C17H14O10 anthrone [217]
437 rubanthrone B Rubus ulmifolius Schott C17H16O9 anthrone [217]
438 rubanthrone C Rubus ulmifolius Schott C16H12O10 anthrone [217]
439 knipholone anthrone Kniphofia foliosa Hochst. C24H20O7 anthrone [218]
440 isoknipholone anthrone Kniphofia foliosa Hochst. C24H20O7 anthrone [218]
441 harunganol A Harungana madagascariensis Lam. ex Poir. C25H28O4 anthrone [219]
442 harunganol B Harungana madagascariensis Lam. ex Poir. C30H36O4 anthrone [219]
443 harungin anthrone Harungana madagascariensis Lam. ex Poir. C30H36O4 anthrone [194]
444 bazouanthrone Harungana madagascariensis Lam. ex Poir. C30H36O5 anthrone [194]
445 harunmadagascarin A Harungana madagascariensis Lam. ex Poir. C30H34O4 anthrone [194]
446 harunmadagascarin B Harungana madagascariensis Lam. ex Poir. C35H42O4 anthrone [194]
447 harunmadagascarin C Harungana madagascariensis Lam. ex Poir. C30H36O4 anthrone [220]
448 harunmadagascarin D Harungana madagascariensis Lam. ex Poir. C30H36O5 anthrone [220]
449 kenganthranol D Harungana madagascariensis Lam. ex Poir. C30H32O6 anthrone [220]
450 abyquinone C Bulbine abyssinica A.Rich. C30H24O8 anthrone [221]
451 (R)-prechrysophanol Streptomyces Waksman & Henrici C15H14O4 anthrone [222]
452 torosachrysone Dermocybe splendida E. Horak C16H16O5 anthrone [223]
453 atrochrysone Aspergillus oryzae (Ahlburg) Cohn C15H14O5 anthrone [224]
454 aloe barbendol Aloe vera (L.) Burm. f. C15H14O4 anthrone [225]
455 acetyltorosachrysone Psorospermum glaberrimum Hochr. C18H18O6 anthrone [226]
456 vismione H Psorospermum glaberrimum Hochr. C22H24O6 anthrone [227]
457 vismione D Vismia orientalis (Engl.) Byng & Christenh. C25H30O5 anthrone [228]
458 vismione L Psorospermum aurantiacum Engl. C25H30O5 anthrone [229]
459 vismione M Psorospermum aurantiacum Engl C26H32O5 anthrone [229]
460 asperflavin Microsporum sp. C21H24O9 anthrone [230]
461 5-hydroxyaloin A Aloe nobilis A.Berger C21H22O10 anthrone glycoside [231]
462 5-hydroxyaloin A 6′-O-acetate Aloe nobilis A.Berger C23H24O11 anthrone glycoside [231]
463 picramnioside A Picramnia antidesma Sieber ex Steud. C27H24O10 anthrone glycoside [232]
464 picramnioside B Picramnia antidesma Sieber ex Steud. C22H22O10 anthrone glycoside [232]
465 picramnioside C Picramnia antidesma Sieber ex Steud. C22H22O10 anthrone glycoside [232]
466 10-epi-uveoside Picramnia antidesma Sieber ex Steud. C27H24O9 anthrone glycoside [233]
467 uveoside Picramnia antidesma Sieber ex Steud. C27H24O9 anthrone glycoside [233]
468 microstigmin A Aloe microstigma Salm-Dyck C30H28O13 anthrone glycoside [234]
469 microdontin A Aloe microdonta Salm-Dyck C30H28O11 anthrone glycoside [234]
470 microdontin B Aloe microdonta Salm-Dyck C30H28O13 anthrone glycoside [235]
471 cascaroside E Rhamnus purshiana DC. C27H32O14 anthrone glycoside [236]
472 cascaroside F Rhamnus purshiana DC. C27H32O14 anthrone glycoside [236]
473 10R-chrysaloin 1-O-β-D-glucopyranoside Rheum emodi D. Don C27H32O13 anthrone glycoside [213]
474 isofoliosone Bulbine capitata Poelln. C24H20O8 anthrone glycoside [138]
475 picramnioside D Picramnia teapensis Tul. C26H24O10 anthrone glycoside [237]
476 picramnioside E Picramnia teapensis Tul. C26H24O10 anthrone glycoside [237]
477 picramnioside F Picramnia teapensis Tul. C33H34O15 anthrone glycoside [215]
478 picramniosdie G Picramnia latifolia Tul. C27H24O8 anthrone glycoside [216]
479 picramnioside H Picramnia latifolia Tul. C27H24O8 anthrone glycoside [216]
480 mayoside D Picramnia latifolia Tul. C27H24O9 anthrone glycoside [216]

graphic file with name toxics-13-00559-i021.jpg

graphic file with name toxics-13-00559-i022.jpg

graphic file with name toxics-13-00559-i023.jpg

graphic file with name toxics-13-00559-i024.jpg

graphic file with name toxics-13-00559-i025.jpg

graphic file with name toxics-13-00559-i026.jpg

graphic file with name toxics-13-00559-i027.jpg

graphic file with name toxics-13-00559-i028.jpg

graphic file with name toxics-13-00559-i029.jpg

graphic file with name toxics-13-00559-i030.jpg

graphic file with name toxics-13-00559-i031.jpg

graphic file with name toxics-13-00559-i032.jpg

graphic file with name toxics-13-00559-i033.jpg

graphic file with name toxics-13-00559-i034.jpg

graphic file with name toxics-13-00559-i035.jpg

Dithranones

To date, about 63 species of dianthrones have been reported. These dianthrones can be classified into eight types based on their aglycone models. Type I compounds are emodin (C10→C10) emodin linked dianthrones, type II compounds are emodin (C10→C10) physcion linked dianthrones, type III are physcion (C10→C10) physcion linked dianthrones, type IV compounds are aloe-emodin (C10→C10) aloe-emodin linked dianthrones, type V compounds are rhein (C10→C10) rhein linked dianthrones, type VI compounds are rhein (C10→C10) aloe-emodin linked dianthrones, type VII compounds are chrysophanol (C10→C10) chrysophanol linked dianthrones and type VIII compounds are emodin (C10→C10) chrysophanol linked dianthrones. There are different kinds of substituent groups in these dianthrones, such as glycosylation, hydroxyl, isopentene, and malonyl groups. Table 6 introduces the names and molecular formulas of dianthrone compounds.

Table 6.

Names and molecular formulas of dianthrone compounds.

No. Name Resource Formula Type Ref.
481 polygonumnolide C1 Pleuropterus multiflorus (Thunb.) Nakai C36H32O13 type I [238]
482 polygonumnolide C2 Pleuropterus multiflorus (Thunb.) Nakai C36H32O13 type I [238]
483 polygonumnolide C3 Pleuropterus multiflorus (Thunb.) Nakai C36H32O13 type I [238]
484 polygonumnolide C4 Pleuropterus multiflorus (Thunb.) Nakai C36H32O13 type I [238]
485 trans-emodin dianthrones Pleuropterus multiflorus (Thunb.) Nakai C30H22O8 type I [238]
486 cis-emodin dianthrones Pleuropterus multiflorus (Thunb.) Nakai C30H22O8 type I [238]
487 (+)-crinemodin-rhodoptilometrin
dianthrone
Himerometra magnipinna AH Clark C35H32O8 type I [239]
488 7,7′-dichlorohypericin Heterodermia obscurata (Nyl.) Trevis. C30H14Cl2O8 type I [240]
489 nephrolaevigatin A Nephroma laevigatum Ach. C30H20Cl2O8 type I [241]
490 nephrolaevigatin B Nephroma laevigatum Ach. C30H20ClO8 type I [241]
491 bioanthrone 1 Vismia guineensis (L.) Choisy C50H54O8 type I [242]
492 flavoobscurin B Heterodermia obscurata (Nyl.) Trevis. C30H19Cl4O8 type I [241]
493 8,8′-dihydroxy-1,1′,3,3′-tetramethoxy-6,6′-dimethyl-10,10′-dianthrone Aspergillus wentii Wehmer C34H30O8 type I [243]
494 hypericin Hypericum monogynum L. C30H16O8 type I [244]
495 pseudohypericin Hypericum monogynum L. C30H16O9 type I [244]
496 neobulgarone E Limonium tubiflorum (Delile) Kuntze C32H24Cl2O8 type I [245]
497 polygonumnolide A1 Pleuropterus multiflorus (Thunb.) Nakai C37H34O13 type II [246]
498 polygonumnolide A2 Pleuropterus multiflorus (Thunb.) Nakai C37H34O13 type II [246]
499 polygonumnolide A3 Pleuropterus multiflorus (Thunb.) Nakai C37H34O13 type II [246]
500 polygonumnolide A4 Pleuropterus multiflorus (Thunb.) Nakai C37H34O13 type II [246]
501 polygonumnolide B1 Pleuropterus multiflorus (Thunb.) Nakai C43H44O18 type II [246]
502 polygonumnolide B2 Pleuropterus multiflorus (Thunb.) Nakai C43H44O18 type II [246]
503 polygonumnolide B3 Pleuropterus multiflorus (Thunb.) Nakai C43H44O18 type II [246]
504 polygonumnolide E Pleuropterus multiflorus (Thunb.) Nakai C37H34O13 type II [247]
505 adamadianthrone Psorospermum febrifugum Spach C45H46O8 type II [154]
506 bioanthrone 2 Vismia guineensis (L.) Choisy C30H20O11 type II [242]
507 glaberianthrone Psorospermum glaberrimum Hochr. C45H46O8 type II [248]
508 prinoidin-emodin dianthrones Rhamnus napalensis (Wall.) Lawson C40H37O14 type II [249]
509 (S)-2-hydroxybutyl-4,4′,5,5′,7-pentahydroxy-2′-methoxy-2,7′-dimethyl-10,10′-dioxo-9,9′,10,10′-tetrahydro-[9,9′-bianthracene]-3-carboxylate Aspergillus wentii Wehmer C36H32O11 type II [249]
510 (S)-2-hydroxybutyl 4,4′,5,7-tetrahydroxy-5′,7′-dimethoxy-2,2′-dimethyl-10,10′-dioxo-9,9′,10,10′-tetrahydro-[9,9′-bianthracene]-3-carboxylate Aspergillus wentii Wehmer C37H34O11 type II [249]
511 2,4′,5-trihydroxy-4,5′,7′-trimethoxy-2′,7-dimethyl-[9,9′-bianthracene]-10,10′(9H,9′H)-dione Aspergillus wentii Wehmer C33H28O8 type II [249]
512 dianthrone A1 Psorospermum febrifugum Spach C50H54O8 type III [154]
513 bioanthrone 3 Vismia guineensis C30H20O12 type III [242]
514 dianthrone A2a Psorospermum glaberrimum Hochr. C45H46O8 type III [242]
515 dianthrone A2b Psorospermum glaberrimum Hochr. C40H38O8 type III [248]
516 prinoidin dianthrones rhamnepalins Rhamnus napalensis (Wall.) M.A.Lawson C50H51O20 type III [249]
517 8,8′-dihydroxy-1,1′,3,3′-tetramethoxy-6,6′-dimethyl-10,10′-dianthrone Aspergillus wentii Wehmer C34H30O8 type III [243]
518 physcion-10,10′-bianthrone Cassia didymobotrya
Fresen.
C32H28O8 type III [250]
519 dianthrone J Cratoxylum formosum subsp. pruniflorum (Kurz) Gogelein C42H42O8 type III [251]
520 (−)-trans-2,2′-Digeranyloxy-7,7′-dimethyl-4,4′,5,5′-tetrahydroxy-9,9′-dianthrone Ochna pulchra Hook. C50H54O8 type III [252]
521 trans aloe-emodin dianthrone diglucoside Cassia angustifolia Vahl C42H42O18 type IV [253]
522 sennoside B Senna alexandrina Milll. C42H38O20 type V [254]
523 (−)-ochnadianthrone Ochna pulchra Hook. C50H54O8 type V [255]
524 sennidin C Rheum palmatum L. C30H20O9 type VI [255]
525 sennoside A Senna alexandrina Milll. C42H40O19 type VI [254]
526 sennoside D Senna alexandrina Milll. C48H44O25 type VI [256]
527 sennoside E Senna alexandrina Milll. C48H44O25 type VI [254]
528 sennoside F Senna alexandrina Milll. C48H44O25 type VI [254]
529 chrysophanol dianthrone Heterodermia obscurata (Nyl.) Trevis. C30H21O6 type VII [240]
530 chrysophanol-l0,l0′-dianthrone Cassia didymobotrya Fresen. C30H22O6 type VII [250]
531 chrysophanol-isophyscion dianthrone Senna longiracemosa (Vatke) Lock C31H25O7 type VII [257]
532 isophyscion dianthrone Senna longiracemosa (Vatke) Lock C32H28O8 type VII [257]
533 martianine 1 Senna martiana (Benth.) H. S. Irwin & Barneby C43H44O16 type VII [258]
534 palmidin B Rheum palmatum L. C30H22O7 type VII [258]
535 palmidin C Rheum palmatum L. C30H22O7 type VIII [259]
536 neobulgarone G Limonium tubiflorum (Delile) Kuntze C32H24Cl2O9 other [245]
537 chrysophanol-physcion-l0,l0′-dianthrone Cassia didymobotrya Fresen. C31H25O7 other [250]
538 1,8,1′,8′-tetrahydroxy-10,10′-dianthrone Hypericum Tourn. ex L. C28H18O6 other [260]
539 palmidin A Rheum palmatum L. C30H22O8 other [259]
540 rendin A Rheum palmatum L. C30H20O9 other [255]
541 rendin B Rheum palmatum L. C30H20O8 other [255]
542 rendin C Rheum palmatum L. C31H22O9 other [255]

graphic file with name toxics-13-00559-i036.jpg

graphic file with name toxics-13-00559-i037.jpg

graphic file with name toxics-13-00559-i038.jpg

graphic file with name toxics-13-00559-i039.jpg

graphic file with name toxics-13-00559-i040.jpg

2.2. Extraction and Separation Methods

Quinones are the active chemical components of several traditional Chinese medicines. In nature, quinones exist in two forms: free and glycosylated. The physical and chemical properties of glycosides differ greatly, especially their polarity and solubility; therefore, their extraction and separation methods are different.Figure 4 introduces the extraction and separation methods of quinone compounds.

Figure 4.

Figure 4

Extraction and separation methods for quinone compounds.

2.2.1. Extraction

Chinese medicines often contain both anthraquinones and their glycosides. The first step in the extraction of anthraquinone glycosides is to determine whether they should be extracted simultaneously or separately. Currently, the available extraction methods include alkaline extraction and acid precipitation, organic solvent extraction, physical field-enhanced extraction, water vapor distillation, lead salt method, supercritical fluid extraction, pressurized liquid extraction, and solid-phase extraction [14].

Alkali Extraction and Acid Precipitation Method

The acid precipitation method is applicable to quinone compounds containing acidic groups. In the alkali extraction and acid precipitation methods, the substance to be measured is first dissolved in a suitable solvent to form a solution. Then, an appropriate amount of alkali solution was added dropwise to the solution to neutralize the acidic substance with the alkali. When the hydrogen ions in the acidic substance are completely neutralized, the resulting salt forms ions in the solution that remain dissolved. Quinone compounds with different positions and numbers of free hydroxyl groups have different degrees of acidity; therefore, they can be extracted using different concentrations of alkaline aqueous solutions. Zhang Yuebin [261] extracted cornhusk rutin by alkali extraction and acid precipitation method, and the optimal process determined by response surface method was as follows: material-liquid ratio of 1:17 (g/mL), water bath temperature of 85 °C, and water bath time of 40 min, and the extraction rate of cornhusk rutin was 6.5328%.

Organic Solvent Extraction Methods

The most commonly used method for extracting quinones is organic solvent extraction, and the commonly used solvents include methanol and ethyl acetate. Zhang Liangming [262] extracted the total anthraquinones from cassia seeds, and the optimal process was 70% volume fraction of ethanol, extraction time of 2.0 h, material-liquid ratio of 1:30 (g:mL), and extraction temperature of 85 °C, which resulted in a high extraction rate and a stable process. Under these conditions, the average extraction rate of total anthraquinone from cassia seed was 4.79%.

Physical Field Enhanced Extraction

The addition of a physical field (e.g., microwave or ultrasound) to the traditional solvent can improve the extraction effect and shorten the extraction time. Lili Cao [263] extracted anthraquinones from the rhizomes of Rubia cordifolia by an ultrasonic-assisted method. The optimal extraction conditions were an ultrasonic time of 31.29 min, solvent dosage of 13.47 mL, solvent concentration of 81.15%, and a theoretical prediction of anthraquinone extraction rate in the rhizome of Cynanchum officinale of 7.64%.

Steam Distillation Method

Some compounds with small relative molecular masses are volatile and can be distilled with water vapor. If the compounds are volatile and water-insoluble, they can be extracted using water vapor distillation. The water vapor distillation method is applicable to benzoquinone and naphthoquinone compounds. Du Zexiang [264] used hydrodistillation to extract quinones from the stems of Plumbago zeylanica and determined the content of plumbagin in the compounds. The results showed that the plumbagin content in the fresh and dried stems of Plumbago zeylanica was 0.0423% and 0.0420%, respectively.

Lead Salt Method

Lead salt precipitation is a classical method for separating certain herbal components. Since lead acetate and alkaline lead acetate can form insoluble lead salts or complex salt precipitates with a variety of herbal ingredients in aqueous and alcoholic solutions, this property can be utilized to separate the active ingredients from impurities [265].

Supercritical Fluid Extraction Methods

The CO2-supercritical fluid extraction method utilizes the properties of high density, low viscosity, and large diffusion coefficient of CO2 in the supercritical state to extract the active ingredients, which have the advantages of low extraction temperature, high extraction rate of the active ingredients, and short operation cycle [266]. Zhu K [267] determined the optimal extraction process for the determination of anthraquinone in Rheum officinale by CO2-supercritical fluid method using the orthogonal test method, the optimal extraction conditions were 40 °C maintaining 20 MPa pressure for 2 h, and using 75% ethanol as the entraining agent.

Solid-Phase Extraction Method

Solid-phase extraction (SPE) is a simple and convenient method for the pretreatment of samples that can effectively eliminate the interference of the sample matrix, simplify the elution conditions of liquid chromatography analysis, and shorten the analysis time. Zhao Jiangli [268] established an analytical method for the determination of hydroquinone and phenol in cosmetics by solid-phase extraction and high-performance liquid chromatography, and the detected concentration andquantitative concentration can meet the technical requirements of the «Cosmetic Safety Code», which can be used for the determination of hydroquinone and phenol in cosmetics with complex matrices.

Pressurized Liquid Extraction Method

The pressurized liquid extraction method uses a conventional solvent to extract solid or semi-solid samples under relatively high temperature and pressure [269]. Ong and Soon [270] employed pressurized liquid extraction (PLE) to extract thermally unstable components, such as tanshinone I and tanshinone IIA, from Salvia miltiorrhiza Bunge. PLE was carried out dynamically under the following conditions: a flow rate of 1 mL/min, temperature of 95–140 °C, applied pressure of 10–20 bar, and extraction times of 20 and 40 min. The extraction efficiency of PLE is higher than that of other methods.

2.2.2. Separation

pH Gradient Extraction Method

pH gradient extraction is a traditional method for separating quinones. Quinones contain free hydroxyl groups at different locations and numbers, with different acidic strengths, and different quinones can be selectively extracted using different concentrations of alkaline aqueous solutions [271]. He Ying [272] determined the anthraquinones in the browning products of pomegranate pericarp and used pH gradient extraction for separation and column chromatography purification to obtain four anthraquinones, which were identified as rhubarb phenol, rhubarb, rhubarb acid, and rhubarb methyl ether, and the optimal process conditions were ethanol concentration of 75%, ethanol dosage of 90 mL, extraction time of 25 min, and extraction temperature of 25 °C. The extracts were extracted at 25 °C, and the extracts were extracted at 25 min.Figure 5 introduces the flow chart for the separation of anthraquinone compounds from pomegranate peels.

Figure 5.

Figure 5

Flow chart of the separation of anthraquinone compounds from pomegranate peels.

Chromatographic Methods

The most commonly used method for separating quinones is chromatography, which is particularly effective for separating quinones with free phenolic hydroxyl groups, especially anthraquinones. Conventional chromatographic methods include paper chromatography and column chromatography. An increasing number of new techniques have been applied to the separation of quinone compounds, such as high-performance liquid chromatography, high-performance countercurrent chromatography, droplet countercurrent chromatography, large-pore adsorbent resin, and flash column chromatography. High-performance liquid chromatography (HPLC) is a great complement to traditional chromatography, and with the continuous development of technology, HPLC has been greatly improved, and its operation and data processing are more automated. Chromatographic columns are packed with an ever-increasing variety of materials that can separate substances under normal-phase, reversed-phase, and even chiral conditions.HPLC instruments can be connected to a wide variety of monitors and are increasingly used in the separation of quinones. Jun Huang [273] established a high-performance liquid chromatographic assay for the separation of lawsone, which was sensitive, rapid, and simple, and was corroborated by high-performance liquid chromatography-tandem mass spectrometry to ensure accurate results. High-speed countercurrent chromatography (HSCCC) is a continuous liquid-liquid chromatographic technique that does not require solid-phase carriers. Tian, G [274] used multidimensional high-performance countercurrent chromatography to obtain four major components, tanshinone IIA, tanshinone I, dihydrotanshinone I, and cryptotanshinone II, with purities above 95%. Droplet countercurrent chromatography (DCCC) separates compounds based on differences in partitioning between two immiscible liquid phases. This method requires the system to be separated into two phases in a short period and form droplets efficiently [275].

Macroporous Adsorption Resin Method

Macroporous adsorption resin separation technology is a process of extraction and refinement that uses special adsorbents to selectively adsorb the active ingredients and remove the ineffective ingredients from the compound decoction of traditional Chinese medicine [276]. Zhenkang Lu [277] used macroporous adsorbent resin for the separation and purification of Juglans cyan bark pigment, and the dynamic adsorption and desorption experiments showed that the D-101 macroporous adsorbent resin was the most effective for the separation and purification of Juglans cyan bark pigment. The optimum conditions for adsorption were an initial concentration of 1.5 mg/mL, a flow rate of 0.5 mL/min, a pH of 3, and a volume of 50 mL of sample solution. The optimum conditions for desorption were an elution flow rate of 1.5 mL/min, ethanol concentration of 90% in the eluate, and elution pH of 4.

2.3. Structural Identification Methods

Common methods for the structural identification of benzoquinone include ultraviolet absorption spectroscopy, infrared absorption spectroscopy, nuclear magnetic resonance spectroscopy, and mass spectrometry.

2.3.1. Benzoquinones

Benzoquinones exist in a long conjugated system, and in the UV absorption spectrum, the molecules can show long absorption peaks in both the near-UV and visible regions. The three main absorption bands of benzoquinone are: ca. 240 nm (strong absorption); ca. 285 nm (medium to strong absorption); and ca. 400 nm (weak absorption). Benzoquinones are most characterized in the infrared spectra by the telescopic vibrational absorption peaks of carbonyl, hydroxyl, and double bonds at 1675–1653 cm−1C=O), 3600–3140 cm−1OH), 1640–1200 cm−1C=C). The number of absorption peaks and the wavenumber of the carbonyl group of the benzoquinone compound are closely related to the substituents on benzoquinone. When there is a hydroxyl substitution in the molecule, the hydrogen bonding between the carbonyl group and the hydroxyl group will cause a significant decrease in the wavenumber of the carbonyl absorption peak. If the molecular structure is symmetrical after the substitution of the substituent group, the compound is the same as unsubstituted benzoquinone, and there is only one base absorption peak in the infrared absorption spectrum. In the NMR hydrogen spectrum, the chemical shift of the unsubstituted benzoquinone ring proton is δH 6.72(s); when there is a substitution of an electron-donating group on the ring, it causes the chemical shifts of the other protons to be shifted to the higher field. In the NMR carbon spectra, the chemical shift of the unsubstituted benzoquinone carbonyl carbon is around δC 187, and substitution of the substituents around the benzoquinone carbonyl group induces a shift in the chemical shift of the carbonyl carbon. In the mass spectrum, the chemical shift of the carbonyl carbon is shifted to a higher field when the electron-donating group is substituted. In the mass spectrum, the molecular ion peak of unsubstituted benzoquinone is m/z 108, and cleavage fragments of m/z 82, m/z 80, and m/z 54 appear in its mass spectrum. A fragmentation ion peak (m/z 52) with two consecutive CO removals was present in the mass spectrum of benzoquinone. For substituted benzoquinones, this cleavage pattern provides an important basis for deducing the type of substituent.

2.3.2. Naphthoquinones

The UV absorption of naphthoquinone mainly originates from two parts of the structure: the naphthalene-like and quinone-like structures. The naphthalene structure has three main absorption bands at 245, 251, and 335 nm, while the quinone structure has a main absorption band at 257 nm [1]. When OH, OCH3, and other electron-donating groups are substituted in the molecule, the corresponding absorption bands are redshifted. The characteristic absorption peaks in the IR pattern of naphthoquinone remained in the carbonyl stretching vibration absorption peak from 1675 to 1653 cm−1 and the backbone vibration absorption peak between 1635 and 1648 cm−1 of the aromatic ring. In the NMR hydrogen spectra, when there is no substituent on the naphthoquinone (1.4-naphthoquinone) ring, the chemical shift of the ring proton is δH 6.95. In NMR carbon spectra, when there is an electron-donating substituent on the quinone ring, the quinone ring proton is shifted to the high field, and the degree of shift is related to the magnitude of the electron-donating effect [278]. When there is an electron-donating substituent on the quinone ring, such as C3 substituted with -OH or -OR, the chemical shift of C-3 is shifted to the low field by about 20 ppm, and that of C-2 is shifted to the high field by 30 ppm. When the C2 substituent is R, the C-2 signal shifts to the low field by about 10, and the C3 signal shifts to the high field by about 8. The extent of the shift of C2 to the low field increased with increasing R. The C2 substituent is a substituent of the C2 position in quinone rings.

2.3.3. Phenanthrenequinones

Phenanthrenequinone, although structurally classified as a phenanthrenequinone, is biosynthetically classified as a diterpene quinone based on the structures of other coexisting congeners [11]. The vast majority of diterpene quinones have a rosinane or rearranged rosinane-type skeleton and include many pro-quinone types. Most quinone carbonyls in this group are present on the C-ring of the rosinane diterpenes, with 1,4-p-quinone and, in a few cases, also the o-type, usually with an isopropyl unit on the C-ring. The presence of this structural unit can be judged mainly by the chemical shifts of the protons and the shape of the peaks on ′H NMR. Most of the quinone carbonyls in this group are present on the C-ring of the rosinane diterpenes, with 1,4-p-quinone and, in a few cases, also the o-type, usually with an isopropyl unit on the C-ring, and the presence of this structural unit can be judged mainly by the chemical shifts of the protons and the shape of the peaks on 1H NMR. Generally, the chemical shifts of 16-CH3 and 17-CH3 are around 1.10, each appearing as a double peak. The C-15 hypomethyl proton appeared around 3.00 and showed a heptagonal peak due to coupled cleavage with both methyl protons. The 13C NMR chemical shift values of the carbonyl group are mainly derived from the presence or absence of hydroxyl groups in the neighboring environment, and the chemical shift of the carbonyl group with hydrogen bonding is shifted to a lower field. Methyl, hydroxyl, acetyl, and a third carbonyl group are also often present in the diterpene skeleton structure, and the substitution positions of these groups are usually based on two-dimensional mapping. The positions of these substituents are usually determined by a comprehensive analysis of the 1H COSY, HMQC, and HMBC spectra. In addition, the diterpene skeleton is often broken in this type of structure, and the identification of its structure is also mainly based on the analysis of NMR data. Where conditions permitted, confirmation was made by X-ray single-crystal diffraction data analysis [14].

2.3.4. Anthraquinones

In the UV absorption spectrum, anthraquinone has four main absorption bands caused by the benzene-like and quinone-like structures, with four absorption peaks at 252, 325, 272, and 405 nm. Most natural anthraquinones have hydroxyl substitutions, and the UV absorption spectra of hydroxy anthraquinones have five main absorption peaks: the I absorption peak is around 230 nm; the II absorption peak is 240–260 nm (caused by the benzene-like structure); the III absorption peak is 262–295 nm (caused by the quinone-like structure); the IV absorption peak is 305–389 nm (caused by the benzene-like structure); and the V absorption peak is greater than 400 nm (caused by C=O in the quinone-like structure) [1]. The information provided by the UV-Vis spectra of anthraquinones is of some use for structural speculation; however, because of the plethora of exceptions, UV-Vis spectral data are usually used only as circumstantial evidence for structural analysis. The IR absorption spectra of hydroxyanthraquinone are characterized by carbonyl stretching vibrational absorption near 1670 cm−1. Hydroxyl stretching vibrational absorption in the 3600–3150 cm−1 interval and benzene ring backbone vibrational absorption in the 1600–1480 cm−1 interval [279].In 1H NMR, the NMR signals of the aryl hydrogens of the anthraquinone parent nucleus can be divided into two categories: α-aryl hydrogens are in the negatively shielded region of C=O, which are more affected by the carbonyl group, and the resonance occurs in the lower magnetic field region, with the peak centered around δ8.07 [280]; β-aryl hydrogens are less affected by the carbonyl group, and the resonance occurs in the higher magnetic field region, with the peak centered around δ6.67 [271]. 13C NMR plays an important role in the identification of quinones. 13C NMR is important for the identification of quinones. The carbon atoms of the quinone parent nucleus can be classified into four groups, and the chemical shift values of these carbons in unsubstituted anthraquinones are as follows: α-C 126.6, β-C 134.3, carbonyl carbon 182.5, and quaternary carbon 132.9. When there is a hydroxyl substitution at the α-position, the chemical shift of the carbonyl carbon is shifted to the lower field to about 187 [14].

3. Progress in Pharmacological Activity Research

Quinones are abundant in nature, and their pharmacological activities, including immunomodulatory, antitumor, anti-inflammatory, antibacterial, antioxidant, and laxative effects, have received widespread attention.

3.1. Immunomodulatory Effects

Quinones exert multiple regulatory effects on the immune system. At the level of immune cells, it can activate macrophages to enhance phagocytosis, regulate their polarization, affect the differentiation and cytotoxicity of T-lymphocyte subpopulations, and regulate the activation and proliferation of B-lymphocytes and antibody secretion. Shen Jie established an SLE model and tested the parameters of lymph node size, spleen index, kidney index, Th cell subpopulation, and B cell activation index in mice. After Embelin treatment, the Th1/Th2 and Treg/Th17 ratios in the lymph nodes and spleens of SLE mice were significantly elevated. Moreover, the concentrations of dsDNA, ssDNA, and IgG in the serum of mice were significantly decreased. It was concluded that embelin exerts a therapeutic effect on SLE mice by regulating the balance of Th cell subpopulations and inhibiting the activation of Th and B cells, demonstrating that letterbox quinone has immunomodulatory and therapeutic effects on SLE [281].

3.2. Anti-Tumor Activity

Quinones exhibit anti-tumor effects. On the one hand, quinones can induce apoptosis in cancer cells by activating the endogenous apoptotic pathway. On the other hand, quinones can interfere with the cell cycle of tumor cells, causing them to stagnate at a certain stage and inhibiting the proliferation of tumor cells. In addition, quinones can inhibit tumor angiogenesis and reduce nutrient supply to tumors. Moreover, it can enhance the immune function of the body and activate immune cells to recognize and kill cancer cells, thus playing a multi-faceted positive role in the anti-tumor process. Common antitumor components include embelin [282], emodin [283], chrysophanol [284], tanshinone IIA [285], juglone [286], plumbagin [287], aloe-emodin [288], dioscoreanone [289], and denbinobin [290]. Table 7 introduces the anti-proliferative effects of quinone compounds on cells.

Table 7.

Anti-proliferative effects of quinone compounds on cells.

No. Name Cell Line IC50
15 embelin PC-3 3.7 μmol/L
LNCaP 5.7 μmol/L
HeLa 5–7 μmol/L
64 juglone BxPC-3 21.05 μmol/L
68 plumbagin HepG2 (27.08 ± 0.40) μmol/L
HL-60 0.8 μmol/L
197 dioscoreanone MCF-7 20 μmol/L
198 denbinobin K562 1.84 μmol/L
GSK5182 1.6 μmol/L
219 tanshinone IIA A549 42.45 μmol
BGC-823 61.46 μmol/L
Hep-2 9.6 μmol/L
226 chrysophanol HepG2 30 μmol/L
MCF-7 25 μmol/L
A549 18 μmol/L
227 emodin HL-60/ADR 5.79 μmol/L
SMMC-7721 21.6 μmol/L
HL-60 20 μmol/L
L02 135 μmol/L
521 aloe-emodin HeLa 58.3 μmol/L
HepG2 10 μmol/L
HCT116 8.7 μmol/L

Avci, H [286] used MTT to determine the cytotoxic effect of juglone. Treatment of BxPC-3 human pancreatic cancer cells with different concentrations of juglone reduced the expression of MMP-2 and -9 genes in a dose-dependent manner, and VEGF induced a significant reduction in the level of expression of Phactr-1 gene, indicating that huperzine has an anti-metastatic effect on human pancreatic cancer cells. Zhang utilized the thiazolyl blue reduction method (MMT) to detect the antiproliferative effect of Dendrobium officinale phenanthrenequinone on human ovarian cancer cells HO-8910PM, while the Transwell assay was used to detect changes in the metastatic ability of the cells. The expression of apoptosis- and metastasis-related genes and protein levels in HO-8910PM cells was detected using reverse transcription-polymerase chain reaction and protein blotting. The results of the MTT assay showed that the proliferation inhibitory effect of dendrobium phenanthrenequinone at 3 μmol/L and 10 μmol/L on ovarian cancer cells was significant, and dendrobium phenanthrenequinone inhibited the proliferation and metastasis of ovarian cancer cells by upregulating the expression of CASP3, CASP9, and CAV1, and downregulating the expression of SOX2. The experimental results demonstrated that dendrobium phenanthrenequinone has anti-invasive and metastatic therapeutic effects on human ovarian cancer cells [291]. Yang suggested that rhodopsin inhibited SREBP1-dependent and SREBP1-non-dependent cell proliferation and led to caspase-dependent and caspase-non-dependent induction of endogenous apoptosis in HCC [292]. The IC50 value of rhodopsin in L02 cells was 36.69 μg/L [293]. The toxicity of rhodopsin on normal human cells (IC50 values ranging from 92.59 to 185.18 μmol/L) was slightly lower than the IC50 values of rhodopsin on cancer cells (10 to 80 μmol/L).

3.3. Antioxidant Activity

Anthraquinones possess antioxidant effects and play a positive role in protecting the body against oxidative stress damage. Quinones with antioxidant effects include idebenone [294], plumbagin [295], juglone [296], alkannin [297], tanshinone I [298], tanshinone IIA [299], emodin, physcion [300], and aloe-emodin [301]. Idebenone exerts antioxidant effects that are mainly dependent on the benzoquinone ring, which has both reduced (hydroquinone) and oxidized forms [287]. The ketone bond can generate unstable semiquinone through a reduction reaction or further reduction to form dihydroubiquinone, which exhibits strong antioxidant activity. Hao Xu [294] examined the expression of SIRT3 in oxidative stress-injured HT22 cells before and after the use of ibuprofen and found that ibuprofen counteracted oxidative stress-injured neuronal apoptosis by affecting the CD38-SIRT3-P53 pathway. The optimal extraction process of naphthoquinones in water walnut leaves was determined by one-way and orthogonal tests, i.e., 50% v/v ethanol solution as extraction solvent, 1:50 (g/mL), extraction temperature of 60 °C, and extraction time of 5 h. The extraction of naphthoquinones reached 168.14 mg/g under these conditions. Hu Tian determined the optimal extraction process of naphthoquinone components in the leaves of Platycarya strobilacea Siebold & Zucc, through a single-factor and orthogonal experiment. That is, an ethanol solution with a volume fraction of 50% was used as the extraction solvent, with a solid-liquid ratio of 1:50 (g/mL), extraction temperature of 60 °C, and extraction time of 5 h. Under these conditions, the amount of naphthoquinone extract reached 168.14 mg/g. By measuring their reducing power, it was found that the DPPH radical scavenging ability of both the naphthoquinone extract of Narcissus aquifolium Pourr., and VC gradually increased with increasing sample mass concentration. However, the scavenging rate of DPPH radicals by both the naphthoquinone extract of Narcissus aquifolium Pourr., and VC gradually stabilized when the mass concentration of the naphthoquinone extract of Narcissus aquifolium Pourr., and VC was greater than 0.6 mg/mL. The results indicated that the naphthoquinone constituents of water walnut leaves have good antioxidant activity in vitro [302]. Table 8 introduces the antioxidant activity of quinone compounds.

Table 8.

Antioxidant activity of quinone compounds.

No. Name DPPH ABTS
68 plumbagin IC50 = 50 μmol/L
64 juglone IC50 = 0.498 mg/mL IC50 = 0.189 mg/mL
142 alkannin IC50 = 40 μg/mL
217 tanshinone I IC50 = 0.07 μmol/L
227 emodin EC50 = 147.87 mg/L
IC50 = 112.32 mg/mL
385 physcion IC50 = 56.05 mg/mL
521 aloe-emodin EC50 = 6.03 mg/L

3.4. Anti-Inflammatory Activity

Anthraquinones have significant anti-inflammatory effects, and their mechanism of action mainly involves the regulation of inflammatory factors and the inhibition of related signaling pathways. Through in vivo experiments in mice, Jie found that alcohol extracts of Rubia cordifolia L. exert anti-inflammatory effects by inhibiting the production of pro-inflammatory factors in serum and promoting the production of anti-inflammatory factors. Rubia cordifolia L. alcohol extract in the middle concentration group and high concentration group had similar therapeutic effects to that of dexamethasone on adjuvant arthritis in mice, resulting in a reduction in inflammatory cell infiltration in the articular cavity of the ankle joint in mice. The MDA and SOP levels in liver homogenates showed that the components in Rubia cordifolia L. inhibit inflammation partly through the elimination of free radicals and reactive oxygen molecules in vivo and partly through the metabolism of glutathione in the liver [303]. Liu Mingxin demonstrated that the naphthoquinone constituents of Arnebia euchroma (Royle) I. M. Johnst. were able to downregulate the expression of inflammatory mediators PGE2, NO, and inflammatory cytokines IL-1β and TNF-α, inhibit xylene-induced mouse auricular swelling, and exert certain anti-inflammatory effects in vitro using a macrophage inflammation model and in vivo in an animal model [304].

3.5. Antimicrobial Activity

Quinones have significant antimicrobial effects and inhibit a wide range of bacteria to varying degrees [305]. Their inhibitory mechanism mainly lies in their ability to inhibit the oxidation and dehydrogenation processes of bacterial sugars and metabolic intermediates, and they can bind to DNA, interfering with its template function, and thus inhibiting the synthesis of proteins and nucleic acids [306]. Zhenkang Lu treated E. coli with juglone at concentrations of 0.0625, 0.125, 0.25, 0.5, 1, 2 mg/mL, and 4 mg/mL, and the relative conductivity of E. coli cell membranes increased which means that juglone resulted in impaired integrity of E. coli membranes, and increased permeability of cell membranes. Fluorescence emission spectroscopy results showed that juglone interacts with membrane proteins, thereby changing the structure of the E. coli cell membrane. The results of crystal violet and bladed azurite staining experiments showed that juglone could weaken the respiration of E. coli by inhibiting the formation of E. coli biofilms and eventually inhibiting its activity. SDS—PAGE and E. coli genome synthesis analysis revealed that juglone inhibited the expression of proteins, DNA, and RNA in E. coli, thereby acting as an antibacterial agent [307].

3.6. Anti-Fibrotic Effect

Quinones have antifibrotic effects. One of these mechanisms involves the inhibition of fibrosis-related cytokine expression, interference with signaling pathways, and reduction of extracellular matrix synthesis. Anthraquinone can inhibit the over-activation of the MAPK pathway in hepatic stellate cells, thereby inhibiting the activation of hepatic stellate cells, reducing their transformation to myofibroblasts, reducing the synthesis of extracellular matrix, and reducing the degree of liver fibrosis. In vitro antifibrotic tests on rat HSC were performed, and it was concluded that 2,3,5-trihydroxy-4,9-dimethoxyphenanthrene, 2,3,5-trihydroxy-4-methoxyphenanthrene, and denbinobin phenanthrenequinone from Dendrobium officinale could all reduce the number of HSC cells. These three phenanthrenes exhibit antifibrotic activity by inducing the selective death of hematopoietic stem cells, providing a new avenue for the prevention and treatment of liver fibrosis [308].

3.7. Laxative Effect

Quinone compounds have purgative effects. The primary action sites of the combined anthraquinones of Rhei Radix or the free anthraquinones of Rheum palmatum L. Radix are the small intestine and stomach, followed by the colon. It can be seen that the anthraquinones of Rheum palmatum L. Radix et Rhizoma can act directly without the need for transformation in the large intestine [309]. Chen Yan-Yan [310] showed that after administration of Da Huang Gan Cao Tang to constipated mice, the time to peak and the area under the drug-time curve of the plasma anthraquinones emodin, aloe emodin, emodin-8-O-β-D-glucoside, conjugated dianthrones senecioside A, and glycyrrhetinic acid were higher than those of control mice. Compared to normal mice, rhubarb-glycyrrhiza glabra soup exhibited a stronger purifying effect in constipated mice, with an increase in fecal excretion and a shorter time to the first detachment.

3.8. Antidepressant Effects

Anthraquinones from medicinal plants, such as chrysin, also have antidepressant activity and are often used in antidepressant therapy. Chrysin has been found to improve depressive symptoms in rats, and high doses of chrysin can activate 5-hydroxytryptamine receptors (5-HT) in the hippocampus of depressed rats, stimulate neurotransmitter transmission, and increase the degree of excitability in rats. This anthraquinone analog reduced the degree of depression in rats [118].

4. Progress in Toxicity Studies

4.1. Digestive System Toxicity

4.1.1. Hepatotoxicity

As exogenous substances, the main chemical components of quinones are oxidized and reduced under the action of the cytochrome P450-based monooxygenase system in the liver and are finally converted into polar compounds for excretion [311]. Hu Xichen conducted three consecutive months of gavage and histopathological examination of the rat liver. At the end of three months, histopathological sections of the liver showed scattered inflammatory cell infiltration, congestion of hepatic sinusoids, active proliferation of Kupffer cells, and phagocytosis of pigment particles under a light microscope. In the transmission electron microscopy of the high-dose group, chromatin was clumped together in the nuclei of some hepatocytes or collected in the subnuclear membranes, the mitochondria were mildly swollen, the structure of capillary bile ducts was not clear in individual specimens, and the number of Kupffer cells was increased. In some specimens, the structure of the capillary bile ducts was unclear, and the number of Kupffer cells was increased. After the recovery period, no obvious pathological changes were observed in the liver pathology section under the microscope in each administered group. The results demonstrated that long-term gavage of prepared Polygonum multiflorum can cause liver inflammatory injury in rats, and the liver can be normalized after stopping the drug [312]. Z.H. Mao investigated the potential cytotoxicity and DNA-breaking effects of rhein, chrysophanol, emodin methyl ether, and aloe emodin on HepaRG in normal human-derived hepatocytes by using high-concentration assay and alkaline comet electrophoresis. The four rhubarb anthraquinones were found to be toxic to hepatocytes to varying degrees. Among them, the effects of emodin methyl ether on elevated reactive oxygen species and mitochondrial damage were more pronounced, and the toxicity of aloe emodin was mainly manifested by the modulation of free Ca2+ levels in hepatocytes. Oxidative stress injury may be an important molecular mechanism responsible for potential hepatocytotoxicity and genotoxicity [313].

4.1.2. Enterotoxicity

Quinones usually exist as glycosides and are not degraded by gastric acid. When anthraquinones is administered orally, it enters the stomach and small intestine through the esophagus, is absorbed into the bloodstream through the small intestinal mucosa, is converted to glucuronide conjugates by phase II enzymes in the liver and intestines [314], and is transported to various tissues and organs throughout the body through the heart to exert a variety of pharmacological effects [315]. Prolonged use of laxatives containing anthraquinones can cause colorectal melanosis (MC). MC is a non-inflammatory, benign, reversible pigmentation characterized by colorectal mucosal lesions [316], which has been found to be due to intestinal mucosal epithelial cellular turnover and deposition of lipofuscin by electron microscopy and histopathology. The presence of anthraquinone-containing laxatives in the colon significantly increases the risk of developing colorectal melanosis. SteerH W Ultrastructural and histochemical staining of colonic tissues from six normal colons and seven patients with melanotic polyps revealed that anthraquinone laxatives increased the number of macrophages in the lamina propria of the colonic mucosa. In addition, they enhance the lysosomal activity of macrophages, Schwann cells, and neuronal cells in the lamina propria of the colonic mucosa, as well as increase the number of lysosomes [317].

Cheng Ying used acridine orange staining and mitochondrial membrane potential staining to detect the effects of rhubarb sap metabolites, rhein, emodin, and aloe emodin on the acidic vesicular organelles and mitochondrial membrane potential in NCM460 and HT29 cells, respectively, and the effects of autophagy and apoptosis-related proteins on the expression levels were detected by western blot. The results showed that rhubarb sap metabolites, rhein, emodin, and aloe emodin, induced autophagy and apoptosis in NCM460 and HT29 cells, suggesting that rhubarb may exert a toxic effect on human colon cells by promoting autophagy and apoptosis [318].

4.2. Urinary Toxicity

Quinones can cause proteinuria, oliguria, anuria, hematuria, and other symptoms, and long-term or large amounts of exposure may lead to acute and chronic nephritis, renal failure, and even uremia and other serious kidney diseases, seriously affecting the normal function of the urinary system and overall health of the body. When emodin is ingested in excess, it interferes with the filtration function of the kidneys and the reabsorption of the renal tubules, resulting in the excretion of protein components that should have been reabsorbed back into the bloodstream through urine, leading to proteinuria. Lan Jie observed the effects of anthraquinone components in Pleuropterus multiflorus (Thunb.) Nakai on human renal cortical proximal tubule epithelial cell line HK-2 cells and detected the changes in mitochondrial membrane potential of HK-2 cells using JC-10. The mitochondrial membrane potential of the five anthraquinone monoconstituents declined with an increase in the treatment concentration and prolongation of the administration time, among which chrysophanin and aloe emodin had the fastest rate of decline, followed by rhodochrospiracol. The apoptosis of HK-2 cells after the administration of the five anthraquinone monomer components were detected by flow assay, and it was found that significant apoptosis was visible only after the administration of Rhein, Aloe emodin greater than or equal to 25 μmol/L for 48 h and and and Rhein 50 and 100 μmol/L for 48 h (p < 0.05). It was concluded that emodin, Aloe emodin, and Rhein can damage HK-2 cells with a potential risk of nephrotoxicity [319].

4.3. Reproductive Toxicity

Quinones may have adverse effects on the uterus and placenta during pregnancy. They cross the placental barrier and exert direct toxic effects on the fetus. Chang determined that emodin induced apoptosis, i.e., embryonic cytotoxicity, in mouse blastocysts by treating them with 25, 50, or 75 μmol/L emodin for 24 h at 37 °C and examining DNA fragmentation using the TUNEL assay. Membrane-associated protein V staining revealed a significantly higher number of membrane-associated protein V-positive/PI-negative (apoptotic) cells in the ICM and TE of emodin-treated blastocysts than in the control group. Emodin significantly inhibited cell proliferation and induced apoptosis in the ICM and TE of mouse blastocysts. Selective inhibition of RAR activity in emodin-treated blastocysts. Therefore, this substance may negatively affect embryonic development by decreasing RARβ expression, which in turn downregulates the RARβ-mediated developmental signaling pathways. Emodin triggers apoptosis in mouse blastocysts, leading to impaired embryonic development via the intrinsic cell death pathway [320].

Quinones can interfere with the normal physiological processes of testicular spermatogenic cells and damage DNA in sperm cells, causing gene mutations or chromosomal aberrations, thereby reducing the quality and quantity of spermatozoa. N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is acutely toxic to organisms. Yao Kezhen exposed C57Bl/6 male mice to 6PPD-Q for 40 days at a dose of 4 mg/kg bw. After 40 days of exposure to C57Bl/6 male mice, exposure to 6PPD-Q not only resulted in decreased testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) results, thus indicating that 6PPD-Q exposure leads to impaired male fertility [321].

4.4. Carcinogenicity

The International Agency for Research on Cancer (IARC) of the World Health Organization (WHO) classifies carcinogens into five groups, of which quinones are classified as group 2B and group 3 carcinogens. The IARC classifies 1-amino-2,4-dibromoanthraquinone, anthraquinone, dantron (chrysazin; 1,8-dihydroxyanthraquinone), 1-hydroxyanthraquinone, 2-methyl-1-nitroanthraquinone (uncertain purity), and mitoxantrone as Group 2B carcinogens, i.e., possibly carcinogenic to humans, but evidence of carcinogenicity in humans is limited. Limited evidence of carcinogenicity in humans and insufficient evidence of carcinogenicity in experimental animals, or insufficient evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. 1-amino-2-methylanthraquinone, 2-aminoanthraquinone, and aziridyl benzoquinone are classified as Group 3 carcinogens, i.e., their carcinogenicity to humans is doubtful, and there are insufficient human or animal data. Table 9 introduces carcinogenic quinone compounds and their classifications.

Table 9.

Carcinogenic quinone compounds and their classification.

No. Name Classification
225 dantron(chrysazin;1,8-dihydroxyanthraquinone) 2B
328 1-hydroxyanthraquinone 2B
336 1-amino-2,4-dibromoanthraquinone 2B
337 2-methyl-1-nitroanthraquinone 2B
397 mitoxantrone 2B
59 tris(aziridinyl)-para-benzoquinone (triaziquone) 3
60 aziridyl benzoquinone 3
371 1-amino-2-methylanthraquinone 3
386 2-aminoanthraquinone 3

5. Summary

Summarizing and analyzing the research literature at home and abroad, the current research on quinones focuses on their types, pharmacological activities, and toxicity, and abundant research results have been achieved in these fields. The application and potential risks of quinones in the field of medicine and health have been investigated from the perspectives of classification of chemical structure, verification of biological activity, and exploration of toxicity mechanism, which provides a rich theoretical basis and practical experience for the development of quinones in natural medicine and related products. However, it should be pointed out that this study also has certain limitations. For example, in toxicity research, the molecular mechanism of quinone toxicity remains unclear; in technical terms, the efficiency of extraction and separation techniques is limited, and structural identification is overly dependent on traditional methods. Based on the limitations of the current study, further systematic research can be carried out in the following aspects: firstly, a systematic toxicity evaluation of quinones in traditional Chinese medicine and risk assessment to evaluate the safety of these ingredients; secondly, with the help of a 3D organoid co-culture model, further in-depth investigation into the toxicity mechanism of quinones, clarifying the key links and molecular mechanisms of their toxicity, and synthesizing quinone compounds with high bioactivity and low toxicity. We will synthesize quinone derivatives with high biological activity and low toxicity to expand the application potential of quinone compounds. Finally, we will develop an efficient and accurate online identification technology for the rapid identification of quinone compounds in traditional Chinese medicine.

Acknowledgments

Thanks to Yang Jianbo and Liu Xiaoqiu for their guidance on this study.

Author Contributions

Conceptualization, Z.L., J.Y., X.L., Y.P., P.C., L.Z., J.Y., X.C.,W.J., X.G. and F.W.; investigation, Z.L., R.Y., and H.G.; writing—original draft preparation, Z.L.; writing—review and editing, Z.L., J.Y. and X.L.; supervision, X.L., Y.P., P.C., L.Z., J.Y., X.C., W.J., X.G. and F.W.; project administration, J.Y.; funding acquisition, J.Y. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available upon request from the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Funding Statement

This research was funded by Textual Research on the Original Sources of Commonly Used Medicinal Materials in Ethnic Medicines and Study on Reference Medicinal Materials, Research on Key Technologies for Quality Control of Characteristic Ethnic Medicines in Xinjiang and Their Industrial Application and Research on Rapid Identification Methods for Varieties Based on the “Identity Card” Characteristics of Chemical Components, grant numbers “2023B03001-2, 2024B02023-2 and 2023YFC3504105”.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Peng Y.H., Liu X.Q., Lv H.Y. Natural Medicinal Chemistry. 2nd ed. Chemical Industry Press; Beijing, China: 2020. [Google Scholar]
  • 2.Yang Y.T., Zhang G.Y., Yang D.F., Zhang Y.Q., Zhang L., Wu S., Li X., Zhou Y.Z. Research progress on the regulation of lipid metabolism in the body by active components of traditional Chinese medicine. Chin. Herb. Med. 2024;55:3127–3136. [Google Scholar]
  • 3.Wu R., Li K.F., Wang W.F. Efficacy of sodium tanshinone IIA sulfonate combined with metoprolol in the treatment of senile coronary heart disease and its effect on ventricular remodeling. Clin. Med. Res. Pract. 2025;10:53–56. doi: 10.19347/j.cnki.2096-1413.202502014. [DOI] [Google Scholar]
  • 4.Yuan H.L., Zhao Y.L., Fan D.S., He W.L., Zhao P.P., Cai Y. Improved synthesis method of buparvaquone. Chem. Bull. 2021;84:952–957. doi: 10.14159/j.cnki.0441-3776.2021.09.012. [DOI] [Google Scholar]
  • 5.Tao M.B., Zhang L., Liu F., Chen L., Liu Y.P., Chen H.P. Research progress on the safety of traditional Chinese medicines containing anthraquinone components. Pharmacol. Clin. Chin. Mater. Med. 2016;32:238–243. doi: 10.13412/j.cnki.zyyl.2016.06.069. [DOI] [Google Scholar]
  • 6.Zhou X.J. Analysis of clinical characteristics of 130 cases of melanosis coli. Jilin Med. J. 2014;35:3487–3488. [Google Scholar]
  • 7.Wang X., Sun K.W., Tian T., Zeng W.T., Yuan W. Clinical analysis of 12 cases of drug-induced liver injury caused by Polygonum multiflorum and its related preparations. Liver. 2024;29:1538–1540. doi: 10.14000/j.cnki.issn.1008-1704.2024.12.025. [DOI] [Google Scholar]
  • 8.Duan Y.H. Literature analysis of traditional Chinese medicine varieties causing kidney damage. Strait. Pharm. J. 2014;26:138–139. [Google Scholar]
  • 9.Zhao F.B., Li T.J., Zhao H., Guo J.W., Zhang J.G. Clinical analysis of 356 cases of acute kidney injury in inpatients of a nephrology-specialized hospital. J. Intern. Med. Theor. Pract. 2015;10:177–180. doi: 10.16138/j.1673-6087.2015.03.004. [DOI] [Google Scholar]
  • 10.Holliday A.E., Walker F.M., Brodie E.D., III, Formica V.A. Differences in defensive volatiles of the forked fungus beetle, Bolitotherus cornutus, living on two species of fungus. J. Chem. Ecol. 2009;35:1302–1308. doi: 10.1007/s10886-009-9712-7. [DOI] [PubMed] [Google Scholar]
  • 11.Dong M., Ming X., Xiang T., Feng N., Zhang M., Ye X., He Y., Zhou M., Wu Q. Recent research on the physicochemical properties and biological activities of quinones and their practical applications: A comprehensive review. Food Funct. 2024;15:8973–8997. doi: 10.1039/D4FO02600D. [DOI] [PubMed] [Google Scholar]
  • 12.Qiu Y.F., Lu B., Yan Y.Y., Luo W.Y., Gao Z.Q., Wang J. A convenient synthesis of 1,4-benzoquinones. J. Chem. Res. 2019;43:124–126. doi: 10.1177/1747519819841806. [DOI] [Google Scholar]
  • 13.Shi Z.M., Wang Q., Lu X.X., Zeng H.P., Xiao H., Zhang C.G., Liu H. Study on the physicochemical properties and druglikeness prediction of methyl-p-benzoquinone. J. Dali. Univ. 2024;9:26–32. [Google Scholar]
  • 14.Lu Y. Chemistry of Quinones (Series of Natural Product Chemistry) 2nd ed. Chemical Industry Press; Beijing, China: 2009. [Google Scholar]
  • 15.Yang D.Y., Yu H., Wu X.Y., Zhu Y.H., Xiao X.L., Xu W.A., Chen Y.X., Gong Q.F. Research progress on chemical components and biological activities of Atractylodes macrocephala Koidz. Chin. Arch. Tradit. Chin. Med. 2023;41:171–182. doi: 10.13193/j.issn.1673-7717.2023.05.037. [DOI] [Google Scholar]
  • 16.Zhang W.Q. Master’s Thesis. Southern Medical University; Guangzhou, China: 2022. Study on the Chemical Components and Anti-Inflammatory Activities of Arnebia euchroma (Royle) Johnst. [Google Scholar]
  • 17.Chen C.Y., Wang J.J., Kao C.L., Li H.T., Wu M.D., Cheng M.J. A New Benzoquinone from Antrodia camphorata. Chem. Nat. Compd. 2022;58:614–616. doi: 10.1007/s10600-022-03754-2. [DOI] [Google Scholar]
  • 18.Wang H.J., Gloer K.B., Gloer J.B., Scott J.A., Malloch D. Anserinones A and B: New antifungal and antibacterial benzoquinones from the coprophilous fungus Podospora anserina. J. Nat. Prod. 1997;60:629–631. doi: 10.1021/np970071k. [DOI] [PubMed] [Google Scholar]
  • 19.Gupta I., Peddha M.S. Anti-adipogenic activity of oleoresin from Nigella sativa L. seeds via modulation of PPAR-γ and C/EBP-α expression in 3T3-L1 adipocytes. Adv. Tradit. Med. 2024 doi: 10.1007/s13596-024-00808-4. [DOI] [Google Scholar]
  • 20.Ko J.-H., Lee S.-G., Yang W.M., Um J.-Y., Sethi G., Mishra S., Shanmugam M.K., Ahn K.S. The Application of Embelin for Cancer Prevention and Therapy. Molecules. 2018;23:621. doi: 10.3390/molecules23030621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Liu J. Master’s Thesis. Dali Univercity; China: 2018. Study on the Chemical Components and Biological Activities of Embelia ribes Burm.f. and Hypericum spathulatum Hook.f. & Thomson ex Dyer. [Google Scholar]
  • 22.De Gaetano F., Mannino D., Celesti C., Bulzomí M., Iraci N., Giofrè S.V., Esposito E., Paterniti I., Ventura C.A. Randomly methylated β-cyclodextrin improves water-solubility, cellular protection and mucosa permeability of idebenone. Int. J. Pharm. 2024;665:124718. doi: 10.1016/j.ijpharm.2024.124718. [DOI] [PubMed] [Google Scholar]
  • 23.Gunatilaka A.A., Berger J.M., Evans R., Miller J.S., Wisse J.H., Neddermann K.M., Bursuker I., Kingston D.G. Isolation, synthesis, and structure-activity relationships of bioactive benzoquinones from Miconia lepidota from the Suriname rainforest. J. Nat. Prod. 2001;64:2–5. doi: 10.1021/np000219r. [DOI] [PubMed] [Google Scholar]
  • 24.Lin W.Y., Kuo Y.H., Chang Y.L., Teng C.M., Wang E.C., Ishikawa T., Chen I.S. Anti-platelet aggregation and chemical constituents from the rhizome of Gynura japonica. Planta Med. 2003;69:757–764. doi: 10.1055/s-2003-42796. [DOI] [PubMed] [Google Scholar]
  • 25.Arot Manguro L.O., Midiwo J.O., Kraus W., Kraus W., Ugi I. Benzoquinone derivatives of Myrsine africana and Maesa lanceolata. Phytochemistry. 2003;64:855–862. doi: 10.1016/S0031-9422(03)00428-X. [DOI] [PubMed] [Google Scholar]
  • 26.Lertnitikul N., Teerasukpimol L., Aekanantakul P., Pooreecharurot N., Sukrong S., Boonyong C., Poldorn P., Rungrotmongkol T., Sukandar E.R., Aonbangkhen C., et al. A new benzoquinone and a new stilbenoid from Paphiopedilum exul (Ridl.) Rolfe. Nat. Prod. Res. 2024;22:1–9. doi: 10.1080/14786419.2024.2344196. [DOI] [PubMed] [Google Scholar]
  • 27.Zhou R.Y., Li N., Luo W.Y., Wang L.L., Zhang Y.Y., Wang J. A Simple and Convenient Two-step Synthesis of Idebenone. Org. Prep. Proced. Int. 2021;53:397–401. doi: 10.1080/00304948.2021.1917945. [DOI] [Google Scholar]
  • 28.Su J.H., Ahmed A.F., Sung P.J., Wu Y.C., Sheu J.H. Meroditerpenoids from a Formosan soft coral Nephthea chabrolii. J. Nat. Prod. 2005;68:1651–1655. doi: 10.1021/np050278a. [DOI] [PubMed] [Google Scholar]
  • 29.Permana D., Lajis N.H., Mackeen M.M., Ali A.M., Aimi N., Kitajima M., Takayama H. Isolation and bioactivities of constitutents of the roots of Garcinia atroviridis. J. Nat. Prod. 2001;64:976–979. doi: 10.1021/np000563o. [DOI] [PubMed] [Google Scholar]
  • 30.Pirouz M., Abaee M.S., Harris P., Mojtahedi M.M. One-pot synthesis of benzofurans via heteroannulation of benzoquinones. Heterocycl. Commun. 2021;27:24–31. doi: 10.1515/hc-2020-0120. [DOI] [Google Scholar]
  • 31.Ferreira P.M.P., De Almeida A.A.C., Conceição M.L.P., Pessoa O.D.L., Marques L.G.A., Capasso R., Pessoa C. Cordia oncocalyx and oncocalyxones: From the phytochemistry to the anticancer action and therapeutic benefits against chronic diseases. Fitoterapia. 2023;169:105624. doi: 10.1016/j.fitote.2023.105624. [DOI] [PubMed] [Google Scholar]
  • 32.Guillonneau L., Taddei D., Moody C.J. Synthesis of the reported structure of the bisbenzoquinone lanciaquinone, isolated from Maesa lanceolata. Org. Lett. 2008;10:4505–4508. doi: 10.1021/ol801697g. [DOI] [PubMed] [Google Scholar]
  • 33.Sangsopha W., Lekphrom R., Schevenels F.T., Saksirirat W., Bua-Art S., Kanokmedhakul K., Kanokmedhakul S. New p-terphenyl and benzoquinone metabolites from the bioluminescent mushroom Neonothopanus nambi. Nat. Prod. Res. 2020;34:2186–2193. doi: 10.1080/14786419.2019.1578763. [DOI] [PubMed] [Google Scholar]
  • 34.Chandra P., Read G., Vining L.C. Studies on the biosynthesis of volucrisporin. II Metabolism of some phenylpropanoid compounds by Volucrispora aurantiaca Haskins. Can. J. Biochem. 1966;44:403–413. doi: 10.1139/o66-050. [DOI] [PubMed] [Google Scholar]
  • 35.Truong Nguyen H., Duong T.H., Dang M.K., Pham M.D., Pham N.K., Tri Mai D., Son Dang V., Nguyen N.H., Sichaem J. Two New Benzoquinone Derivatives from Vietnamese Knema globularia Stems. Chem. Biodivers. 2024;21:4. doi: 10.1002/cbdv.202400380. [DOI] [PubMed] [Google Scholar]
  • 36.Lin Y.L., Su Y.T., Chen B.H. A study on inhibition mechanism of breast cancer cells by bis-type triaziquone. Eur. J. Pharmacol. 2010;637:1–10. doi: 10.1016/j.ejphar.2010.03.034. [DOI] [PubMed] [Google Scholar]
  • 37.Prins B., Koster A.S., Verboom W., Reinhoudt D.N. Microsomal superoxide anion production and NADPH-oxidation in a series of 22 aziridinylbenzoquinones. Biochem. Pharmacol. 1989;38:3753–3757. doi: 10.1016/0006-2952(89)90581-9. [DOI] [PubMed] [Google Scholar]
  • 38.An T.-Y., Shan M.-D., Hu L.-H., Liu S.-J., Chen Z.-L. Polyprenylated phloroglucinol derivatives from Hypericum erectum. Phytochemistry. 2002;59:395–398. doi: 10.1016/S0031-9422(01)00408-3. [DOI] [PubMed] [Google Scholar]
  • 39.Wieder C., Peres da Silva R., Witts J., Jäger C.M., Geib E., Brock M. Characterisation of ascocorynin biosynthesis in the purple jellydisc fungus Ascocoryne sarcoides. Fungal. Biol. Biotechnol. 2022;9:8. doi: 10.1186/s40694-022-00138-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Pei J., Hsu C.-C., Wang Y., Yu K.F. Corona discharge-induced reduction of quinones in negative electrospray ionization mass spectrometry. RSC Adv. 2017;7:43540–43545. doi: 10.1039/C7RA08523K. [DOI] [Google Scholar]
  • 41.Ding H., Sun B., Jin C. Review on the synthesis methods of 2-methyl-1,4-naphthoquinone. Zhejiang Chem. Ind. 2023;54:23–26. [Google Scholar]
  • 42.Higa M., Ogihara K., Yogi S. Bioactive naphthoquinone derivatives from Diospyros maritima BLUME. Chem. Pharm. Bull. 1998;46:1189–1193. doi: 10.1248/cpb.46.1189. [DOI] [PubMed] [Google Scholar]
  • 43.Higa M., Noha N., Yokaryo H., Ogihara K., Yogi S. Three new naphthoquinone derivatives from Diospyros maritima Blume. Chem. Pharm. Bull. 2002;50:590–593. doi: 10.1248/cpb.50.590. [DOI] [PubMed] [Google Scholar]
  • 44.Yao R., Guo H., Zhang X.S., Wang Y., Guo X.H., Chen J., Li J.H., Xu L., Yang J.B., Jing W.G., et al. Research progress on the processing technology, chemical components and pharmacological activities of processed Polygonum multiflorum. Front. Pharm. 2024;28:523–535. [Google Scholar]
  • 45.Nishina A., Kubota K., Osawa T. Antimicrobial components, trachrysone and 2-methoxystypandrone, in Rumex japonicus Houtt. J. Agric. Food Chem. 1993;41:1772–1775. doi: 10.1021/jf00034a047. [DOI] [Google Scholar]
  • 46.Takahashi D., Maoka T., Tsushima M., Fujitani K., Kozuka M., Matsuno T., Shingu T. New Quinone Sulfates from the Crinoids Tropiometra afra macrodiscus and Oxycomanthus japonicus. Chem. Pharm. Bull. 2002;50:1609–1612. doi: 10.1248/cpb.50.1609. [DOI] [PubMed] [Google Scholar]
  • 47.Iwata D., Ishibashi M., Yamamoto Y., Cribrarione B. A new naphthoquinone pigment from the myxomycete Cribraria cancellata. J. Nat. Prod. 2003;66:1611–1612. doi: 10.1021/np030308e. [DOI] [PubMed] [Google Scholar]
  • 48.Trisuwan K., Khamthong N., Rukachaisirikul V., Phongpaichit S., Preedanon S., Sakayaroj J. Anthraquinone, Cyclopentanone, and Naphthoquinone Derivatives from the Sea Fan-Derived Fungi Fusarium spp. PSU-F14 and PSU-F135. J. Nat. Prod. 2010;73:1507–1511. doi: 10.1021/np100282k. [DOI] [PubMed] [Google Scholar]
  • 49.Rong X.G., Ma L.Y., Liu W.Z., Liu D.S. A new naphthoquinone compound from Penicillium raistrickii. Chin. J. Mar. Drugs. 2024;43:10–16. doi: 10.13400/j.cnki.cjmd.2024.01.003. [DOI] [Google Scholar]
  • 50.Kishore P.H., Reddy M.V., Gunasekar D., Caux C., Bodo B. A new naphthoquinone from Ceiba pentandra. J. Asian Nat. Prod. Res. 2003;5:227–230. doi: 10.1080/1028602031000105812. [DOI] [PubMed] [Google Scholar]
  • 51.Sreeramulu K., Rao K.V., Rao C.V., Gunasekar D. A new naphthoquinone from Bombax malabaricum. J. Asian Nat. Prod. Res. 2001;3:261–265. doi: 10.1080/10286020108040365. [DOI] [PubMed] [Google Scholar]
  • 52.Lee I.S., Kaneda N., Suttisri R., El-Lakany A.M., Sabri N.N., Kinghorn A.D. New orthoquinones from the roots of Salvia lanigera. Planta Med. 1998;64:632–634. doi: 10.1055/s-2006-957536. [DOI] [PubMed] [Google Scholar]
  • 53.Sreelatha T., Hymavathi A., Murthy J.M., Rani P.U., Rao J.M., Babu K.S. Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis Thunb. Bioorg. Med. Chem. Lett. 2010;20:2974–2977. doi: 10.1016/j.bmcl.2010.02.107. [DOI] [PubMed] [Google Scholar]
  • 54.Kim J.P., Kim W.G., Koshino H., Jung J., Yoo I.D. Sesquiterpene O-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry. 1996;43:425–430. doi: 10.1016/0031-9422(96)00279-8. [DOI] [PubMed] [Google Scholar]
  • 55.Wang D., Xia M.Y., Cui Z., Tashiro S., Onodera S., Ikejima T. Cytotoxic effects of mansonone E and F isolated from Ulmus pumila. Biol. Pharm. Bull. 2004;27:1025–1030. doi: 10.1248/bpb.27.1025. [DOI] [PubMed] [Google Scholar]
  • 56.Changwong N., Sabphon C., Ingkaninan K., Sawasdee P. Acetyl- and Butyryl-cholinesterase Inhibitory Activities of Mansorins and Mansonones. Phytother. Res. 2012;26:392–396. doi: 10.1002/ptr.3576. [DOI] [PubMed] [Google Scholar]
  • 57.El-Halawany A.M., Chung M.H., Ma C.-M., Komatsu K., Nishihara T., Hattori M. Anti-estrogenic activity of mansorins and mansonones from the heartwood of Mansonia gagei DRUMM. Chem. Pharm. Bull. 2007;55:1332–1337. doi: 10.1248/cpb.55.1332. [DOI] [PubMed] [Google Scholar]
  • 58.Panichayupakaranant P., Charoonratana T., Sirikatitham A. RP-HPLC Analysis of Rhinacanthins in Rhinacanthus nasutus: Validation and Application for the Preparation of Rhinacanthin High-Yielding Extract. J. Chromatogr. Sci. 2009;47:705–708. doi: 10.1093/chromsci/47.8.705. [DOI] [PubMed] [Google Scholar]
  • 59.Wu T.-S., Tien H.-J., Yeh M.-Y., Lee K.-H. Isolation and cytotoxicity of rhinacanthin-A and -B, two naphthoquinones, from Rhinacanthus nasutus. Phytochemistry. 1988;27:3787–3788. doi: 10.1016/0031-9422(88)83017-6. [DOI] [Google Scholar]
  • 60.Luo J., Wu Z.L., Huang X.J., Zhang X.Q., Fan C.L., Ye W.C., Wang Y. Two new pyranonaphthoquinone compounds from Mansoa alliacea (Lam.) A.H.Gentry. China J. Chin. Mat. Med. 2021;46:3364–3367. doi: 10.19540/j.cnki.cjcmm.20210317.201. [DOI] [PubMed] [Google Scholar]
  • 61.Kitagawa R.R., Villegas W., Carlos I.Z., Raddi M.S.G. Antitumor and immunomodulatory effects of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin. Rev. Bras. Farmacogn. 2011;21:1084–1088. doi: 10.1590/S0102-695X2011005000136. [DOI] [Google Scholar]
  • 62.Onegi B., Kraft C., Köhler I., Freund M., Jenett-Siems K., Siems K., Beyer G., Melzig M.F., Bienzle U., Eich E. Herbal remedies traditionally used against malaria part 6 -: Antiplasmodial activity of napthoquinones and one anthraquinone from Stereospermum kunthianum. Phytochemistry. 2002;60:39–44. doi: 10.1016/S0031-9422(02)00072-9. [DOI] [PubMed] [Google Scholar]
  • 63.Kittakoop P., Punya J., Kongsaeree P., Lertwerawat Y., Jintasirikul A., Tanticharoen M., Thebtaranonth Y. Bioactive naphthoquinones from Cordyceps unilateralis. Phytochemistry. 1999;52:453–457. doi: 10.1016/S0031-9422(99)00272-1. [DOI] [Google Scholar]
  • 64.Ford P.W., Gadepelli M., Davidson B.S. Halawanones A-D, New polycyclic quinones from a marine-derived streptomycete. J. Nat. Prod. 1998;61:1232–1236. doi: 10.1021/np980126y. [DOI] [PubMed] [Google Scholar]
  • 65.El-Hady S., Bukuru J., Kesteleyn B., Van Puyvelde L., Nguyen T.V., De Kimpe N. New pyranonaphthoquinone and pyranonaphthohydroquinone from the roots of Pentas longiflora. J. Nat. Prod. 2002;65:1377–1379. doi: 10.1021/np020110e. [DOI] [PubMed] [Google Scholar]
  • 66.Yamamoto Y., Kinoshita Y., Thor G.R., Hasumi M., Kinoshita K., Koyama K., Takahashi K., Yoshimura I. Isofuranonaphthoquinone derivatives from cultures of the lichen Arthonia cinnabarina (DC.) Wallr. Phytochemistry. 2002;60:741–745. doi: 10.1016/S0031-9422(02)00128-0. [DOI] [PubMed] [Google Scholar]
  • 67.Naoe A., Ishibashi M., Yamamoto Y. Cribrarione A, a new antimicrobial naphthoquinone pigment from a myxomycete Cribraria purpurea. Tetrahedron. 2003;59:3433–3435. doi: 10.1016/S0040-4020(03)00514-3. [DOI] [Google Scholar]
  • 68.Bezabih M., Motlhagodi S., Abegaz B.M. Isofuranonaphthoquinones and phenolic and knipholone derivatives from the roots of Bulbine capitata. Phytochemistry. 1997;46:1063–1067. doi: 10.1016/S0031-9422(97)00402-0. [DOI] [Google Scholar]
  • 69.Piggott M.J., Wege D. The synthesis of 5-hydroxy-3-methylnaphtho[2,3-c]furan-4,9-dione and 5,8-dihydroxy-1-methylnaphtho[2,3-c]furan-4,9-dione. Aust. J. Chem. 2003;56:691–702. doi: 10.1071/CH02253. [DOI] [Google Scholar]
  • 70.Ito C., Katsuno S., Kondo Y., Tan H.T., Furukawa H. Chemical constituents of Avicennia alba. Isolation and structural elucidation of new naphthoquinones and their analogues. Chem. Pharm. Bull. 2000;48:339–343. doi: 10.1248/cpb.48.339. [DOI] [PubMed] [Google Scholar]
  • 71.Williams R.B., Norris A., Miller J.S., Razafitsalama L.J., Andriantsiferana R., Rasamison V.E., Kingston D.G.I. Two new cytotoxic naphthoquinones from Mendoncia cowanii from the rainforest of Madagascar. Planta Med. 2006;72:564–566. doi: 10.1055/s-2006-931554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Gormann R., Kaloga M., Li X.C., Ferreira D., Bergenthal D., Kolodziej H. Furanonaphthoquinones, atraric acid and a benzofuran from the stem barks of Newbouldia laevis. Phytochemistry. 2003;64:583–587. doi: 10.1016/S0031-9422(03)00277-2. [DOI] [PubMed] [Google Scholar]
  • 73.Kishore N., Mishra B.B., Tiwari V.K., Tripathi V. Difuranonaphthoquinones from Plumbago zeylanica roots. Phytochem. Lett. 2010;3:62–65. doi: 10.1016/j.phytol.2009.11.007. [DOI] [Google Scholar]
  • 74.Cai X.H., Luo X.D., Zhou J., Hao X.J. Quinones from Chirita eburnea. J. Nat. Prod. 2005;68:797–799. doi: 10.1021/np049632f. [DOI] [PubMed] [Google Scholar]
  • 75.Verdán M.H., Koolen H.H.F., Salvador M.J., Barison A., Stefanello M.E.A. A New Naphthoquinone from Sinningia leucotricha (Gesneriaceae) Nat. Prod. Commun. 2015;10:625–626. doi: 10.1177/1934578X1501000423. [DOI] [PubMed] [Google Scholar]
  • 76.Gupta P.K., Singh P. A naphthoquinone derivative from Tectona grandis (Linn.) J. Asian Nat. Prod. Res. 2004;6:237–240. doi: 10.1080/10286020310001653192. [DOI] [PubMed] [Google Scholar]
  • 77.Gafner S., Wolfender J.-L., Nianga M., Hostettmann K. A naphthoquinone from Newbouldia laevis roots. Phytochemistry. 1998;48:215–216. doi: 10.1016/S0031-9422(97)00502-5. [DOI] [Google Scholar]
  • 78.Ito C., Kondo Y., Rao K.S., Tokuda H., Nishino H., Furukawa H. Chemical constituents of Glycosmis pentaphylla: Isolation of a novel naphthoquinone and a new acridone alkaloid. Chem. Pharm. Bull. 1999;47:1579–1581. doi: 10.1248/cpb.47.1579. [DOI] [Google Scholar]
  • 79.Zhong Y.J., Wen Q.F., Li C.Y., Su X.H., Yuan Z.P., Li Y.F. Two New Naphthoquinone Derivatives from Lysionotus pauciflorus. Helv. Chim. Acta. 2013;96:1750–1756. doi: 10.1002/hlca.201200627. [DOI] [Google Scholar]
  • 80.Li Q., Guo Z.H., Wang K.B., Zhang X.S., Lou Y.T., Zhao Y.Q. Two new 1,4-naphthoquinone derivatives from Impatiens balsamina L. flowers. Phytochem. Lett. 2015;14:8–11. doi: 10.1016/j.phytol.2015.08.011. [DOI] [Google Scholar]
  • 81.Luo Y., Shen H.Y., Shen Q.X., Cao Z.H., Zhang M., Long S.Y., Wang Z.B., Tan J.W. A new anthraquinone and a new naphthoquinone from the whole plant of Spermacoce latifolia. J. Asian Nat. Prod. Res. 2017;19:869–876. doi: 10.1080/10286020.2017.1279609. [DOI] [PubMed] [Google Scholar]
  • 82.Tangmouo J.G., Meli A.L., Komguem J., Kuete V., Ngounou F.N., Lontsi D., Beng V.P., Choudhary M.I., Sondengam B.L. Crassiflorone, a new naphthoquinone from Diospyros crassiflora (Hien) Tetrahedron Lett. 2006;47:3067–3070. doi: 10.1016/j.tetlet.2006.03.006. [DOI] [Google Scholar]
  • 83.Hussain H., Krohn K., Ahmad V.U., Miana G.A., Green I.R. Lapachol: An overview. Arkivoc. 2007;2007:145–171. doi: 10.3998/ark.5550190.0008.204. [DOI] [Google Scholar]
  • 84.Hasan A., Furumoto T., Begum S., Fukui H. Hydroxysesamone and 2,3-epoxysesamone from roots of Sesamum indicum. Phytochemistry. 2001;58:1225–1228. doi: 10.1016/S0031-9422(01)00357-0. [DOI] [PubMed] [Google Scholar]
  • 85.Hayashi K., Chang F.R., Nakanishi Y., Bastow K.F., Cragg G., McPhail A.T., Nozaki H., Lee K.H. Antitumor agents. 233. Lantalueratins A–F, new cytotoxic naphthoquinones from Lantana involucrata. J. Nat. Prod. 2004;67:990–993. doi: 10.1021/np030450f. [DOI] [PubMed] [Google Scholar]
  • 86.Shukla Y.N., Srivastava A., Singh S.C., Kumar S. New naphthoquinones from Arnebia hispidissima roots. Planta Med. 2001;67:575–577. doi: 10.1055/s-2001-16470. [DOI] [PubMed] [Google Scholar]
  • 87.Ioset J.R., Marston A., Gupta M.P., Hostettmann K. Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica. Phytochemistry. 2000;53:613–617. doi: 10.1016/S0031-9422(99)00604-4. [DOI] [PubMed] [Google Scholar]
  • 88.Sheu J.H., Su J.H., Sung P.J., Wang G.H., Dai C.F. Novel meroditerpenoid—related metabolites from the formosan soft coral Nephthea chabrolii. J. Nat. Prod. 2004;67:2048–2052. doi: 10.1021/np0401314. [DOI] [PubMed] [Google Scholar]
  • 89.Winiewski V., Verdán M.H., Oliveira C.S., Su X.H., Yuan Z.P., Li Y.F. Two new naphthoquinone derivatives from Sinningia conspicua (Gesneriaceae) Nat. Prod. Res. 2023;39:88–93. doi: 10.1080/14786419.2023.2253971. [DOI] [PubMed] [Google Scholar]
  • 90.Kongkathip N., Luangkamin S., Kongkathip B., Sangma C., Grigg R., Kongsaeree P., Prabpai S., Pradidphol N., Pitaviriyagul S., Siripong P. Synthesis of novel rhinacanthins and related anticancer naphthoquinone esters. J. Med. Chem. 2004;47:4427–4438. doi: 10.1021/jm030323g. [DOI] [PubMed] [Google Scholar]
  • 91.Van Puyvelde L., El Hady S., De Kimpe N., Feneau-Dupont J., Declercq J.P. Isagarin, a new type of tetracyclic naphthoquinone from the roots of Pentas longiflora. J. Nat. Prod. 1998;61:1020–1021. doi: 10.1021/np970589o. [DOI] [PubMed] [Google Scholar]
  • 92.Aguiar R.M., David J.P., David J.M. Unusual naphthoquinones, catechin and triterpene from Byrsonima microphylla. Phytochemistry. 2005;66:2388–2392. doi: 10.1016/j.phytochem.2005.07.011. [DOI] [PubMed] [Google Scholar]
  • 93.Kumar U.S., Aparna P., Rao R.J., Rao T.P., Rao J.M. 1-methyl anthraquinones and their biogenetic precursors from Stereospermum personatum. Phytochemistry. 2003;63:925–929. doi: 10.1016/S0031-9422(03)00128-6. [DOI] [PubMed] [Google Scholar]
  • 94.Sankaram A.V.B., Rao A.S., Shoolery J.N. Zeylanone and Isozeylanone, two novel quinones from Plumbago zeylanica. Tetrahedron. 1979;35:1777–1782. doi: 10.1016/0040-4020(79)88008-4. [DOI] [Google Scholar]
  • 95.Higa M. A new binaphthoquinone from Diospyros maritima Blume. Chem. Pharm. Bull. 1988;36:3234. doi: 10.1248/cpb.36.3234. [DOI] [PubMed] [Google Scholar]
  • 96.Jassbi A.R., Singh P., Jain S., Tahara S. Novel naphthoquinones from Heterophragma adenophyllum. Helv. Chim. Acta. 2004;87:820–824. doi: 10.1002/hlca.200490080. [DOI] [Google Scholar]
  • 97.Cai P., Kong F.M., Ruppen M.E., Glasier G., Carter G.T. Hygrocins A and B, naphthoquinone macrolides from Streptomyces hygroscopicus. J. Nat. Prod. 2005;68:1736–1742. doi: 10.1021/np050272l. [DOI] [PubMed] [Google Scholar]
  • 98.Costa S.M.O., Lemos T.L.G., Pessoa O.D.L., Assunção J.C.C., Braz-Filho R. Constituintes químicos de Lippia es (Cham.) Verbenaceae. Rev. Bras. Farmacogn. 2002;12((Suppl. S1)):7. doi: 10.1590/S0102-695X2002000300032. [DOI] [Google Scholar]
  • 99.Bryshten I., Paprotny Ł., Olszowy-Tomczyk M., Wianowska D. Quantitative Study of Vitamin K in Plants by Pressurized Liquid Extraction and LC-MS/MS. Molecules. 2024;29:4420. doi: 10.3390/molecules29184420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Uc-Cachón A.H., Borges-Argáez R., Said-Fernández S., Vargas-Villarreal J., González-Salazar F., Méndez-González M., Cáceres-Farfán M., Molina-Salinas G.M. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm. Pharmacol. Ther. 2014;27:114–120. doi: 10.1016/j.pupt.2013.08.001. [DOI] [PubMed] [Google Scholar]
  • 101.Liu Y.H., Lin F.X., Tan Y.F., Yang J.Y., Zhang B., Zhou X.M., Song X.M. Three new phenanthrenequinone compounds from the roots of Dendrobium. Chin. J. Org. Chem. 2021;41:2112–2115. doi: 10.6023/cjoc202012005. [DOI] [Google Scholar]
  • 102.Sarkar P., Ahmed A., Ray J.K. Suzuki cross coupling followed by cross dehydrogenative coupling: An efficient one pot synthesis of Phenanthrenequinones and analogues. Tetrahedron Lett. 2020;61:151701. doi: 10.1016/j.tetlet.2020.151701. [DOI] [Google Scholar]
  • 103.Xuezhao L., Houwei L., Masatake N. Trijuganone A and B: Two New Phenanthrenequinones from Roots of Salvia trijuga. Planta Med. 1990;56:87–88. doi: 10.1055/s-2006-960892. [DOI] [PubMed] [Google Scholar]
  • 104.Zhao Y.Y., Cui C.B., Cai B., Han B., Sun Q.S. A new phenanthraquinone from the stems of Bauhinia variegata L. J. Asian Nat. Prod. Res. 2005;7:835–838. doi: 10.1080/10286020410001721140. [DOI] [PubMed] [Google Scholar]
  • 105.Bhaskar M.U., Rao L.J.M., Rao N.S.P., Rao P.R.M. Ochrone A, a novel 9,10-dihydro-1,4-phenanthraquinone from Coelogyne ochracea. J. Nat. Prod. 1991;54:386. doi: 10.1021/np50074a006. [DOI] [Google Scholar]
  • 106.Lin L.-G., Yang X.-Z., Tang C.-P., Ke C.Q., Zhang J.B., Ye Y. Antibacterial stilbenoids from the roots of Stemona tuberosa. Phytochemistry. 2007;69:457–463. doi: 10.1016/j.phytochem.2007.07.012. [DOI] [PubMed] [Google Scholar]
  • 107.Itharat A., Plubrukarn A., Kongsaeree P., Bui T., Keawpradub N., Houghton P.J. Dioscorealides and dioscoreanone, novel cytotoxic naphthofuranoxepins, and 1,4-phenanthraquinone from Dioscorea membranacea Pierre. Org. Lett. 2003;5:2879–2882. doi: 10.1021/ol034926y. [DOI] [PubMed] [Google Scholar]
  • 108.Talapatra B., Mukhopadhyay P., Chaudhury P., Talapatra S.K. Denbinobin, a new phenanthraquinone from Dendrobium nobile Lindl (Orchidaceae) Indian J. Chem. Sect. B. 1982;21:386. [Google Scholar]
  • 109.Bae E.Y., Oh H., Oh W.K., Kim M.S., Kim B.S., Kim B.Y., Sohn C.B., Osada H., Ahn J.S. A new VHR dual-specificity protein tyrosine phosphatase inhibitor from Dendrobium moniliforme. Planta Med. 2004;70:869–870. doi: 10.1055/s-2004-827238. [DOI] [PubMed] [Google Scholar]
  • 110.Harvey R.B., Edrington T.S., Kubena L.F., Rottinghaus G.E., Turk J.R., Genovese K.J., Ziprin R.L., Nisbet D.J. Toxicity of fumonisin from Fusarium verticillioides culture material and moniliformin from Fusarium fujikuroi culture material when fed singly and in combination to growing barrows. J. Food Prot. 2002;65:373–377. doi: 10.4315/0362-028X-65.2.373. [DOI] [PubMed] [Google Scholar]
  • 111.Chen D.N., Wu Y.P., Chen Y.J., Liu W.J., Wang J.X., He F., Jiang L. Two new stilbenoids from aerial parts of Flickingeria fimbriata. J. Asian Nat. Prod. Res. 2019;21:117–122. doi: 10.1080/10286020.2017.1392942. [DOI] [PubMed] [Google Scholar]
  • 112.Wu T.S., Jong T.T., Tien H.J., Kuoh C.S., Furukawa H., Lee K.H. Annoquinone-A, an antimicrobial and cytotoxic principle from Annona montana. Phytochemistry. 1987;26:1623–1625. doi: 10.1016/S0031-9422(00)82257-8. [DOI] [Google Scholar]
  • 113.Tezuka Y., Kasimu R., Basnet P., Namba T., Kadota S. Aldose reductase inhibitory constituents of the root of Salvia miltiorhiza Bunge. Chem. Pharm. Bull. 1997;45:1306–1311. doi: 10.1248/cpb.45.1306. [DOI] [PubMed] [Google Scholar]
  • 114.Ju J.H., Yang J.S., Li J., Xiao P.G. Cypripediquinone A, a new phenanthraquinone from Cypripedium macranthum (Orchidaceae) Chin. Chem. Lett. 2000;11:37–38. [Google Scholar]
  • 115.Majumder P.L., Sen R.C. Bulbophyllanthrone, a phenanthraquinone from Bulbophyllum odoratissimum. Phytochemistry. 1991;30:2092. doi: 10.1016/0031-9422(91)85078-E. [DOI] [Google Scholar]
  • 116.Zhao L.Y. Master’s Thesis. Hubei University of Science and Technology; China: 2023. Study on the Chemical Constituents of Salvia bowleyana Dunn. [Google Scholar]
  • 117.Liang W., Sun J.C., Guo F.X., Zhang X.M., Xu B., Chen Y., Li X. Research progress on the synthesis of anthraquinones based on the shikimic acid/o-succinylbenzoic acid pathway and polyketide pathway. Chin. Herb. Med. 2020;51:1939–1950. [Google Scholar]
  • 118.Lu J., Guo Y.S., Shi C. Research progress on the sources and pharmacological activities of anthraquinones in medicinal plants. Guiding J. Tradit. Chin. Med. Pharm. 2024;30:111–116. doi: 10.13862/j.cn43-1446/r.2024.01.023. [DOI] [Google Scholar]
  • 119.He X.Q. Master’s Thesis. Zhejiang Chinese Medical University; Hangzhou, China: 2024. Re-Evaluation of the Quality of Rhubarb Chinese Medicine Formula Granules and Comparison of Laxative Effects with Rhubarb Chinese Medicine Decoction Pieces. [DOI] [Google Scholar]
  • 120.Dong X., Fu J., Yin X., Cao S.L., Li X.C., Lin L.F., Huyiligeqi N.J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother. Res. 2016;30:1207–1218. doi: 10.1002/ptr.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Wang A., Wu C.-H., Biehl E. Unambiguous synthesis and spectral characterization of 1,8-dihydroxy-4-methylanthraquinone. Arkivoc. 2002;2002:80–84. doi: 10.3998/ark.5550190.0003.113. [DOI] [Google Scholar]
  • 122.El-Beih A.A., Kawabata T., Koimaru K., Ohta T., Tsukamoto S. Monodictyquinone A: A new antimicrobial anthraquinone from a sea urchin-derived fungus Monodictys sp. Chem. Pharm. Bull. 2007;55:1097–1098. doi: 10.1248/cpb.55.1097. [DOI] [PubMed] [Google Scholar]
  • 123.Hind H.G. A coloring matter of Penicillium carmino-violaceum Biourge—The constitution of carviolin. Biochem. J. 1940;34:577. doi: 10.1042/bj0340577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Fujimoto H., Nakamura E., Okuyama E., Ishibashi M. Six immunosuppressive features from an ascomycete, Zopfiella longicaudata, found in a screening study monitored by immunomodulatory activity. Chem. Pharm. Bull. 2004;52:1005–1008. doi: 10.1248/cpb.52.1005. [DOI] [PubMed] [Google Scholar]
  • 125.Jadulco R., Brauers G., Edrada R.A., Ebel R., Wray V., Sudarsono, Proksch P. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J. Nat. Prod. 2002;65:730–733. doi: 10.1021/np010390i. [DOI] [PubMed] [Google Scholar]
  • 126.Wang Y.D., Dong W., Zhou K., Liu G.Y., Li L.M., Lou J., Hu Q.F., Yang H.Y. A new anthraquinone compound from the branches of Cassia siamea Lam., a Dai ethnic medicine. Chin. Herb. Med. 2015;46:1727–1729. [Google Scholar]
  • 127.Hangsamai N., Photai K., Mahaamnart T., Kanokmedhakul S., Kanokmedhakul K., Senawong T., Pitchuanchom S., Nontakitticharoen M. Four New Anthraquinones with Histone Deacetylase Inhibitory Activity from Ventilago denticulata Roots. Molecules. 2022;27:1088. doi: 10.3390/molecules27031088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Li X., Hu X.L., Pan T.F., Dong L., Ding L.L., Wang Z.Z., Song R., Wang X.Z., Wang N., Zhang Y., et al. Kanglexin, a new anthraquinone compound, attenuates lipid accumulation by activating the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Biomed. Pharmacother. 2021;133:110802. doi: 10.1016/j.biopha.2020.110802. [DOI] [PubMed] [Google Scholar]
  • 129.Soonthornchareonnon N., Suwanborirux K., Bavovada R., Patarapanich C., Cassady J.M. New cytotoxic 1-azaanthraquinones and 3-aminonaphthoquinone from the stem bark of Goniothalamus marcanii. J. Nat. Prod. 1999;62:1390–1394. doi: 10.1021/np990197c. [DOI] [PubMed] [Google Scholar]
  • 130.Malysheva S.V., Arroyo-Manzanares N., Cary J.W., Ehrlich K.C., Vanden Bussche J., Vanhaecke L., Bhatnagar D., Di Mavungu J.D., De Saeger S. Identification of novel metabolites from Aspergillus flavus by high resolution and multiple stage mass spectrometry. Food Addit. Contam. Part A. 2014;31:111–120. doi: 10.1080/19440049.2013.859743. [DOI] [PubMed] [Google Scholar]
  • 131.Kamnaing P., Free S.N.Y.F., Nkengfack A.E., Folefoc G., Fomum Z.T. An isoflavan—quinone and a flavonol from Millettia laurentii. Phytochemistry. 1999;51:829–832. doi: 10.1016/S0031-9422(99)00043-6. [DOI] [Google Scholar]
  • 132.Wabo H.K., Kouam S.F., Krohn K., Hussain H., Tala M.F., Tane P., van Ree T., Hu Q.X., Schulz B. Prenylated anthraquinones and other constituents from the seeds of Vismia laurentii. Chem. Pharm. Bull. 2007;55:1640–1642. doi: 10.1248/cpb.55.1640. [DOI] [PubMed] [Google Scholar]
  • 133.Bilia A.R., Yusuf A.W., Bracà A., Keita A., Morelli I. New prenylated anthraquinones and xanthones from Vismia guineensis. J. Nat. Prod. 2000;63:16–21. doi: 10.1021/np990226j. [DOI] [PubMed] [Google Scholar]
  • 134.Boonnak N., Karalai C., Chantrapromma S., Ponglimanont C., Fun H.K., Kanjana-Opas A. Bioactive prenylated xanthones and anthraquinones from Cratoxylum formosum ssp. pruniflorum. Tetrahedron. 2006;62:8850–8859. doi: 10.1016/j.tet.2006.06.003. [DOI] [Google Scholar]
  • 135.Mammo W., Dagne E., Casser I., Steglich W. Unusual anthraquinone lactones from Araliorhamnus vaginata. Phytochemistry. 1990;29:2637. doi: 10.1016/0031-9422(90)85202-Q. [DOI] [Google Scholar]
  • 136.Noungoue D.T., Antheaume C., Chaabi M., Lenta Ndjakou B., Ngouela S., Lobstein A., Tsamo E. Anthraquinones from the fruits of Vismia laurentii. Phytochemistry. 2008;69:1024–1028. doi: 10.1016/j.phytochem.2007.10.026. [DOI] [PubMed] [Google Scholar]
  • 137.Tchizhova A.Y., Anufriev V.P., Denisenko V.A., Novikov V.L. Synthesis of (±)-ploiariquinones A and B. J. Nat. Prod. 1995;58:1772. doi: 10.1021/np50125a023. [DOI] [Google Scholar]
  • 138.Bezabih M., Abegaz B.M. 4′-Demethylknipholone from aerial parts of Bulbine capitata. Phytochemistry. 1998;48:1071–1073. doi: 10.1016/S0031-9422(97)01053-4. [DOI] [Google Scholar]
  • 139.Dagne E., Steglich W. Knipholone: A unique anthraquinone derivative from Kniphofia foliosa. Phytochemistry. 1984;23:1729. doi: 10.1016/S0031-9422(00)83479-2. [DOI] [Google Scholar]
  • 140.Yenew A., Dagne E., Müller M., Steglich W. An anthrone, an anthraquinone and two oxanthrones from Kniphofia foliosa. Phytochemistry. 1994;37:525. doi: 10.1016/0031-9422(94)85092-5. [DOI] [Google Scholar]
  • 141.Abegaz B.M., Bezabih M., Msuta T., Brun R., Menche D., Muehlbacher J., Bringmann G. Gaboroquinones A and B and 4′-O-Demethylknipholone-4′-O-β-D-glucopyranoside, phenylanthraquinones from the roots of Bulbine frutescens. J. Nat. Prod. 2002;65:1117–1121. doi: 10.1021/np0201218. [DOI] [PubMed] [Google Scholar]
  • 142.Mutanyatta J., Bezabih M., Abegaz B.M., Dreyer M., Brun R., Kocher N., Bringmann G. The first 6′-O-sulfated phenylanthraquinones: Isolation from Bulbine frutescens, structural elucidation, enantiomeric purity, and partial synthesis. Tetrahedron. 2005;61:8475–8484. doi: 10.1016/j.tet.2005.06.055. [DOI] [Google Scholar]
  • 143.Clark B., Capon R.J., Stewart M., Lacey E., Tennant S., Gill J.H. Blanchaquinone: A new anthraquinone from an Australian Streptomyces sp. J. Nat. Prod. 2004;67:1729–1731. doi: 10.1021/np049826v. [DOI] [PubMed] [Google Scholar]
  • 144.Tsuda M., Nemoto A., Komaki H., Tanaka Y., Yazawa K., Mikami Y., Kobayashi J. Nocarasins A-C and Brasiliquinone D, new metabolites from the actinomycete Nocardia brasiliensis. J. Nat. Prod. 1999;62:1640–1642. doi: 10.1021/np990265v. [DOI] [Google Scholar]
  • 145.Seo E.-K., Kim N.-C., Wani M.C., Wall M.E., Navarro H.A., Burgess J.P., Kawanishi K., Kardono L.B.S., Riswan S., Rose W.C., et al. Cytotoxic prenylated xanthones and the unusual compounds anthraquinobenzophenones from Cratoxylum sumatranum. J. Nat. Prod. 2002;65:299–305. doi: 10.1021/np010395f. [DOI] [PubMed] [Google Scholar]
  • 146.Alemayehu G., Woldeyesus B., Abegaz B.M. (+)-Floribundone 3 from the pods of Senna septentrionalis. Bull. Chem. Soc. Ethiop. 1997;11:25–29. doi: 10.4314/bcse.v11i1.21010. [DOI] [Google Scholar]
  • 147.Zhang C., Ondeyka J.G., Zink D.L., Basilio A., Vicente F., Collado J., Platas G., Bills G., Huber J., Dorso K., et al. Isolation, structure, and antibacterial activity of phaeosphenone from a Phaeosphaeria sp. discovered by antisense strategy. J. Nat. Prod. 2008;71:1304–1307. doi: 10.1021/np8001833. [DOI] [PubMed] [Google Scholar]
  • 148.Wirz A., Simmen U., Heilmann J., Calis I., Meier B., Sticher O. Bisanthraquinone glycosides of Hypericum perforatum with binding inhibition to CRH-1 receptors. Phytochemistry. 2000;55:941–947. doi: 10.1016/S0031-9422(00)00305-8. [DOI] [PubMed] [Google Scholar]
  • 149.Li C., Shi J.-G., Zhang Y.-P., Zhang C.-Z. Constituents of Eremurus chinensis. J. Nat. Prod. 2000;63:653–656. doi: 10.1021/np9904915. [DOI] [PubMed] [Google Scholar]
  • 150.Jing Y., Yang J., Wang Y., Yang X.S., Mu S.Z. Anthraquinone-benzisochromanquinone dimers from Berchemia polyphylla var. leioclada. Chin. Pharm. J. 2011;46:661–664. [Google Scholar]
  • 151.Takahashi S., Kitanaka S., Takido M., Sankawa U., Shibata S. Phlegmacins and anhydrophlegmacinquinones: Dimeric hydroanthracenes from seedlings of Cassia torosa. Phytochemistry. 1977;16:999–1002. doi: 10.1016/S0031-9422(00)86709-6. [DOI] [Google Scholar]
  • 152.Alemayehu G., Abegaz B.M. Bianthraquinones from the seeds of Senna multiglandulosa. Phytochemistry. 1996;41:919. doi: 10.1016/0031-9422(95)00645-1. [DOI] [Google Scholar]
  • 153.Gill M., Morgan P.M. Pigments of fungal. Part 73. Absolute stereochemistry of fungal metabolites: Icterinoidins A1 and B1, and atrovirins B1 and B2. Arkivoc. 2004;2004:152–165. doi: 10.3998/ark.5550190.0005.a15. [DOI] [Google Scholar]
  • 154.Tsaffack M., Nguemeving J.R., Kuete V., Ndejouong Tchize Ble S., Mkounga P., Penlap Beng V., Hultin P.G., Tsamo E., Nkengfack A.E. Two new antimicrobial dimeric compounds: Febrifuquinone, a vismione-anthraquinone coupled pigment and adamabianthrone, from two Psorospermum species. Chem. Pharm. Bull. 2009;57:1113–1118. doi: 10.1248/cpb.57.1113. [DOI] [PubMed] [Google Scholar]
  • 155.Kanokmedhakul S., Kanokmedhakul K., Phonkerd N., Soytong K., Kongsaeree P., Suksamrarn A. Antimycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. Planta Med. 2002;68:834–836. doi: 10.1055/s-2002-34415. [DOI] [PubMed] [Google Scholar]
  • 156.Kuroda M., Mimaki Y., Sakagami H., Sashida Y. Bulbinelonesides A-E, phenylanthraquinone glycosides from the roots of Bulbinella floribunda. J. Nat. Prod. 2003;66:894–897. doi: 10.1021/np030061l. [DOI] [PubMed] [Google Scholar]
  • 157.Wu T.-S., Lin D.-M., Shi L.-S., Damu A.G., Kuo P.-C., Kuo Y.-H. Cytotoxic anthraquinones from the stems of Rubia wallichiana Decne. Chem. Pharm. Bull. 2003;51:948–950. doi: 10.1248/cpb.51.948. [DOI] [PubMed] [Google Scholar]
  • 158.Perman D., Lajis N.H., Othman A.G., Ali A.M., Aimi N., Kitajima M., Takayama H. Anthraquinones from Hedyotis herbacea. J. Nat. Prod. 1999;62:1430–1431. doi: 10.1021/np990101e. [DOI] [PubMed] [Google Scholar]
  • 159.Pawlus A.D., Su B.-N., Keller W.J., Kinghorn A.D. An anthraquinone with potent quinone reductase-inducing activity and other constituents of the fruits of Morinda citrifolia (Noni) J. Nat. Prod. 2005;68:1720–1722. doi: 10.1021/np050383k. [DOI] [PubMed] [Google Scholar]
  • 160.El-Gamal A.A., Takeya K., Itokawa H., Falim A.F., Amer M.M., Saad H.-E.A., Awad S.A. Anthraquinones from Galium sinaicum. Phytochemistry. 1995;40:245. doi: 10.1016/0031-9422(95)00145-W. [DOI] [PubMed] [Google Scholar]
  • 161.Zhang C.L., Guan H., Xi P.Z., Deng T., Gao J.M. Anthraquinones from the roots of Prismatomeris tetrandra. Nat. Prod. Commun. 2010;5:1251–1252. doi: 10.1177/1934578X1000500821. [DOI] [PubMed] [Google Scholar]
  • 162.Feng Z.M., Jiang J.S., Wang Y.H., Zhang P.C. Anthraquinones from the roots of Prismatomeris tetrandra. Chem. Pharm. Bull. 2005;53:1330–1332. doi: 10.1248/cpb.53.1330. [DOI] [PubMed] [Google Scholar]
  • 163.Chen X.Y., Zhang C., Dong Y.R., Zang Y.D., Chen J.Q., Jin H.T., Zhang D.M. Three new anthraquinoids from Radix Dalbergiae (Huanggen) and their neuroprotective effects on nerve cells. Acta Pharm. Sin. B. 2023;58:3710–3714. doi: 10.16438/j.0513-4870.2023-1104. [DOI] [Google Scholar]
  • 164.Deng S., West B.J., Jensen C.J., Basar S., Westendorf J. Development and validation of an RP-HPLC method for the analysis of anthraquinones in noni fruits and leaves. Food Chem. 2009;116:505–508. doi: 10.1016/j.foodchem.2009.02.070. [DOI] [Google Scholar]
  • 165.Akihisa T., Matsumoto K., Tokuda H., Yasukawa K., Seino K.-i., Nakamoto K., Kuninaga H., Suzuki T., Kimura Y. Anti-inflammatory and potential cancer chemopreventive constituents of the fruits of Morinda citrifolia (Noni) J. Nat. Prod. 2007;70:754–757. doi: 10.1021/np068065o. [DOI] [PubMed] [Google Scholar]
  • 166.Komura K., Mizukawa Y., Minami H., Qin G.W., Xu R.S. New anthraquinones from Eleutherine americana. Chem. Pharm. Bull. 1983;31:4206–4208. doi: 10.1248/cpb.31.4206. [DOI] [Google Scholar]
  • 167.Mahabusarakam W., Hemtasin C., Chakthong S., Voravuthikunchai S.P., Olawumi I.B. Naphthoquinones, anthraquinones and naphthalene derivatives from the bulbs of Eleutherine americana. Planta Med. 2010;76:345–349. doi: 10.1055/s-0029-1186143. [DOI] [PubMed] [Google Scholar]
  • 168.Paudel P., Kim D.H., Jeon J., Park S.E., Seong S.H., Jung H.A., Choi J.S. Neuroprotective Effect of Aurantio-Obtusin, a Putative Vasopressin V(1A) Receptor Antagonist, on Transient Forebrain Ischemia Mice Model. Int. J. Mol. Sci. 2021;22:3335. doi: 10.3390/ijms22073335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Arsenault G.P. Fungal metabolites II. Structure of bostrycoidin, a β-azaanthraquinone from Fusarium solani D2 purple. Tetrahedron Lett. 1965;6:4033. doi: 10.1016/S0040-4039(01)99610-8. [DOI] [Google Scholar]
  • 170.Ismail N.H., Ali A.M., Aimi N., Kitajima M., Takayama H., Lajis N.H. Anthraquinones from Morinda elliptica. Phytochemistry. 1997;45:1723–1725. doi: 10.1016/S0031-9422(97)00252-5. [DOI] [Google Scholar]
  • 171.Kumar U.S., Tiwari A.K., Reddy S.V., Aparna P., Rao R.J., Ali A.Z., Rao J.M. Free-radical-scavenging and xanthine oxidase inhibitory constituents from Stereospermum personatum. J. Nat. Prod. 2005;68:1615–1621. doi: 10.1021/np058036y. [DOI] [PubMed] [Google Scholar]
  • 172.Son J.K., Jung S.J., Jung J.H., Fang Z., Lee C.S., Seo C.S., Moon D.C., Min B.S., Kim M.R., Woo M.H. Anticancer constituents from the roots of Rubia cordifolia L. Chem. Pharm. Bull. 2008;56:213–216. doi: 10.1248/cpb.56.213. [DOI] [PubMed] [Google Scholar]
  • 173.Chan H.-H., Li C.-Y., Damu A.G., Wu T.S. Anthraquinones from Ophiorrhiza hayatana Ohwi. Chem Pharm. Bull. 2005;53:1232–1235. doi: 10.1248/cpb.53.1232. [DOI] [PubMed] [Google Scholar]
  • 174.Yang L., Pei-Juan X., Ze-Nai C., Liu G.-M. The anthraquinones of Rhynchotechum vestitum. Phytochemistry. 1998;47:315–317. doi: 10.1016/S0031-9422(97)00561-X. [DOI] [Google Scholar]
  • 175.Chiriboga X., Gilardoni G., Magnaghi I., Finzi P.V., Zanoni G., Vidari G. New anthracene derivatives from Coussarea macrophylla. J. Nat. Prod. 2003;66:905–909. doi: 10.1021/np030066i. [DOI] [PubMed] [Google Scholar]
  • 176.Xiang W., Song Q.S., Zhang H.J., Guo S.P. Antimicrobial anthraquinones from Morinda angustifolia. Fitoterapia. 2008;79:501–504. doi: 10.1016/j.fitote.2008.04.008. [DOI] [PubMed] [Google Scholar]
  • 177.Ling S.-K., Komorita A., Tanaka T., Fujioka T., Mihashi K., Kouno I. Iridoids and anthraquinones from the Malaysian medicinal plant, Saprosma scortechinii (Rubiaceae) Chem. Pharm. Bull. 2002;50:1035–1040. doi: 10.1248/cpb.50.1035. [DOI] [PubMed] [Google Scholar]
  • 178.Qiu B.-L., Xu L.-X., Wei X.-Y., Kang M., Lin L.-d. Anthraquinones from Hemiboea subcapitata. Redai Yaredai Zhiwu Xuebao (J. Trop. Subtrop. Bot.) 2014;22:507–510. [Google Scholar]
  • 179.Yoo N.H., Jang D.S., Lee Y.M., Jeong I.H., Cho J.-H., Kim J.-H., Kim J.S. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharmacal. Res. 2010;33:209–214. doi: 10.1007/s12272-010-0204-7. [DOI] [PubMed] [Google Scholar]
  • 180.Núñez Montoya S.C., Agnese A.M., Cabrera J.L. Anthraquinone derivatives from Heterophyllaea pustulata. J. Nat. Prod. 2006;69:801–803. doi: 10.1021/np050181o. [DOI] [PubMed] [Google Scholar]
  • 181.Lin W.Y., Peng C.F., Tsai I.L., Chen J.J., Cheng M.J., Chen I.S. Antitubercular constituents from the roots of Engelhardia roxburghiana. Planta Med. 2005;71:171–175. doi: 10.1055/s-2005-837786. [DOI] [PubMed] [Google Scholar]
  • 182.Nagaoka S.-I., Uno H., Huppert D. Ultrafast excited-state intramolecular proton transfer of aloesaponarin I. J. Phys. Chem. B. 2013;117:4347–4353. doi: 10.1021/jp306870y. [DOI] [PubMed] [Google Scholar]
  • 183.Yang Y., Liu Y., Yang D., Li H., Jiang K., Sun J.F. Photoinduced excited state intramolecular proton transfer and spectral behaviors of aloesaponarin 1. Spectrochim. Acta Part A. 2015;151:814–820. doi: 10.1016/j.saa.2015.07.046. [DOI] [PubMed] [Google Scholar]
  • 184.Hemlata K., Kalidhar S.B. Alatinone, an anthraquinone from Cassia alata. Phytochemistry. 1993;32:1616. doi: 10.1016/0031-9422(93)85192-T. [DOI] [Google Scholar]
  • 185.Kelly T.R., Ma Z., Xu W. Revision of the structure of przewalskinone B. Tetrahedron Lett. 1992;33:7713. doi: 10.1016/0040-4039(93)88024-D. [DOI] [Google Scholar]
  • 186.Gruen H., Görner H. Photoreduction of 2-methyl-1-nitro-9,10-anthraquinone in the presence of 1-phenylethanol. Photochem. Photobiol. Sci. 2008;7:1344–1352. doi: 10.1039/b811372f. [DOI] [PubMed] [Google Scholar]
  • 187.Chen B., Wang D.Y., Ye Q., Li B.G., Zhang G.L. Anthraquinones from Gladiolus gandavensis. J. Asian Nat. Prod. Res. 2005;7:197–204. doi: 10.1080/10286020310001653336. [DOI] [PubMed] [Google Scholar]
  • 188.Van Wagoner R.M., Mantle P.G., Wright J.L.C. Biosynthesis of scorpinone, a 2-azaanthraquinone from Amorosia littoralis, a fungus from marine sediment. J. Nat. Prod. 2008;71:426–430. doi: 10.1021/np070614i. [DOI] [PubMed] [Google Scholar]
  • 189.Scoles D.R., Gandelman M., Paul S., Dexheimer T., Dansithong W., Figueroa K.P., Pflieger L.T., Redlin S., Kales S.C., Sun H. A quantitative high-throughput screen identifies compounds that lower expression of the SCA2- and ALS-associated gene ATXN2. J. Biol. Chem. 2022;298:102228. doi: 10.1016/j.jbc.2022.102228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Goulart M.O.F., Sant’Anna A.E.G., de Oliveira A.B., De Oliveira G.G., Maia J.G.S. Azafluorenones and azaanthraquinone from Guatteria dielsiana. Phytochemistry. 1986;25:1691. doi: 10.1016/S0031-9422(00)81237-6. [DOI] [Google Scholar]
  • 191.Mal D., Ray S. First synthesis of 9,10-dimethoxy-2-methyl-1,4-anthraquinone: A naturally occurring unusual anthraquinone. Eur. J. Org. Chem. 2008;2008:3014–3020. doi: 10.1002/ejoc.200800218. [DOI] [Google Scholar]
  • 192.Qi F., Zhang W., Xue Y., Geng C., Jin Z.G., Li J.B., Guo Q., Huang X.N., Lu X.F. Microbial production of the plant-derived fungicide physcion. Metab. Eng. 2022;74:130–138. doi: 10.1016/j.ymben.2022.10.007. [DOI] [PubMed] [Google Scholar]
  • 193.Sardashti-Birjandi A., Mollashahi E., Maghsoodlou M.T., Yazdani-Elah-Abadi A. Green and catalyst-free synthesis of aminoanthraquinone derivatives in solvent-free conditions. Res. Chem. Intermed. 2021;47:3597–3608. doi: 10.1007/s11164-021-04485-9. [DOI] [Google Scholar]
  • 194.Kouam S.F., Khan S.N., Krohn K., Ngadjui B.T., Kapche D.G., Yapna D.B., Zareem S., Moustafa A.M., Choudhary M.I. Alpha-glucosidase inhibitory anthranols, kenganthranols A-C, from the stem bark of Harungana madagascariensis. J. Nat. Prod. 2006;69:229–233. doi: 10.1021/np050407n. [DOI] [PubMed] [Google Scholar]
  • 195.Eyong K.O., Krohn K., Hussain H., Folefoc G.N., Nkengfack A.E., Schulz B., Hu Q.X. Newbouldiaquinone and newbouldiamide: A new naphthoquinone-anthraquinone coupled pigment and a new ceramide from Newbouldia laevis. Chem. Pharm. Bull. 2005;53:616–619. doi: 10.1248/cpb.53.616. [DOI] [PubMed] [Google Scholar]
  • 196.Eyong K.O., Folefoc G.N., Kuete V., Beng V.P., Krohn K., Hussain H., Nkengfack A.E., Saeftel M., Sarite S.R., Hoerauf A. Newbouldiaquinone A: A naphthoquinone-anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial agent from Newbouldia laevis. Phytochemistry. 2006;67:605–609. doi: 10.1016/j.phytochem.2005.12.019. [DOI] [PubMed] [Google Scholar]
  • 197.Aguinaldo A.M., Ocampo O.P.M., Bowden B.F., Gray A.I., Waterman P.G. Tectograndone, an anthraquinone-naphthoquinone pigment from the leaves of Tectona grandis. Phytochemistry. 1993;33:933. doi: 10.1016/0031-9422(93)85309-F. [DOI] [Google Scholar]
  • 198.Alemayehu G., Abegaz B., Kraus W. A 1,4-anthraquinone-dihydroanthracenone dimer from Senna sophera. Phytochemistry. 1998;48:699–702. doi: 10.1016/S0031-9422(98)00031-4. [DOI] [Google Scholar]
  • 199.Hou Y.P., Cao S.G., Brodie P.J., Callmander M.W., Ratovoson F., Rakotobe E.A., Rasamison V.E., Ratsimbason M., Alumasa J.N., Roepe P.D., et al. Antiproliferative and antimalarial anthraquinones of Scutia myrtina from the Madagascar forest. Bioorg. Med. Chem. 2009;17:2871–2876. doi: 10.1016/j.bmc.2009.02.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Zhang L., Hu H., Cai W., Chen S., Sheng P., Fu X. CaCO3-complexed pH-responsive nanoparticles encapsulating mitoxantrone and celastrol enhance tumor chemoimmunotherapy. Pt AInt. J. Pharm. 2024;667:124860. doi: 10.1016/j.ijpharm.2024.124860. [DOI] [PubMed] [Google Scholar]
  • 201.Krenn L., Presser A., Pradhan R., Bahr B., Paper D.H., Mayer K.K., Kopp B. Sulfemodin 8-O-β-D-glucoside, a new sulfated anthraquinone glycoside, and antioxidant phenolic compounds from Rheum emodi. J. Nat. Prod. 2003;66:1107–1109. doi: 10.1021/np0301442. [DOI] [PubMed] [Google Scholar]
  • 202.Xia Z.X., Tang Z.Y., An R., Chen Y., Zhang Y.Z., Wang X.H. A new anthraquinone glycoside from Rheum officinale. Acta Pharm. Sin. B. 2012;47:1183–1186. doi: 10.16438/j.0513-4870.2012.09.006. [DOI] [PubMed] [Google Scholar]
  • 203.Tomasin R., Ferreira I.C., Sawaya A.C.H.F., Mazzafera P., Pascoal A.C.R.F., Salvador M.J., Gomes-Marcondes M.C.C. Honey and Aloe vera Solution Increases Survival and Modulates the Tumor Size In Vivo. Mol. Nutr. Food Res. 2024;68:e2400378. doi: 10.1002/mnfr.202400378. [DOI] [PubMed] [Google Scholar]
  • 204.Zhang C., Wang R., Liu B., Tu G. Structure elucidation of a sodium salified anthraquinone from the seeds of Cassia obtusifolia by NMR technique assisted with acid-alkali titration. Magn. Reson. Chem. 2011;49:529–532. doi: 10.1002/mrc.2771. [DOI] [PubMed] [Google Scholar]
  • 205.Qhotsokoane-Lusunzi M.E.A., Karuso P. Secondary metabolites from Basotho medicinal plants. I Bulbine narcissifolia. J. Nat. Prod. 2001;64:1368–1372. doi: 10.1021/np010279c. [DOI] [PubMed] [Google Scholar]
  • 206.Mei R., Liang H., Wang J., Zeng L.H., Lu Q., Cheng Y.X. New seco-anthraquinone glucosides from Rumex nepalensis. Planta Med. 2009;75:1162–1164. doi: 10.1055/s-0029-1185467. [DOI] [PubMed] [Google Scholar]
  • 207.Li B., Zhang D.-M., Luo Y.-M., Chen X.-G. Three new and antitumor anthraquinone glycosides from Lasianthus acuminatissimus Merr. Chem. Pharm. Bull. 2006;54:297–300. doi: 10.1248/cpb.54.297. [DOI] [PubMed] [Google Scholar]
  • 208.Huang T., Ming J., Zhong J., Zhong Y., Wu H., Liu H., Li B. Three new anthraquinones, one new benzochromene and one new furfural glycoside from Lasianthus acuminatissimus. Nat. Prod. Res. 2019;33:1916–1923. doi: 10.1080/14786419.2018.1480617. [DOI] [PubMed] [Google Scholar]
  • 209.Calis I., Tasdemir D., Ireland C.M., Sticher O. Lucidin type anthraquinone glycosides from Putoria calabrica. Chem. Pharm. Bull. 2002;50:701–702. doi: 10.1248/cpb.50.701. [DOI] [PubMed] [Google Scholar]
  • 210.Lee W., Ku S.-K., Kim T.H., Bae J.S. Emodin-6-O-β-D-glucoside inhibits HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem. Toxicol. 2013;52:97–104. doi: 10.1016/j.fct.2012.10.061. [DOI] [PubMed] [Google Scholar]
  • 211.Chang L.C., Chávez D., Gills J.J., Fong H.H.S., Pezzuto J.M., Kinghorn A.D. Rubiasins A-C, new anthracene derivatives from the roots and stems of Rubia cordifolia. Tetrahedron Lett. 2000;41:7157–7162. doi: 10.1016/S0040-4039(00)01205-3. [DOI] [Google Scholar]
  • 212.Rossi D., Ahmed K.M., Gaggeri R., Della Volpe S., Maggi L., Mazzeo G., Longhi G., Abbate S., Corana F., Martino E., et al. (R)-(−)-Aloesaponol III 8-Methyl Ether from Eremurus persicus: A Novel Compound against Leishmaniosis. Molecules. 2017;22:519. doi: 10.3390/molecules22040519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Krenn L., Pradhan R., Presser A., Reznicek G., Kopp B. Anthrone C-glucosides from Rheum emodi. Chem. Pharm. Bull. 2004;52:391–393. doi: 10.1248/cpb.52.391. [DOI] [PubMed] [Google Scholar]
  • 214.Thurman P.F., Chai W., Rosankiewicz J.R., Rogers H.J., Lawson A.M., Draper P. Possible intermediates in the biosynthesis of mycoside B by Mycobacterium microti. Eur. J. Biochem. 1993;212:705–711. doi: 10.1111/j.1432-1033.1993.tb17708.x. [DOI] [PubMed] [Google Scholar]
  • 215.Rodríguez-Gamboa T., Victor S.R., Fernandes J.B., Fo E.R., Silva M.d.G.d., Vieira P.C., Pagnocca F.C., Bueno O.C., Hebling M.J.A., Castro O.C. Anthrone and oxanthrone C,O-diglycosides from Picramnia teapensis. Phytochemistry. 2000;55:837–841. doi: 10.1016/S0031-9422(00)00323-X. [DOI] [PubMed] [Google Scholar]
  • 216.Diaz F., Chai H.B., Mi Q., Su B.-N., Vigo J.S., Graham J.G., Cabieses F., Farnsworth N.R., Cordell G.A., Pezzuto J.M., et al. Anthrone and oxanthrone C-glycosides from Picramnia latifolia collected in Peru. J. Nat. Prod. 2004;67:352–356. doi: 10.1021/np030479j. [DOI] [PubMed] [Google Scholar]
  • 217.Flamini G., Catalano S., Caponi C., Panizzi L., Morelli I. Three anthrones from Rubus ulmifolius. Phytochemistry. 2002;59:873–876. doi: 10.1016/S0031-9422(02)00012-2. [DOI] [PubMed] [Google Scholar]
  • 218.Habtemariam S. Knipholone anthrone from Kniphofia foliosa induces a rapid onset of necrotic cell death in cancer cells. Fitoterapia. 2010;81:1013–1019. doi: 10.1016/j.fitote.2010.06.021. [DOI] [PubMed] [Google Scholar]
  • 219.Ndjakou Lenta B., Ngouela S., Fekam Boyom F., Tantangmo F., Tchouya G.R.F., Tsamo E., Gut J., Rosenthal P.J., Connolly J.D. Anti-plasmodial activity of some constituents of the root bark of Harungana madagascariensis Lam. (Hypericaceae) Chem. Pharm. Bull. 2007;55:464–467. doi: 10.1248/cpb.55.464. [DOI] [PubMed] [Google Scholar]
  • 220.Kouam S.F., Yapna D.B., Krohn K., Ngadjui B.T., Ngoupayo J., Choudhary M.I., Schulz B. Antimicrobial prenylated anthracene derivatives from the leaves of Harungana madagascariensis. J. Nat. Prod. 2007;70:600–603. doi: 10.1021/np060556l. [DOI] [PubMed] [Google Scholar]
  • 221.Wanjohi J.M., Yenew A., MIDIWO J.O., Heydenreich M., Peter M.G., Dreyer M., Reichert M., Bringmann G. Three dimeric anthracene derivatives from the fruits of Bulbine abyssinica. Tetrahedron. 2005;61:2667–2674. doi: 10.1016/j.tet.2005.01.040. [DOI] [Google Scholar]
  • 222.Fiedler H.P., Dieter A., Gulder T.A., Kajahn I., Hamm A., Brown R., Jones A.L., Goodfellow M., Müller W.E., Bringmann G. Genoketides A1 and A2, new octaketides and biosynthetic intermediates of chrysophanol produced by Streptomyces sp. AK 671. J. Antibiot. 2008;61:464–473. doi: 10.1038/ja.2008.63. [DOI] [PubMed] [Google Scholar]
  • 223.Elsworth C., Gill M., Saubern S. Biosynthesis of tetrahydroanthraquinones in fungi. Phytochemistry. 2000;55:23–27. doi: 10.1016/S0031-9422(00)00181-3. [DOI] [PubMed] [Google Scholar]
  • 224.Kan E., Katsuyama Y., Maruyama J.I., Tamano K., Koyama Y., Ohnishi Y. Efficient heterologous production of atrochrysone carboxylic acid-related polyketides in an Aspergillus oryzae host with enhanced malonyl-coenzyme A supply. J. Gen. Appl. Microbiol. 2020;66:195–199. doi: 10.2323/jgam.2019.07.001. [DOI] [PubMed] [Google Scholar]
  • 225.Sánchez M., González-Burgos E., Iglesias I., Gómez-Serranillos M.P. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules. 2020;25:1324. doi: 10.3390/molecules25061324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Botta B., Delle Monache F., Delle Monache G., Menichini F. Psorolactones and other metabolites from Psorospermum glaberrimum. Tetrahedron. 1988;44:7193–7198. doi: 10.1016/S0040-4020(01)86089-0. [DOI] [Google Scholar]
  • 227.Chevalier Q., Gallé J.B., Wasser N., Mazan V., Villette C., Mutterer J., Elustondo M.M., Girard N., Elhabiri M., Schaller H., et al. Unravelling the puzzle of anthranoid metabolism in living plant cells using spectral imaging coupled to mass spectrometry. Metabolites. 2021;11:571. doi: 10.3390/metabo11090571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Mbwambo Z.H., Apers S., Moshi M.J., Kapingu M.C., Van Miert S., Claeys M., Brun R., Cos P., Pieters L., Vlietinck A. Anthranoid compounds with antiprotozoal activity from Vismia orientalis. Planta Med. 2004;70:706–710. doi: 10.1055/s-2004-827199. [DOI] [PubMed] [Google Scholar]
  • 229.Tiani G.M., Ahmed I., Krohn K., Green I.R., Nkengfack A.E. Kenganthranol F, a new anthranol from Psorospermum aurantiacum. Nat. Prod. Commun. 2013;8:103–104. doi: 10.1177/1934578X1300800123. [DOI] [PubMed] [Google Scholar]
  • 230.Li Y., Li X., Lee U., Kang J.S., Choi H.D., Sona B.W. A new radical scavenging anthracene glycoside, asperflavin ribofuranoside, and polyketides from a marine isolate of the fungus Microsporum. Chem. Pharm. Bull. 2006;54:882–883. doi: 10.1248/cpb.54.882. [DOI] [PubMed] [Google Scholar]
  • 231.Lv L., Tian X.Y., Fang W.S. Three new antioxidant C-glucosylanthrones from Aloe nobilis. J. Asian Nat. Prod. Res. 2010;12:443–447. doi: 10.1080/10286020.2010.490211. [DOI] [PubMed] [Google Scholar]
  • 232.Solis P.N., Ravelo A.G., Gonzalez A.G., Gupta M.P., Phillipson J.D. Bioactive anthraquinone glycosides from Picramnia antidesma spp. fessonia. Phytochemistry. 1995;38:477–480. doi: 10.1016/0031-9422(94)00598-N. [DOI] [PubMed] [Google Scholar]
  • 233.Hernández-Medel R., Pereda-Miranda R. Cytotoxic anthraquinone derivatives from Picramnia antidesma. Planta Med. 2002;68:556–558. doi: 10.1055/s-2002-32562. [DOI] [PubMed] [Google Scholar]
  • 234.Dagne E., Bisrat D., Van Wyk B.E., Viljoen A., Hellwig V., Steglich W. Anthrones from Aloe microstigma. Phytochemistry. 1997;44:1271–1274. doi: 10.1016/S0031-9422(96)00710-8. [DOI] [Google Scholar]
  • 235.Farah M.H., Andersson R., Samuelsson G. Microdontin A and B: Two new aloin derivatives from Aloe microdonta. Planta Med. 1992;58:88–93. doi: 10.1055/s-2006-961397. [DOI] [PubMed] [Google Scholar]
  • 236.Rho T., Kil H.W., Seo Y.J., Shin K.J., Wang D., Yoon K.D. Isolation of six anthraquinone diglucosides from cascara sagrada bark by high-performance countercurrent chromatography. J. Sep. Sci. 2020;43:4036–4046. doi: 10.1002/jssc.202000597. [DOI] [PubMed] [Google Scholar]
  • 237.Rodríguez-Gamboa T., Fernandes J.B., Fo E.R., da Silva M.F.D.G.F., Vieira P.C., Castro O.C. Two anthrones and one oxanthrone from Picramnia teapensis. Phytochemistry. 1999;51:583–586. doi: 10.1016/S0031-9422(99)00023-0. [DOI] [PubMed] [Google Scholar]
  • 238.Yang J.B., Li L., Dai Z., Wu Y., Geng X.C., Li B., Ma S.C., Wang A.G., Su Y.L. Polygonumnolides C1-C4; minor dianthrone glycosides from the roots of Polygonum multiflorum Thunb. J. Asian Nat. Prod. Res. 2016;18:813–822. doi: 10.1080/10286020.2016.1171758. [DOI] [PubMed] [Google Scholar]
  • 239.Rideout J., Sutherland I. Pigments of marine animals. XV Bianthrones and related polyketides from Lamprometra palmata gyges and other species of crinoids. Aust. J. Chem. 1985;38:793–808. doi: 10.1071/CH9850793. [DOI] [Google Scholar]
  • 240.Overy D.P., Berrue F., Correa H., Hanif N., Hay K., Lanteigne M., Mquilian K., Duffy S., Boland P., Jagannathan R., et al. Sea foam as a source of fungal inoculum for the isolation of biologically active natural products. Mycology. 2014;5:130–144. doi: 10.1080/21501203.2014.931893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Cohen P.A., Towers G.H.N. The anthraquinones of Heterodermia obscurata. Phytochemistry. 1995;40:911–915. doi: 10.1016/0031-9422(95)00407-X. [DOI] [Google Scholar]
  • 242.Politi M., Sanogo R., Ndjoko K., Guilet D., Wolfender J.L., Hostettmann K., Morelli I. HPLC-UV/PAD and HPLC-MS(n) analyses of leaf and root extracts of Vismia guineensis and ion and identification of two new bianthrones. Phytochem. Anal. 2010;15:364. doi: 10.1002/pca.788. [DOI] [PubMed] [Google Scholar]
  • 243.Form I.C., Bonus M., Gohlke H., Lin W., Daletos G., Proksch P. Xanthone, benzophenone and bianthrone derivatives from the hypersaline lake-derived fungus Aspergillus wentii. Bioorg. Med. Chem. 2019;27:115005. doi: 10.1016/j.bmc.2019.07.021. [DOI] [PubMed] [Google Scholar]
  • 244.Meirelles G.D.C., Bridi H., Rates S.M.K., Poser G.L.V. Southern Brazilian Hypericum species, promising sources of bioactive metabolites. Stud. Nat. Prod. Chem. 2018;59:491–507. [Google Scholar]
  • 245.Aly A.H., Debbab A., Clements C., Edrada-Ebel R.A., Orlikova B., Diederich M., Wray V., Lin W.H., Proksch P. NF-κB inhibitors and antitrypanosomal metabolites from endophytic fungus Penicillium sp. isolated from Limonium tubiflorum. Bioorg. Med. Chem. 2011;19:414–421. doi: 10.1016/j.bmc.2010.11.012. [DOI] [PubMed] [Google Scholar]
  • 246.Yang J., Yan Z., Ren J., Su Y. Polygonumnolides A1-B3, minor dianthrone derivatives from the roots of Polygonum multiflorum Thunb. Arch. Pharm. Res. 2018;41:617–624. doi: 10.1007/s12272-016-0816-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Yang J.B., Tian J.Y., Dai Z., Ye F., Ma S.C., Wang A.G. α-Glucosidase inhibitors extracted from the roots of Polygonum multiflorum Thunb. Fitoterapia. 2017;117:65–70. doi: 10.1016/j.fitote.2016.11.009. [DOI] [PubMed] [Google Scholar]
  • 248.Lenta B.N., Devkota K.P., Ngouela S., Boyom F.F., Naz Q., Choudhary M.I., Tsamo E., Rosenthal P.J., Sewald N. Anti-plasmodial and cholinesterase inhibiting activities of some constituents of Psorospermum glaberrimum. Chem. Pharm. Bull. 2010;56:222–226. doi: 10.1248/cpb.56.222. [DOI] [PubMed] [Google Scholar]
  • 249.Le P., Mai F., Guéritte V., Dumontet M., Van T. Cytotoxicity of rhamnosylanthraquinones and rhamnosylanthrones from Rhamnus nepalensis. J. Nat. Prod. 2001;64:1162–1168. doi: 10.1021/np010030v. [DOI] [PubMed] [Google Scholar]
  • 250.Botta B., Dall’Olio G., Ferrari F., Vinciguerra V., Scurria R., Iacomacci P., Ferrari F., Delle Monache G., Misiti D. Cell suspension cultures of Cassia didymobotrya: Mization of growth and secondary metabolite production by application of the orthogonal n method. J. Plant Physiol. 1989;135:290–294. doi: 10.1016/S0176-1617(89)80121-X. [DOI] [Google Scholar]
  • 251.Nawong B., Karalai C., Chantrapromma S., Ponglimanont C., Kanjana-Opas A., Chantrapromma K., Fun H.-K. Quinonoids from the barks of Cratoxylum formosum subsp. pruniflorum. Can. J. Chem. 2007;85:341–345. doi: 10.1139/v07-031. [DOI] [Google Scholar]
  • 252.Sibanda S., Nyanyira C., Nicoletti M., Galefi C. Ochnabianthrone: A trans-9,9′-bianthrone from Ochna pulchra. Phytochemistry. 1990;29:3974–3976. doi: 10.1016/0031-9422(90)85383-Q. [DOI] [Google Scholar]
  • 253.Sasakl K.N.N., Yamauchi K., Kuwano S. Isolation of a new aloe-emodin dianthrone diglucoside from senna and its potentiating effect on the purgative activity of sennoside A in mice. J. Pharm. Pharmacol. 1985;37:703–706. doi: 10.1111/j.2042-7158.1985.tb04946.x. [DOI] [PubMed] [Google Scholar]
  • 254.Oshio H., Imai S., Fujioka S., Sugawara T., Miyamoto M., Tsukui M. Investigation of Rhubarbs. III New purgative constituents, sennosides E and F. Chem. Pharm. Bull. 1974;22:823–831. doi: 10.1248/cpb.22.823. [DOI] [Google Scholar]
  • 255.Lemli J., Bequeker R., Cuveele J. Sennidin C, reidin B and reidin C, heterodianthrones of the fresh roots of rhubarb. Pharm. Weekbl. 1964;99:613–616. [PubMed] [Google Scholar]
  • 256.Gao W., Jin L., Liu C., Zhang N., Zhang R., Bednarikova Z., Gazova Z., Bhunia A., Siebert H.C., Dong H. Inhibition behavior of sennoside A and sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int. J. Biol. Macromol. 2021;178:424–433. doi: 10.1016/j.ijbiomac.2021.02.213. [DOI] [PubMed] [Google Scholar]
  • 257.Alemayehu G., Abegaz B., Snatzke G., Duddeck H. Bianthrones from Senna longiracemosa. Phytochemistry. 1993;32:1273–1277. doi: 10.1016/S0031-9422(00)95104-5. [DOI] [Google Scholar]
  • 258.Macedo E.M.S.d., Wiggers H.J., Silva M.G.V., Braz-Filho R., Andricopulo A.D., Montanari C.A. A new bianthron glycoside as itor of Trypanosoma cruzi glyceraldehyde 3-phosphate dehydrogenase activity. J. Braz. Chem. 2009;20:947–953. doi: 10.1590/S0103-50532009000500021. [DOI] [Google Scholar]
  • 259.Xiang W., Long Z., Zeng J., Zhu X., Yuan M., Wu J., Wu Y., Liu L. Mechanism of Radix Rhei et rhizome intervention in cerebral infarction: A research based on chemoinformatics and systematic pharmacology. Evid.-Based Complement. Alternat. Med. 2021;2021:6789835. doi: 10.1155/2021/6789835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Sehgal V.N., Verma P., Khurana A. Anthralin/dithranol in dermatology. Int. J. Dermatol. 2014;53:e449-60. doi: 10.1111/j.1365-4632.2012.05611.x. [DOI] [PubMed] [Google Scholar]
  • 261.Zhang Y.B., Wang Y.R., Wang Z.Y., Ma C.K., Shi Y.J. Optimization of the extraction process for rutin from corn silk by alkali extraction and acid precipitation. Chem. Biol. Eng. 2021;38:27–31. [Google Scholar]
  • 262.Zhang L.M., Tian B., Mao H., Su Y.Q., Lv D. Optimization of the extraction process for anthraquinones from Cassia obtusifolia. Biochem. Eng. J. 2024;10:93–96+108. [Google Scholar]
  • 263.Cao L.L., Ruan C.Q., Gao J.L., Li X., Zhao M., Li Q. Study on the extraction process of anthraquinones from Rubia cordifolia rhizomes. Liaoning Chem. Ind. 2024;53:501–505+529. doi: 10.14029/j.cnki.issn1004-0935.2024.04.003. [DOI] [Google Scholar]
  • 264.Du Z.X. Determination of plumbagin content in fresh and dry stems of Plumbago zeylanica. Anhui Agric. Sci. 2009;37:16363–16364. doi: 10.13989/j.cnki.0517-6611.2009.33.159. [DOI] [Google Scholar]
  • 265.Li M.J., Deng Q.G., Andong Z.Y. Overview of separation and purification processes for active ingredients in Chinese medicine. J. Qiqihar Univ. 2006;2:7–10. [Google Scholar]
  • 266.Dong J.X., Jia A.L., Dong X.L., Qiu Z.D. Study on the extraction process of anthraquinones from Polygonum multiflorum. J. Changchun Univ. Chin. Med. 2012;28:150–151. doi: 10.13463/j.cnki.cczyy.2012.01.069. [DOI] [Google Scholar]
  • 267.Zhu K., Yu Y., Dong X.L., Qiu Y., Zhang X.Y., Qiu Z.D. Study on the extraction process of anthraquinones from Rheum officinale by CO2 supercritical fluid extraction. J. Jilin Chin. Med. 2013;33:1261–1263. doi: 10.13463/j.cnki.jlzyy.2013.12.040. [DOI] [Google Scholar]
  • 268.Zhao J.L., Kang Y., Sun H., Li X.Q. Determination of hydroquinone and phenol in cosmetics by solid-phase extraction-high performance liquid chromatography. Chin. J. Health Lab. Sci. 2019;29:16–18. [Google Scholar]
  • 269.Chen D.M. Ph.D. Thesis. Huazhong Agricultural University; Wuhan, China: 2010. Key Technologies for Quantitative and Confirmatory Analysis of Veterinary Drug Residues in Animal-Derived Foods. [Google Scholar]
  • 270.Ong E.S., Len S.M. Evaluation of pressurized liquid extraction and pressurized hot water extraction for tanshinone I and IIA in Salvia miltiorrhiza using LC and LC-ESI-MS. J. Chromatogr. Sci. 2004;42:211–216. doi: 10.1093/chromsci/42.4.211. [DOI] [PubMed] [Google Scholar]
  • 271.Wang P. Master’s Thesis. Northwest Agriculture and Forestry University; Xianyang, China: 2013. Isolation and Identification of Polyphenols and Anthraquinones from Smilax scobinicaulis. [DOI] [Google Scholar]
  • 272.He Y., Zhang Y.L., Zhang G.R. Extraction, separation and structure identification of browning products from pomegranate peel. Sci. Technol. Food Ind. 2008;4:133–136. doi: 10.13386/j.issn1002-0306.2008.04.037. [DOI] [Google Scholar]
  • 273.Huang J., Yu L., Peng X.S., Zheng R., Xu Y., Ni L.J. Determination and mass spectrometric confirmation of lawsone in cosmetics by high performance liquid chromatography. Chin. J. Health Lab. Sci. 2022;32:1182–1186. [Google Scholar]
  • 274.Tian G., Zhang T.Y., Zhang Y.B., Ito Y. Separation of tanshinones from Salvia miltiorrhiza Bunge by multidimensional counter-current chromatography. J. Chromatogr. A. 2002;945:281–285. doi: 10.1016/S0021-9673(01)01495-9. [DOI] [PubMed] [Google Scholar]
  • 275.Lu C.G. Master’s Thesis. Zhengzhou University; Zhengzhou, China: 2007. Study on the Extraction Process of Effective Components from Aloe by Supercritical CO2. [Google Scholar]
  • 276.Yang N., Zhou C.J., Wen R. Research progress in extraction and separation technologies of Chinese herbal medicines. J. Baotou Med. Coll. 2015;31:143–145. doi: 10.16833/j.cnki.jbmc.2015.04.092. [DOI] [Google Scholar]
  • 277.Lu Z.K. Master’s Thesis. Shihezi University; Shihezi, China: 2022. Component Analysis and Biological Activity Study of Green Walnut Peel Pigment. [DOI] [Google Scholar]
  • 278.Zhang Z.J. Master’s Thesis. Hunan University; Shihezi, China: 2008. Study on the Synthesis Methods of Resveratrol Compounds and Their Derivatives. [Google Scholar]
  • 279.Qiu B.L. Master’s Thesis. Fuzhou University; Shihezi, China: 2010. Synthesis and Property Study of Emodin Derivatives. [Google Scholar]
  • 280.Wang Y., Chen J.W., Li F., Bian H.T. Acute phototoxicity mechanism and QSAR study of anthraquinones to Daphnia magna; Proceedings of the 5th National Conference on Environmental Chemistry; Dalian, China. 10 May 2009. [Google Scholar]
  • 281.Shen J., Zhang M.Y., Guo Z.T., Han S.H., Li H.T., Zhou Z.Y., Peng M.Y. Immunomodulatory and therapeutic effects of embelin on systemic lupus erythematosus mice. J. Army Med. Univ. 2022;44:363–370. doi: 10.16016/j.2097-0927.202109056. [DOI] [Google Scholar]
  • 282.Siegelin M.D., Gaiser T., Siegelin Y. The XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochem. Int. 2009;55:423–430. doi: 10.1016/j.neuint.2009.04.011. [DOI] [PubMed] [Google Scholar]
  • 283.Chen Y.Y., Li J., Hu J.D., Zheng J., Zheng Z.H., Zhu L.F., Chen X.J., Lin Z.X. Study on the reversal effect of emodin on multidrug resistance in HL-60/ADR resistant cells. J. Exp. Hematol. 2013;21:1413–1422. doi: 10.7534/j.issn.1009-2137.2013.06.010. [DOI] [PubMed] [Google Scholar]
  • 284.Chen S.-C., Chen Q.-W., Ko C.-Y. Chrysophanol induces cell death and inhibits invasiveness through alteration of calcium levels in HepG2 human liver cancer cells. Chin. J. Integr. Med. 2024;31:434–440. doi: 10.1007/s11655-024-3817-2. [DOI] [PubMed] [Google Scholar]
  • 285.Kraemer S., Crauwels P., Bohn R., Radzimski C., Szaszak M., Klinger M., Rupp J., van Zandbergen G. AP-1 transcription factor serves as a molecular switch between Chlamydia pneumoniae replication and persistence. Infect. Immun. 2015;83:2651–2660. doi: 10.1128/IAI.03083-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Avci E., Arikoglu H., Kaya D.E. Investigation of juglone effects on metastasis and angiogenesis in pancreatic cancer cells. Gene. 2016;588:74–78. doi: 10.1016/j.gene.2016.05.001. [DOI] [PubMed] [Google Scholar]
  • 287.Zhu F., Wu G., He Y.Q., Li Z.Y., Peng G., Ren J.H. Effects of plumbagin on proliferation of hepatoma cell 2 and expression of vascular endothelial growth factor. Chin. Herbal Med. 2010;41:775–778. [Google Scholar]
  • 288.Yang J.G., Wang H.Y., Gao X.S., Li X.H. Effects of aloe-emodin on the biological behaviors of cervical cancer HeLa cells. Hebei Med. J. 2018;40:814–818. [Google Scholar]
  • 289.Itharat A., Plubrukan A., Kaewpradub N., Chuchom T., Ratanasuwan P., Houghton P.J. Selective cytotoxicity and antioxidant effects of compounds from Dioscorea membranacea rhizomes. Nat. Prod. Commun. 2007;2:643–648. doi: 10.1177/1934578X0700200605. [DOI] [Google Scholar]
  • 290.Thangaraj S., Tsao W.-S., Luo Y.-W., Lee Y.-J., Chang C.-F., Lin C.-C., Uang B.-J., Yu C.-C., Guh J.-H., Teng C.-M. Total synthesis of moniliformediquinone and calanquinone A as potent inhibitors for breast cancer. Tetrahedron. 2011;67:6166–6172. doi: 10.1016/j.tet.2011.06.054. [DOI] [Google Scholar]
  • 291.Zhang X.W., Cheng M., Wang X.J., Ji Y.L., Zhou C.S. Inhibitory effects of phenanthrenequinone from Dendrobium nobile on the proliferation and metastasis of human ovarian cancer cells. Pharmacol. Clin. Chin. Mat. Med. 2016;32:72–75+19. doi: 10.13412/j.cnki.zyyl.2016.03.019. [DOI] [Google Scholar]
  • 292.Yang N., Li C., Li H.L., Liu M., Cai X.J., Cao F.J., Feng Y.B., Li M.L., Wang X.B. Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells. Front. Pharmacol. 2019;10:709. doi: 10.3389/fphar.2019.00709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 293.Li H., Wang X., Liu Y., Pan D.F., Wang Y., Yang N., Xiang L.C., Cai X.J., Feng Y.B. Hepatoprotection and hepatotoxicity of Polygonum multiflorum, a Chinese medicinal herb: Context of the paradoxical effect. Food Chem. Toxicol. 2017;108:407–418. doi: 10.1016/j.fct.2016.07.035. [DOI] [PubMed] [Google Scholar]
  • 294.Xu H. Master’s Thesis. Jilin University; Ürümqi, China: 2023. Idebenone Protects Against Oxidative Stress-Induced Neuronal Cell Apoptosis by Regulating the CD38-SIRT3-P53 Pathway. [Google Scholar]
  • 295.Kumar S., Gautam S., Sharma A. Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013;755:30–41. doi: 10.1016/j.mrgentox.2013.05.007. [DOI] [PubMed] [Google Scholar]
  • 296.Liu T. Master’s Thesis. Shanxi Normal University; Ürümqi, China: 2018. Study on the Antioxidant and Antibacterial Activities and Antibacterial Mechanism of Juglone. [Google Scholar]
  • 297.Hou Y.S. Master’s Thesis. Xinjiang Medical University; Ürümqi, China: 2020. Analysis of Naphthoquinones in Arnebia euchroma and Their Antioxidant Ntitumor Activities In Vitro. [DOI] [Google Scholar]
  • 298.Chen J., Yin Z., Yu N., Ou S.S., Wang X., Li H.P., Zhu H.L. Tanshinone alleviates UVA-induced melanogenesis in melanocytes via the Nrf2-regulated antioxidant defense signaling pathway. Curr. Mol. Med. 2024;24:1529–1539. doi: 10.2174/0115665240263196230920161019. [DOI] [PubMed] [Google Scholar]
  • 299.Fang M., Huang D.R., Zhang J.W., Liao W.J., Wu F., Liu Y.W. Tanshinone IIA inhibits oxidative stress and exerts anti-hepatocellular carcinoma effects by regulating the PI3K/Akt and Nrf2/HO-1 signaling pathways. China J. Chin. Mater. Med. 2024;49:6724–6734. doi: 10.19540/j.cnki.cjcmm.20240711.401. [DOI] [PubMed] [Google Scholar]
  • 300.Mellado M., Madrid A., Peña-Cortés H., López R., Jara C., Espinoza L. Antioxidant activity of anthraquinones isolated from leaves of Muehlenbeckia hastulata (J.E.Sm.) Johnst. (Polygonaceae) J. Chil. Chem. Soc. 2013;58:1767–1770. doi: 10.4067/S0717-97072013000200028. [DOI] [Google Scholar]
  • 301.Liu M.Y., Pan X.L., Li X.B., Wu B. Study on the antioxidant activity of metal complexes of aloe-emodin. J. Sichuan Univ. Med. Sci. Ed. 2021;52:241–247. doi: 10.12182/20201160110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Hu T., Feng D., Teng L., Zhou G.F., Liu S. Extraction of naphthoquinones from the leaves of Juglans mandshurica and their antioxidant activities in vitro. Food Ind. 2022;43:29–32. [Google Scholar]
  • 303.Pan J. Master’s Thesis. Guangzhou University of Chinese Medicine; Guangzhou, China: 2017. Extraction of Total Anthraquinones from Rubia cordifolia and Preliminary Study on Their Antioxidant and Anti-Inflammatory Activities. [DOI] [Google Scholar]
  • 304.Liu M.X., Yang S.Q., Xia X.K., Tan W.J., Xiang M.X. Optimization of extraction process and anti-inflammatory study of naphthoquinones from Arnebia euchroma. J. Wuhan Inst. Technol. 2023;45:401–406. doi: 10.19843/j.cnki.CN42-1779/TQ.202303004. [DOI] [Google Scholar]
  • 305.Wang Q. Master’s Thesis. Nanjing University of Chinese Medicine; Nanjing, China: 2016. Study on the Necrosis-Targeting Property of Mono-Anthraquinones and Their Application in the Evaluation of Myocardial Activity. [Google Scholar]
  • 306.Hu X.H., Meng K., Wang Z., Di M.J. Research progress on the antitumor activity of anthraquinones. Chin. J. Med. Guid. 2023;25:1223–1229. [Google Scholar]
  • 307.Lu Z.K., Wu Q.Z., Zhang J., Mao X.Y. Antibacterial effect and mechanism of juglone green walnut peel against Escherichia coli. Food Sci. 2023;44:65–73. [Google Scholar]
  • 308.Yang H., Lee P.J., Jeong E.J., Kim H.P., Kim Y.C. Selective apoptosis in hepatic stellate cells ates the antifibrotic effect of phenanthrenes from Dendrobium nobile. Phytother. Res. 2012;26:980. doi: 10.1002/ptr.3632. [DOI] [PubMed] [Google Scholar]
  • 309.Tang D.X., Tan Z.H., Liang Y.Y., Cheng L., Huang L. Preliminary study on the cathartic effect and anism of anthraquinones from Rheum officinale. Lishizhen Med. Mater. Med. Res. 2007;6:1314. [Google Scholar]
  • 310.Chen Y.Y., Cao Y.J., Tang Y.P., Yue S.J., Duan J.A. Comparative pharmacodynamic, pharmacokinetic and tissue distribution of Dahuang-Gancao decoction in normal and experimental constipation mice. Chin. J. Nat. Med. 2019;17:871–880. doi: 10.1016/S1875-5364(19)30104-9. [DOI] [PubMed] [Google Scholar]
  • 311.Zhang Z.Y., Yang L., Huang X.Y., Wang M.X., Ma Z.C., Tang X.L., Wang Y.G., Gao Y. Regulatory effects of THSG and anthraquinones from Polygonum multiflorum on CYP3A4 mediated by human pregnane X receptor. China J. Chin. Mater. Med. 2017;42:4827–4833. doi: 10.19540/j.cnki.cjcmm.20171010.006. [DOI] [PubMed] [Google Scholar]
  • 312.Hu X.Q., Geng Z.Y., Li Q.L., Fang H.L., Zhang X.Q. Experimental study on different doses of processed Polygonum multiflorum and the degree of liver injury in rats. Shaanxi J. Tradit. Chin. Med. 2007;10:1420–1421. [Google Scholar]
  • 313.Mao Z.H., Liu Q., Wang X., Wen H.R. Study on the hepatotoxicity of anthraquinones from Rheum officinale; Proceedings of the 6th National Annual Conference on Pharmacotoxicology; Chongqing, China. 2016. [Google Scholar]
  • 314.Wen H.R., Wang Y.N., Yang Y., Zhao T.T., Ma S.C., Wang Q. Risk assessment of gene mutations induced by emodin-type monoanthrones. Chin. J. Pharmacovigil. 2020;17:455–460. doi: 10.19803/j.1672-8629.2020.08.02. [DOI] [Google Scholar]
  • 315.Li C.L., Ma J., Li H.J. Research progress on the absorption and metabolism of anthraquinones. Pharm. Biotechnol. 2012;19:557–560. doi: 10.19526/j.cnki.1005-8915.2012.06.021. [DOI] [Google Scholar]
  • 316.Huang H., Li X.Y. Research progress of melanosis coli. Yunnan Med. J. 2008;29:595–597. [Google Scholar]
  • 317.Steer H.W., Colin-Jones D.G. Melanosis coli: Studies of the toxic effects of irritant purgatives. J. Pathol. 1975;115:199–205. doi: 10.1002/path.1711150403. [DOI] [PubMed] [Google Scholar]
  • 318.Cheng Y. Master’s Thesis. Northwestern University; Xi’an, China: 2021. Study on the Potential Toxic Effects of Metabolic Products and Monomer Components of Anthraquinones from Rheum officinale on Human Colon Cells. [DOI] [Google Scholar]
  • 319.Lan J., Wen H.R., Huang Z.Y., Wang Q., Ma S.C. Study on the cytotoxicity of anthraquinone monomer components from Polygonum multiflorum to HK-2 cells. Chin. J. Pharmacovigil. 2023;20:616–622+628. doi: 10.19803/j.1672-8629.20230138. [DOI] [Google Scholar]
  • 320.Chang M.H., Huang F.J., Chan W.H. Emodin induces embryonic toxicity in mouse blastocysts through apoptosis. Toxicology. 2012;299:25–32. doi: 10.1016/j.tox.2012.05.006. [DOI] [PubMed] [Google Scholar]
  • 321.Yao K.Z., Kang Q.M., Liu W.B., Chen D.N., Wang L.F., Li S. Chronic exposure to tire rubber-derived contaminant 6PPD-quinone impairs sperm quality and induces the damage of reproductive capacity in male mice. J. Hazard. Mater. 2024;470:134165. doi: 10.1016/j.jhazmat.2024.134165. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data presented in this study are available upon request from the corresponding author.


Articles from Toxics are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES