Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2025 Jun 23;64(31):e202507126. doi: 10.1002/anie.202507126

Isothiourea‐Catalysed Acylative Kinetic and Dynamic Kinetic Resolution of Planar Chiral Paracyclophanols

Zhanyu Zhou 1, Kevin Kasten 1, Aidan P McKay 1, David B Cordes 1, Andrew D Smith 1,
PMCID: PMC12304874  PMID: 40392605

Abstract

The development of synthetic methods for the catalytic enantioselective preparation of planar chiral paracyclophane derivatives is of considerable interest to the synthetic community. To date, relatively few successful and effective organocatalytic approaches to this molecular class have been reported. This manuscript describes effective isothiourea catalysed acylative kinetic (KR) and dynamic kinetic resolution (DKR) approaches to the generation of a range of planar chiral paracyclophane macrocycles with excellent levels of enantioselectivity. Effective KR of configurationally stable planar chiral paracyclophanols with 12‐ and 13‐membered ansa‐chains is demonstrated (6 examples, s = up to 50) using 5 mol% of the isothiourea (R)‐BTM and isobutyric anhydride. Application to configurationally labile macrocyclic phenols with 14 to 18‐membered ansa‐chains allows their effective acylative DKR, generating the desired products with excellent enantioselectivity (25 examples, up to 95% yield and 98:2 er).

Keywords: Dynamic kinetic resolution, Isothiourea, Kinetic resolution, Macrocycles, Paracyclophane


The highly selective acylative (dynamic) kinetic resolution of racemic paracyclophanols catalysed by a chiral isothiourea (5 mol%) is described (up to s = 50 at 49% conversion or up to 98:2 er and 96% yield in 30 examples). Rotational barriers were analysed for paracyclophanols and selected ester products.

graphic file with name ANIE-64-e202507126-g002.jpg

Introduction

Planar chirality describes stereoisomerism that results from the arrangement of out‐of‐plane groups in relation to a reference plane (Figure 1a).[ 1 , 2 ] A range of molecular types that encompass macrocycles, such as cyclophanes and bridged annulenes, as well as cycloalkenes and metallocenes, have been prepared that demonstrate this configurational phenomenon. Such species are of significant interest from a synthetic,[ 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ] structural,[ 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 ] and chiroptical perspective.[ 29 ] In addition, planar chiral macrocycles are found within natural products[ 30 , 31 , 32 ] and bioactive species[ 7 , 13 , 14 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 ] such as Fijiolides.[ 69 ] Within this class, a cyclophane can be defined as a macrocycle that is made up of aromatic units connected by chain linkers.[ 70 ] In mancude‐ring systems (such as benzene) that are bridged by a linker, the so‐called ansa‐chain is constrained to lie over one face of the ring, with asymmetric substitution of the arene leading to the formation of chiral products. In such structures, configurational stability arises due to restricted rotation of the aromatic ring, with substituents needing to pass through the ansa‐chain to interconvert enantiomers. Because of their structural interest and dynamic behaviour, several methods have been developed for the asymmetric synthesis of planar chiral cyclophanes (Figure 1b).[ 5 , 6 , 10 , 16 , 17 , 21 ] These include elegant methods for the construction of either the ansa‐chain,[ 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 ] the arene within the chiral plane,[ 83 , 84 , 85 , 86 , 87 ] or stereoselective transformation of the chiral plane employing chiral auxiliaries[ 42 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 ] and reagents,[ 96 , 97 ] as well as enantioselective desymmetrisation[ 98 , 99 , 100 ] or (dynamic) kinetic resolution [(D)KR] processes.[ 98 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 , 110 , 111 , 112 , 113 , 114 , 115 ] In the latter area, the rate of enantiomerization is dependent upon size and position of arene substituents within the plane, as well as ansa‐chain length and its constitution (Figure 1c).[ 5 , 16 , 17 , 21 , 116 , 117 , 118 ] Either reducing the size of the ansa‐chain or increasing the size of the substituents within the chiral plane can lead to configurationally stable products. Several methods that allow modification of the arene in this manner encompass asymmetric Sonagashira coupling,[ 101 ] or lithiation‐trapping approaches,[ 98 ] as well as C─H‐activation‐olefination or ‐arylation using transition metal based catalysts.[ 105 , 112 ] To date, limited organocatalytic (D)KR approaches have been demonstrated in this area to generate chiral paracyclophanes.[ 102 , 103 , 107 , 115 ] The current state‐of‐the‐art methods utilise a direct electrophilic arene substitution process via either CPA‐promoted electrophilic amination[ 104 ] or Lewis base‐catalysed electrophilic sulfenylation of arenes.[ 111 ] Alternatively, functionalisation of a macrocyclic aldehyde via either NHC‐catalysed oxidative esterification (that requires a stoichiometric oxidant)[ 109 ] or chiral phosphoric acid (CPA) catalysed transfer hydrogenation to promote reductive amination[ 106 ] has been achieved (Figure 1d).

Figure 1.

Figure 1

a) Planar chirality: cyclophane, metallocene, alkene, and natural product. b) Synthetic strategies towards chiral paracyclophanes. c) Mode of enantiomerization. d) Current state‐of‐the‐art organocatalytic cyclophane modification strategies. e) Previous isothiourea‐catalysed KR of [2.2]paracyclophan‐4‐ol. f) This work: isothiourea‐catalysed acylative KR/DKR of paracyclophanols.

The acylative KR and DKR of racemic alcohols is a strategy that has been widely adopted by both industry and academia to deliver enantiomerically pure products.[ 119 , 120 ] The use of nitrogen‐centred Lewis base catalysts has been widely described in this area,[ 121 , 122 , 123 , 124 ] with the use of isothiourea catalysts having been applied to the KR of a range of primary,[ 125 ] secondary,[ 126 , 127 , 128 , 129 , 130 , 131 ] and tertiary[ 132 ] point chiral alcohols since the first demonstration of their utility in KR by Birman and co‐workers.[ 133 ] Application to the KR of 2,6‐dihydroxybiaryls,[ 134 ] as well as desymmetrisation of 2‐hydroxybiaryls[ 135 ] has extended their utility to the development of molecules with a chiral axis. Deployment of isothiourea‐catalysed enantioselective acylation to planar chiral molecules is in its infancy, with Waser and co‐workers having demonstrated a single example of an acylative KR of [2.2]paracyclophan‐4‐ol with promising but modest selectivity (up to s = 20, Figure 1e).[ 115 ] In this context, the catalytic acylative DKR of planar chiral alcohols represents an underdeveloped area in the field. This manuscript describes the isothiourea‐catalysed acylative KR and DKR of a range of planar chiral paracyclophanols (Figure 1f). At the onset of this study, the following key challenges were recognised. 1) For an effective DKR, the rate of enantioselective acylation must couple with enantiomerization of the racemic planar chiral paracyclophanol, with the assumption that the increased steric hinderance generated upon esterification would prohibit product racemisation. 2) Differentiation of the two paracyclophanol enantiomers using an isothiourea catalyst is a previously underexplored challenge that would require distinguishing between the two potential ether linkage recognition motifs within the substrate. 3) Variation of the ansa‐chain length in such macrocycles is known to markedly affect their configurational stability,[ 5 , 16 , 17 , 21 , 116 , 117 , 118 ] potentially allowing for both KR and DKR processes to be developed. Herein, we describe the successful realisation of this strategy that utilises a commercially available isothiourea catalyst (R)‐BTM and common anhydride reagents to promote effective catalytic acylative KR and DKR of a range of planar chiral paracyclophanols (KR, s = 50 at 49% conversion; DKR up to 96% yield and 98:2 er).[ 136 ]

Results and Discussion

Acylative Kinetic Resolution of Configurationally Stable Planar Chiral Paracyclophanols

To initially verify the feasibility of this enantioselective acylation process, the kinetic resolution (KR) of a configurationally stable racemic macrocyclic phenol 1 with a 12‐membered ansa‐chain was explored as a model substrate. Using 5 mol% of the chiral isothiourea catalyst (2S,3R)‐HyperBTM 3 and isobutyric anhydride as the acyl source in CHCl3 or toluene with i Pr2NEt as the co‐base led to effective acylation but moderate selectivity (= 5) (entries 1 and 2, Table 1). Changing to the alternative isothiourea catalyst (R)‐BTM 4 in CHCl3 led to increased selectivity (s = 14, entry 3). Exploration of several co‐bases showed that the use of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) led to poor selectivity (s = 2, entry 4), while lutidine, 2,6‐di‐tert‐butyl pyridine (2,6‐DTBP) and quinaldine all lead to useful levels of selectivity (s = 16) at 47%–52% conversion (entries 5–7). Using quinaldine, decreasing the catalyst loading showed that both 5% and 2.5 mol% of (R)‐BTM 4 gave equivalent conversion and selectivity (entries 8–9). Optimal selectivity was observed using toluene as the reaction solvent and quinaldine as the base, leading to effective KR of 1 (c = 49, s = 50), allowing isolation of alcohol (S p)‐1 in 38% yield and 93:7 er, as well as the generation of ester (R p)‐2 in 48% yield and 95:5 er (entry 10).

Table 1.

Optimisation of Acylative Kinetic Resolution Process.

graphic file with name ANIE-64-e202507126-g003.jpg
Entry Catalyst (y mol%) Base Solvent c a) s a)
1 3 (10) i Pr2NEt PhMe 51 5
2 3 (10) i Pr2NEt CHCl3 56 3
3 4 (10) i Pr2NEt CHCl3 56 14
4 4 (10) DBU CHCl3 57 2
5 4 (10) Lutidine CHCl3 48 16
6 4 (10) 2,6‐DTBP CHCl3 47 16
7 4 (10) Quinaldine CHCl3 52 16
8 4 (5) Quinaldine CHCl3 55 16
9 4 (2.5) Quinaldine CHCl3 52 16
10 4 (5) Quinaldine PhMe 49 50
a)

Conversion (c) and selectivity factor (s) calculated using the enantiomeric ratios of alcohol and ester as measured by HPLC analysis on a chiral stationary phase.[ 119 , 120 , 137 ]

s values rounded according to estimated errors.[ 138 ]

With optimised conditions for the KR developed, the scope and limitations of this process were investigated through variation of the aryl substitution pattern and macrocycle ring size (Scheme 1). With a 12‐membered ansa‐chain (n = 1), incorporation of bromine, phenyl, and 3‐pyridyl substituents led to consistently excellent selectivity in this acylative KR (2, 5, 6, s = 50, 37, and 41, respectively) at 49%–57% conversion. Employing sterically less encumbered acetic anhydride was also feasible, albeit with decreased selectivity (7, s = 21 at 49% conversion). Further extension to a 13‐membered ansa‐chain (n = 2) also gave efficient KR, giving bromine‐bearing macrocycle 8 (c = 53, s = 31) and phenyl‐substituted analogue 9 (c = 53, s = 20). The configurational stability of paracyclophanol 8 (96:4 er) was probed via heating in toluene at 60 °C for >24 h, but no change of the enantiomeric ratio was observed. However, upon heating in toluene at 100 °C, a linear decrease in er with time was observed (to 82:18 er after 43 h), consistent with krac = 2.0 × 10−6 s−1, ΔG373 = 32.6 kcal mol−1 (see SI for details).[ 136 ]

Scheme 1.

Scheme 1

a) Conversion (c) and selectivity factor (s) calculated using the enantiomeric ratios of recovered alcohol and ester as measured by HPLC analysis on a chiral stationary phase.[ 119 , 120 , 137 ] s values rounded according to estimated errors.[ 138 ] b) Isobutyric anhydride used; c) Acetic anhydride used; d) Following KR, the phenol and ester products could not be separated, but were resolved on HPLC, yield determined by NMR ratio of the mixture.

Acylative Dynamic Kinetic Resolution of Configurationally Labile Planar Chiral Paracyclophanols

Further investigation considered that increasing the ansa‐chain length would allow starting material enantiomerization to occur on a timescale compatible with enantioselective acylation, facilitating an acylative DKR process (Table 2). This process was predicated on the increased steric encumbrance of the ester effectively increasing the barrier to enantiomerization under the reaction conditions. Using paracyclophanol 10 with a 14‐membered ansa‐chain as a model system, screening for the potential DKR process was followed. Using 10 mol% of the chiral isothiourea catalyst (2S,3R)‐HyperBTM 3 and isobutyric anhydride as the acyl source in toluene with i Pr2NEt as the co‐base led to effective acylation but poor selectivity (96% yield, 63:37 er, entry 1, Table 1). Using isothiourea catalyst (R)‐BTM 4 under these conditions led to significantly increased selectivity (96% yield, 96:4 er, entry 2). Using (R)‐BTM 4, variation in solvent was tested (entries 3–5), with CHCl3 and Et2O giving reduced but acceptable selectivity and MeCN leading to significantly reduced product enantiocontrol (54:46 er). Variation of the base was also trialled, with Na2CO3, quinaldine, 2,6‐lutidine, and 1,4‐diazabicylo[2.2.2]octane (DABCO) all leading to good to excellent product enantiocontrol but reduced product yields (entries 6–9). As the use of i Pr2NEt in toluene led to optimal balance between yield and enantiocontrol, reduction in catalyst loading to 5 and 2.5 mol% using this combination was also tested (entries 10 and 11). While good conversion and high product er were observed using 2.5 mol% catalyst, the optimal reaction conditions were considered to use 5 mol% catalyst, leading to 11 in 92% yield and 97:3 er. Under these reaction conditions, the use of isobutyryl chloride as acylating agent also proved successful, giving (R P)‐11 in 82% yield and 92:8 er (entry 12). The use of propionic and benzoic anhydrides also worked well, giving the corresponding esters in good yields and enantioselectivity (88% yield, 92:8 er; 83% yield, 97:3 er, respectively; see SI for further information).

Table 2.

Optimisation of Acylative Dynamic Kinetic Resolution Process.

graphic file with name ANIE-64-e202507126-g007.jpg
Entry Catalyst (mol%) Base Solvent Yield a) er b)
1 3 (10) i Pr2NEt PhMe 96 63:37
2 4 (10) i Pr2NEt PhMe 96 96:4
3 4 (10) i Pr2NEt CHCl3 92 88:12
4 4 (10) i Pr2NEt Et2O 80 93:7
5 4 (10) i Pr2NEt MeCN 92 54:46
6 4 (10) Na2CO3 PhMe 81 95:5
7 4 (10) quinaldine PhMe 78 98:2
8 4 (10) 2,6‐lutidine PhMe 80 97:3
9 4 (10) DABCO PhMe 85 93:7
10 4 (5) i Pr2NEt PhMe 92 97:3
11 4 (2.5) i Pr2NEt PhMe 87 96:4
12 c) 4 (5) i Pr2NEt PhMe 82 92:8
a)

Isolated yield.

b)

Measured by HPLC analysis on a chiral stationary phase.

c)

Isobutyryl chloride used as acylating agent.

Under the developed DKR conditions, the scope and limitations of this process were identified. With a 14‐membered ansa‐chain, variation of the R1‐substituent was probed (Scheme 2a). Incorporation of a bromine substituent was tolerated, giving 12 in 96% yield and 93:7 er. The incorporation of a vinyl substituent was also tested, giving 13 with excellent stereoselectivity (88%, 95:5 er) with the reaction conditions requiring a N2 atmosphere to avoid competitive oxidation of the paracyclophanol starting material to the quinone (see SI for further information). The incorporation of aryl and heteroaryl substituents at R1 was extensively tested, with the incorporation of electron‐rich 4‐MeOC6H4 and electron‐deficient 4‐F3CC6H4 substituents tolerated, giving 14 and 15 in good yield and selectivity (94% yield, 97:3 er and 87% yield, 97:3 er, respectively). Incorporation of a 2‐MeOC6H4 substituent gave 16 in 77% yield (96:4 er). The incorporation of 1‐ and 2‐naphthyl substituents led to 17 and 18 with excellent stereocontrol (90% yield, 95:5 er and 88% yield, 97:3 er, respectively), although for optimal yield and selectivity, 17 had to be generated under N2 to avoid competitive paracyclophanol oxidation. Rotamers for ester 17 were observed on the NMR time scale at 20 °C, but product er could be assessed by HPLC at 30 °C (see SI for details), emphasising the dynamic complexity of this molecular class.

Heteroaromatic substituent variation was also trialled, with 3‐pyridyl, 2‐furyl, and 3‐thienyl 1921 generated with excellent stereoselectivity (81% yield, 97:3 er;93% yield, 96:4 er; 89% yield, 97:3 er, respectively). The absolute configuration within 2‐furyl derivative 20 was unambiguously assigned as (R P) by single crystal X‐ray diffraction,[ 139 ] with all other structures assigned by analogy. The functionalised N‐Boc‐protected indole variant was also tolerated, giving 22 with reduced stereocontrol (89%, 85:15 er), while the incorporation of a pyrene substituent gave 23 in 93% yield (96:4 er). Similarly to 17, rotamers were also observed for 23 on the NMR time scale at 20 °C but not via HPLC at 30 °C. The incorporation of a naphthoquinol substituent derivative was also tested, giving 24 with excellent stereoselectivity (95%, 98:2 er), with a protective N2 atmosphere again required to minimise alcohol oxidation and achieve high product yield. The incorporation of an alkyl R1‐substituent was also explored, giving n Bu substituted ester 25 with excellent enantioselectivity (87% yield, 96:4 er). Maintaining the length of the ansa‐chain but incorporating two oxygen atoms within the linkage was also tolerated, giving 26 in 91% yield and 97:3 er. Interestingly, the paracyclophanol precursor to 26 was not resolved at 30 °C, consistent with enantiomerization being faster than the HPLC timescale. As a comparison, the corresponding starting material to 12 bearing an all hydrocarbon CH2 linker showed enantiomer interconversion through dynamic HPLC at 30 °C, consistent with enantiomerization occurring at the HPLC timescale. This emphasises the importance of chain constituents with regard to conformational flexibility and configurational stability. Further variation probed the effect of extension to the ansa‐chain length (from 15 to 18 atoms) as well as the incorporation of amide linkages within the chain (Scheme 2b). Chain extension to a 15‐membered ansa‐chain with the inclusion of either a bromo‐ or phenyl substituent proved successful, giving 27 (88% yield, 96:4 er) and 28 (88% yield, 98:2 er), respectively. Notably, a further single carbon extension to give a 16‐membered ansa‐chain showed that incorporation of a bromo‐substituent gave product 29 in 92% yield that could not be resolved on the HPLC timescale, consistent with configurational instability as observed in other literature examples.[ 76 , 81 , 104 , 105 , 109 , 111 ] However, with a 16‐membered ansa‐chain chain length and the incorporation of a phenyl substituent, effective DKR was observed, giving ester 30 in 86% yield and 98:2 er. The incorporation of amide linkages within a 16‐membered ansa‐chain length was probed, with a bromo‐substituent giving ester product 31. Notably, ester 31 showed enantiomer interconversion through dynamic HPLC, in contrast to that observed for 29 (only a single broad peak displayed, consistent with enantiomerization being faster than the HPLC timescale) despite containing the same ansa‐chain length and Br substituent. This is consistent with an increased barrier to rotation and enantiomerization for 31 over 29, consistent with the inclusion of partial double bond character increasing the conformational rigidity of the ansa‐chain (k rac = 3.92 × 10−3 s−1, ΔG303 = 21.9 kcal mol−1). With R1 = phenyl effective acylative DKR gave 32 in 93% yield and 90:10 er, while the incorporation of a catechol‐containing linkage gave 33 in 83% yield but moderate enantioselectivity (68:32 er). Further chain extension to the incorporation of 17‐ and 18‐membered ansa‐chains with a R1 phenyl substituent also showed effective DKR, generating 34 and 35 with high stereoselectivity (88% yield, 97:3 er and 87% yield, 96:4 er, respectively). The configurational stability of a range of paracyclophanol starting materials with a 14‐membered ansa‐chain were assessed using dynamic HPLC with the corresponding phenols of esters 1123 giving krac values in the range of 0.78–1.95 × 10−3 s−1, equating to ΔG303 = 22.4–22.9 kcal mol−1 (see SI for full details).[ 136 ] Notably, the incorporation of a naphthoquinol substituent derivative within 36 led to increased krac (5.71 × 10−3 s−1, ΔG303 = 21.4 kcal mol−1). Interestingly, for the ester product (R p)‐12 with a 14‐membered ansa‐chain, no enantiomerization was observed after heating in toluene at 100 °C for 2 days, indicating that the rotational barrier within 12 is sufficiently large to prevent racemization. Increasing the ansa‐chain to a 15‐atom linkage as within 27 led to enantiomerization upon heating in toluene at 100 °C, consistent with krac = 4.4 × 10−5 s−1, ΔG373 = 30.3 kcal mol−1.

Scheme 2.

Scheme 2

All quoted yields are isolated yields; all ers determined by HPLC analysis on a chiral stationary phase. a) Reaction performed under an N2 atmosphere, b) Rotamers were observed for 17 and 23 by 1H NMR spectroscopy at RT in CDCl3 and were confirmed by 1D‐NOESY; product er was assessed by HPLC analysis at 30 °C (see SI for further information). c) Enantiomers were not resolved by HPLC at 30 °C due to fast interconversion within the HPLC timescale. d) Dynamic HPLC observed consistent with enantiomerization within the HPLC timescale (k rac = 3.92 × 10−3 s−1, ΔG303 = 21.9 kcal mol−1).

A postulated mechanistic scheme for this acylative DKR process is indicated in Scheme 3. Acylation of the isothiourea (R)‐BTM 4 with isobutyric anhydride generates an intermediate acyl isothiouronium carboxylate ion pair 37. For the configurationally labile macrocyclic phenols with 14 to 18‐membered ansa‐chains, substrate enantiomerization is fast with respect to acylation, resulting in selective DKR upon acylation. Following the established model developed in previous KR work by ourselves and others,[ 134 , 140 , 141 , 142 , 143 , 144 , 145 , 146 , 147 , 148 , 149 , 150 , 151 , 152 ] preferential reaction of this acyl isothiouronium intermediate with the (R P)‐enantiomer of the paracyclophanol in the stereodetermining step will preferentially generate the enantioenriched ester products. Subsequent reaction of 38 with i Pr2NEt regenerates the free isothiourea BTM catalyst.

Scheme 3.

Scheme 3

Plausible mechanism for the isothiourea‐catalysed acylative (dynamic) kinetic resolution of paracyclophanols.

By analogy to previous computational studies, the observed selectivity in this acylation can be rationalised using the proposed transition state assembly 39. This is predicated upon the inclusion of a 1,5‐chalcogen bond (nO → σ*S‐C) O•••S interaction between the acyl oxygen and the isothiourea catalyst sulphur that acts as a conformational lock.[ 153 , 154 , 155 ] The isobutyrate counterion deprotonates the phenol, activating it to acylation, while participating in non‐classical H‐bonding to the acylated catalyst's benzylic hydrogen.[ 143 , 144 , 156 , 157 , 158 , 159 , 160 ] To deliver high enantioselectivity, a donor substrate motif is needed to promote enantiorecognition through interaction with the positively charged acylated isothiouronium intermediate 38.[ 70 ] Recognised enantiorecognition motifs in isothiourea‐catalyzed acylations include aryl,[ 161 , 162 , 163 , 164 , 165 ] heteroaryl,[ 141 ] alkenyl,[ 163 ] alkynyl,[ 164 ] heteroatom,[ 151 ] C═O,[ 145 , 166 ] CF2,[ 149 ] and P═O substituents.[ 146 ] Utilising the O‐atom adjacent to the phenol within the cyclophane in this capacity (blue dotted line) directs the ansa‐chain away from the stereodirecting unit of the acylated catalyst, leading to the observed selectivity.

Conclusion

In this manuscript, an effective isothiourea [(R)‐BTM)] catalysed acylative kinetic (KR) and dynamic kinetic resolution (DKR) approach that leads to the efficient synthesis of a range of planar chiral paracyclophanols with excellent levels of enantioselectivity is demonstrated. Efficient KR of stable planar chiral macrocyclic paracyclophanols with 12‐ and 13‐membered ansa‐chains is demonstrated (6 examples, s = up to 50). Extension of the ansa‐chain to include 14 to 18‐membered substituted substrates allows their effective acylative DKR, generating the desired products with excellent enantioselectivity (25 examples, up to 95% yield and 98:2 er). In a wider context, the configurational lability of the starting materials and products has been systematically evaluated, with the effect of ansa‐chain length and constitution investigated. Furthermore, esterification of the paracyclophanol starting material leads to a significant increase in the barrier to enantiomerization resulting in enhanced configurational stability of the ester products. The simplicity of this synthetic approach significantly broadens the methods available of the preparation of these valuable materials. The further application of this methodology to alternative planar chiral substrates and bioactive natural products is currently underway within our laboratory.

Supporting Information

The authors have cited additional references within the Supporting Information.[ 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 , 186 , 187 , 188 , 189 , 190 ]

Conflict of Interests

The authors declare no conflict of interest.

Supporting information

Supporting Information

Supporting Information

Acknowledgements

A.D.S. and K.K. thank the EPSRC Programme Grant “Boron: Beyond the Reagent” (EP/W007517) for support. To meet institutional and research funder open access requirements, any accepted manuscript arising shall be open access under a Creative Commons Attribution (CC‐BY) reuse licence with zero embargo.

Zhou Z., Kasten K., McKay A. P., Cordes D. B., Smith A. D., Angew. Chem. Int. Ed.. 2025, 64, e202507126. 10.1002/anie.202507126

Data Availability Statement

The research data supporting this publication can be accessed from “Isothiourea‐Catalysed Acylative Kinetic and Dynamic Resolution of Planar Chiral Macrocycles”. Pure ID: 316 046 332. University of St Andrews Research Portal: https://doi.org/10.17630/70b47d2f‐941b‐40b6‐9645‐036d99456577.

References

  • 1. Powell W. H., Pure Appl. Chem. 1998, 70, 1513–1545. [Google Scholar]
  • 2. Favre H. A., Hellwinkel D., Powell W. H., Smith H. A. J., Tsay S. S.‐C., Pure Appl. Chem. 2002, 74, 809–834. [Google Scholar]
  • 3. Martí‐Centelles V., Pandey M. D., Burguete M. I., Luis S. V., Chem. Rev. 2015, 115, 8736–8834. [DOI] [PubMed] [Google Scholar]
  • 4. Kotha S., Shirbhate M. E., Waghule G. T., Beilstein J. Org. Chem. 2015, 11, 1274–1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Tanaka K., Bull. Chem. Soc. Jpn. 2018, 91, 187–194. [Google Scholar]
  • 6. Hassan Z., Spuling E., Knoll D. M., Lahann J., Bräse S., Chem. Soc. Rev. 2018, 47, 6947–6963. [DOI] [PubMed] [Google Scholar]
  • 7. Zhang X., Lu G., Sun M., Mahankali M., Ma Y., Zhang M., Hua W., Hu Y., Wang Q., Chen J., He G., Qi X., Shen W., Liu P., Chen G., Nat. Chem. 2018, 10, 540–548. [DOI] [PubMed] [Google Scholar]
  • 8. Zhao P., Song C., in Studies in Natural Products Chemistry, Vol. 55, (Ed: Atta ur R.), Elsevier, Amsterdam, Netherlands: 2018, pp. 73–110. [Google Scholar]
  • 9. Thuan N. H., An T. T., Shrestha A., Canh N. X., Sohng J. K., Dhakal D., Front. Chem. 2019, 7, 1–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Hassan Z., Spuling E., Knoll D. M., Bräse S., Angew. Chem. Int. Ed. 2020, 59, 2156–2170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Ohmori K., Suzuki K., Synlett 2022, 33, 429–439. [Google Scholar]
  • 12. Tang S., Vincent G., Chem. Eur. J. 2021, 27, 2612–2622. [DOI] [PubMed] [Google Scholar]
  • 13. Wang Y., Joullié M. M., Chem. Rec. 2021, 21, 906–923. [DOI] [PubMed] [Google Scholar]
  • 14. Yang P., Širvinskas M. J., Li B., Heller N. W., Rong H., He G., Yudin A. K., Chen G., J. Am. Chem. Soc. 2023, 145, 13968–13978. [DOI] [PubMed] [Google Scholar]
  • 15. Dong Z., Li J., Zhao C., Eur. J. Org. Chem. 2024, 27, e202400841. [Google Scholar]
  • 16. Yang G., Wang J., Angew. Chem. Int. Ed. 2024, 63, e202412805. [Google Scholar]
  • 17. Zhao Y.‐H., Zhu D., Chen Z.‐M., ChemCatChem 2024, 16, e202401312. [Google Scholar]
  • 18. Cram D. J., Cram J. M., Acc. Chem. Res. 1971, 4, 204–213. [Google Scholar]
  • 19. Liu Z., Nalluri S. K. M., Stoddart J. F., Chem. Soc. Rev. 2017, 46, 2459–2478. [DOI] [PubMed] [Google Scholar]
  • 20. Firme C. L., Araújo D. M., Comput. Theor. Chem. 2018, 1135, 18–27. [Google Scholar]
  • 21. López R., Palomo C., Angew. Chem. Int. Ed. 2022, 61, e202113504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Nanudorn P., Thiengmag S., Biermann F., Erkoc P., Dirnberger S. D., Phan T. N., Fürst R., Ueoka R., Helfrich E. J. N., Angew. Chem. Int. Ed. 2022, 61, e202208361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.For examples of planar chiral ferrocene‐containing catalysts see references 23–25: Dai L.‐X., Tu T., You S.‐L., Deng W.‐P., Hou X.‐L., Acc. Chem. Res. 2003, 36, 659–667. [DOI] [PubMed] [Google Scholar]
  • 24. Yoshida K., Yasue R., Chem. Eur. J. 2018, 24, 18575–18586. [DOI] [PubMed] [Google Scholar]
  • 25. Dai L., Zhao L., Xu D., Yang C., Zhang X.‐K., Molecules 2024, 29, 968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.For examples of planar chiral cyclophane‐containing catalysts see references 26 and 27: Focken T., Raabe G., Bolm C., Tetrahedron Asymmetry 2004, 15, 1693–1706. [Google Scholar]
  • 27. Fu G. C., Acc. Chem. Res. 2004, 37, 542–547. [DOI] [PubMed] [Google Scholar]
  • 28.For an example of planar chiral isothiourea catalyst see: Yuan S., Liao C., Zheng W.‐H., Org. Lett. 2021, 23, 4142–4146. [DOI] [PubMed] [Google Scholar]
  • 29. Ramaiah D., Neelakandan P. P., Nair A. K., Avirah R. R., Chem. Soc. Rev. 2010, 39, 4158. [DOI] [PubMed] [Google Scholar]
  • 30. Gulder T., Baran P. S., Nat. Prod. Rep. 2012, 29, 899. [DOI] [PubMed] [Google Scholar]
  • 31. Nguyen T. Q. N., Tooh Y. W., Sugiyama R., Nguyen T. P. D., Purushothaman M., Leow L. C., Hanif K., Yong R. H. S., Agatha I., Winnerdy F. R., Gugger M., Phan A. T., Morinaka B. I., Nat. Chem. 2020, 12, 1042–1053. [DOI] [PubMed] [Google Scholar]
  • 32. Swain J. A., Walker S. R., Calvert M. B., Brimble M. A., Nat. Prod. Rep. 2022, 39, 410–443. [DOI] [PubMed] [Google Scholar]
  • 33. Schramma K. R., Bushin L. B., Seyedsayamdost M. R., Nat. Chem. 2015, 7, 431–437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Glunz P. W., Mueller L., Cheney D. L., Ladziata V., Zou Y., Wurtz N. R., Wei A., Wong P. C., Wexler R. R., Priestley E. S., J. Med. Chem. 2016, 59, 4007–4018. [DOI] [PubMed] [Google Scholar]
  • 35. Glunz P. W., Bioorg. Med. Chem. Lett. 2018, 28, 53–60. [DOI] [PubMed] [Google Scholar]
  • 36. Kaur H., Jakob R. P., Marzinek J. K., Green R., Imai Y., Bolla J. R., Agustoni E., Robinson C. V., Bond P. J., Lewis K., Maier T., Hiller S., Nature 2021, 593, 125–129. [DOI] [PubMed] [Google Scholar]
  • 37. Yao G., Kosol S., Wenz M. T., Irran E., Keller B. G., Trapp O., Süssmuth R. D., Nat. Commun. 2022, 13, 6488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.For Angustatin see: Doan H. D., Rugen C., Golz C., Alcarazo M., Org. Lett. 2023, 25, 7181–7185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.For Cavicularin see references 39–43: Toyota M., Yoshida T., Kan Y., Takaoka S., Asakawa Y., Tetrahedron Lett. 1996, 37, 4745–4748. [Google Scholar]
  • 40. Harrowven D. C., Woodcock T., Howes P. D., Angew. Chem. Int. Ed. 2005, 44, 3899–3901. [DOI] [PubMed] [Google Scholar]
  • 41. Harada K., Makino K., Shima N., Okuyama H., Esumi T., Kubo M., Hioki H., Asakawa Y., Fukuyama Y., Tetrahedron 2013, 69, 6959–6968. [Google Scholar]
  • 42. Takiguchi H., Ohmori K., Suzuki K., Angew. Chem. Int. Ed. 2013, 52, 10472–10476. [DOI] [PubMed] [Google Scholar]
  • 43. Zhao P., Beaudry C. M., Org. Lett. 2013, 15, 402–405. [DOI] [PubMed] [Google Scholar]
  • 44.For Chrysophaetins see references 44–46: Plaza A., Keffer J. L., Bifulco G., Lloyd J. R., Bewley C. A., J. Am. Chem. Soc. 2010, 132, 9069–9077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Fullenkamp C. R., Hsu Y.‐P., Quardokus E. M., Zhao G., Bewley C. A., VanNieuwenhze M., Sulikowski G. A., J. Am. Chem. Soc. 2020, 142, 16161–16166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Bewley C. A., Sulikowski G. A., Yang Z. J., Bifulco G., Cho H.‐M., Fullenkamp C. R., Acc. Chem. Res. 2023, 56, 414–424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.For Darobactin see references 47–49: Imai Y., Meyer K. J., Iinishi A., Favre‐Godal Q., Green R., Manuse S., Caboni M., Mori M., Niles S., Ghiglieri M., Honrao C., Ma X., Guo J. J., Makriyannis A., Linares‐Otoya L., Böhringer N., Wuisan Z. G., Kaur H., Wu R., Mateus A., Typas A., Savitski M. M., Espinoza J. L., O'Rourke A., Nelson K. E., Hiller S., Noinaj N., Schäberle T. F., D'Onofrio A., Lewis K., Nature 2019, 576, 459–464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Groß S., Panter F., Pogorevc D., Seyfert C. E., Deckarm S., Bader C. D., Herrmann J., Müller R., Chem. Sci. 2021, 12, 11882–11893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Dutta A., Sharma P., Dass D., Yarlagadda V., ACS Infect. Dis. 2024, 10, 2584–2599. [DOI] [PubMed] [Google Scholar]
  • 50.For Lorlatinib examples see references 50–53: Collier T. L., Normandin M. D., Stephenson N. A., Livni E., Liang S. H., Wooten D. W., Esfahani S. A., Stabin M. G., Mahmood U., Chen J., Wang W., Maresca K., Waterhouse R. N., El Fakhri G., Richardson P., Vasdev N., Nat. Commun. 2017, 8, 15761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Li B., Barnhart R. W., Hoffman J. E., Nematalla A., Raggon J., Richardson P., Sach N., Weaver J., Org. Process Res. Dev. 2018, 22, 1289–1293. [Google Scholar]
  • 52. Dugger R., Li B., Richardson P., J. Am. Chem. Soc. 2019, 1332, 27–59. [Google Scholar]
  • 53. Syed Y. Y., Drugs 2019, 79, 93–98. [DOI] [PubMed] [Google Scholar]
  • 54.For Pusilatin examples see references 54–58: Hashimoto T., Yoshida T., Kan Y., Takaoka S., Tori M., Asakawa Y., Tetrahedron Lett. 1994, 35, 909–910. [Google Scholar]
  • 55. Yoshida T., Hashimoto T., Takaoka S., Kan Y., Tori M., Asakawa Y., Pezzuto J. M., Pengsuparp T., Cordell G. A., Tetrahedron 1996, 52, 14487–14500. [Google Scholar]
  • 56. Yoshida T., Toyota M., Asakawa Y., J. Nat. Prod. 1997, 60, 145–147. [Google Scholar]
  • 57. Yamada T., Takiguchi H., Ohmori K., Suzuki K., Org. Lett. 2018, 20, 3579–3582. [DOI] [PubMed] [Google Scholar]
  • 58. Sen K., Khan M. I., Paul R., Ghoshal U., Asakawa Y., Plants 2023, 12, 4173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.For Tryptorubin examples see references 59–60: Wyche T. P., Ruzzini A. C., Schwab L., Currie C. R., Clardy J., J. Am. Chem. Soc. 2017, 139, 12899–12902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Reisberg S. H., Gao Y., Walker A. S., Helfrich E. J. N., Clardy J., Baran P. S., Science 2020, 367, 458–463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.For Vancomycin examples see references 61–68: Knox J. R., Pratt R. F., Antimicrob. Agents Chemother. 1990, 34, 1342–1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Evans D. A., Wood M. R., Trotter B. W., Richardson T. I., Barrow J. C., Katz J. L., Angew. Chem. Int. Ed. 1998, 37, 2700–2704. [DOI] [PubMed] [Google Scholar]
  • 63. van Wageningen A. M. A., Kirkpatrick P. N., Williams D. H., Harris B. R., Kershaw J. K., Lennard N. J., Jones M., Jones S. J. M., Solenberg P. J., Chem. Biol. 1998, 5, 155–162. [DOI] [PubMed] [Google Scholar]
  • 64. Nicolaou K. C., Mitchell H. J., Jain N. F., Winssinger N., Hughes R., Bando T., Angew. Chem. Int. Ed. 1999, 38, 240–244. [Google Scholar]
  • 65. Levine D. P., Clin. Infect. Dis. 2006, 42, S5–S12. [DOI] [PubMed] [Google Scholar]
  • 66. R. C. Moellering, Jr. , Clin. Infect. Dis. 2006, 42, S3–S4. [DOI] [PubMed] [Google Scholar]
  • 67. Moore M. J., Qu S., Tan C., Cai Y., Mogi Y., Jamin Keith D., Boger D. L., J. Am. Chem. Soc. 2020, 142, 16039–16050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Mühlberg E., Umstätter F., Kleist C., Domhan C., Mier W., Uhl P., Can. J. Microbiol. 2020, 66, 11–16. [DOI] [PubMed] [Google Scholar]
  • 69. Nam S.‐J., Gaudêncio S. P., Kauffman C. A., Jensen P. R., Kondratyuk T. P., Marler L. E., Pezzuto J. M., Fenical W., J. Nat. Prod. 2010, 73, 1080–1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Moss G. P., Smith P. A. S., Tavernier D., Pure Appl. Chem. 1995, 67, 1307–1375. [Google Scholar]
  • 71. Tanaka K., Hori T., Osaka T., Noguchi K., Hirano M., Org. Lett. 2007, 9, 4881–4884. [DOI] [PubMed] [Google Scholar]
  • 72. Hori T., Shibata Y., Tanaka K., Tetrahedron Asymmetry 2010, 21, 1303–1306. [Google Scholar]
  • 73. Groh M., Meidlinger D., Bringmann G., Speicher A., Org. Lett. 2012, 14, 4548–4551. [DOI] [PubMed] [Google Scholar]
  • 74. Salih M. Q., Beaudry C. M., Org. Lett. 2013, 15, 4540–4543. [DOI] [PubMed] [Google Scholar]
  • 75. Ding Q., Wang Q., He H., Cai Q., Org. Lett. 2017, 19, 1804–1807. [DOI] [PubMed] [Google Scholar]
  • 76. Gagnon C., Godin É., Minozzi C., Sosoe J., Pochet C., Collins S. K., Science 2020, 367, 917–921. [DOI] [PubMed] [Google Scholar]
  • 77. Yu S., Shen G., He F., Yang X., Chem. Commun. 2022, 58, 7293–7296. [DOI] [PubMed] [Google Scholar]
  • 78. Wei S., Chen L.‐Y., Li J., ACS Catal. 2023, 13, 7450–7456. [Google Scholar]
  • 79. Tan L., Sun M., Wang H., Wang J., Kim J., Lee M., Nat. Synth. 2023, 2, 1222–1231. [Google Scholar]
  • 80. Lv X., Su F., Long H., Lu F., Zeng Y., Liao M., Che F., Wu X., Chi Y. R., Nat. Commun. 2024, 15, 958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Wang J., Wang M., Wen Y., Teng P., Li C., Zhao C., Org. Lett. 2024, 26, 1040–1045. [DOI] [PubMed] [Google Scholar]
  • 82. Yang G., He Y., Wang T., Li Z., Wang J., Angew. Chem. Int. Ed. 2024, 63, e202316739. [DOI] [PubMed] [Google Scholar]
  • 83. Tanaka K., Sagae H., Toyoda K., Noguchi K., Hirano M., J. Am. Chem. Soc. 2007, 129, 1522–1523. [DOI] [PubMed] [Google Scholar]
  • 84. Tanaka K., Sagae H., Toyoda K., Hirano M., Tetrahedron 2008, 64, 831–846. [Google Scholar]
  • 85. Araki T., Noguchi K., Tanaka K., Angew. Chem. Int. Ed. 2013, 52, 5617–5621. [DOI] [PubMed] [Google Scholar]
  • 86. Nogami J., Tanaka Y., Sugiyama H., Uekusa H., Muranaka A., Uchiyama M., Tanaka K., J. Am. Chem. Soc. 2020, 142, 9834–9842. [DOI] [PubMed] [Google Scholar]
  • 87. Kawai Y., Nogami J., Nagashima Y., Tanaka K., Chem. Sci. 2023, 14, 3963–3972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Kanomata N., Nakata T., Angew. Chem. Int. Ed. 1997, 36, 1207–1211. [Google Scholar]
  • 89. Kanomata N., Nakata T., J. Am. Chem. Soc. 2000, 122, 4563–4568. [Google Scholar]
  • 90. Kanomata N., Ochiai Y., Tetrahedron Lett. 2001, 42, 1045–1048. [Google Scholar]
  • 91. Ueda T., Kanomata N., Machida H., Org. Lett. 2005, 7, 2365–2368. [DOI] [PubMed] [Google Scholar]
  • 92. Rowlands G. J., Org. Biomol. Chem. 2008, 6, 1527. [DOI] [PubMed] [Google Scholar]
  • 93. Mori K., Ohmori K., Suzuki K., Angew. Chem. Int. Ed. 2009, 48, 5638–5641. [DOI] [PubMed] [Google Scholar]
  • 94. Blangetti M., O'Shea D. F., Tetrahedron Lett. 2020, 61, 152492. [Google Scholar]
  • 95. Felder S., Wu S., Brom J., Micouin L., Benedetti E., Chirality 2021, 33, 506–527. [DOI] [PubMed] [Google Scholar]
  • 96. Blangetti M., Müller‐Bunz H., O'Shea D. F., Chem. Commun. 2013, 49, 6125. [DOI] [PubMed] [Google Scholar]
  • 97. Weinzierl D., Waser M., Helv. Chim. Acta 2021, 104, e2100073. [Google Scholar]
  • 98. Kanda K., Endo K., Shibata T., Org. Lett. 2010, 12, 1980–1983. [DOI] [PubMed] [Google Scholar]
  • 99. Shibata T., Fukai M., Sekine R., Hazra M., Kanyiva K. S., Synthesis 2016, 48, 2664–2670. [Google Scholar]
  • 100. An Y., Zhang X.‐Y., Ding Y.‐N., Li Y., Liu X.‐Y., Liang Y.‐M., Org. Lett. 2022, 24, 7294–7299. [DOI] [PubMed] [Google Scholar]
  • 101. Kanda K., Koike T., Endo K., Shibata T., Chem. Commun. 2009, 1870. [DOI] [PubMed] [Google Scholar]
  • 102. Mori K., Kishi H., Akiyama T., Synthesis 2017, 49, 365–370. [Google Scholar]
  • 103. Akagawa K., Higuchi J., Yoshikawa I., Kudo K., Eur. J. Org. Chem. 2018, 2018, 5278–5281. [Google Scholar]
  • 104. Wang D., Shao Y.‐B., Chen Y., Xue X.‐S., Yang X., Angew. Chem. Int. Ed. 2022, 61, e202201064. [DOI] [PubMed] [Google Scholar]
  • 105. Dong Z., Li J., Yao T., Zhao C., Angew. Chem. Int. Ed. 2023, 62, e202315603. [DOI] [PubMed] [Google Scholar]
  • 106. Li J., Zhao C., ACS Catal. 2023, 13, 14155–14162. [Google Scholar]
  • 107. Yu S., Bao H., Zhang D., Yang X., Nat. Commun. 2023, 14, 5239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Guan C.‐Y., Zou S., Luo C., Li Z.‐Y., Huang M., Huang L., Xiao X., Wei D., Wang M.‐C., Mei G.‐J., Nat. Commun. 2024, 15, 4580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Li J., Dong Z., Chen Y., Yang Z., Yan X., Wang M., Li C., Zhao C., Nat. Commun. 2024, 15, 2338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Liu Q., Teng K., Zhang Y., Lv Y., Chi Y. R., Jin Z., Angew. Chem. Int. Ed. 2024, 63, e202406386. [DOI] [PubMed] [Google Scholar]
  • 111. Zhu D., Mu T., Li Z.‐L., Luo H.‐Y., Cao R.‐F., Xue X.‐S., Chen Z.‐M., Angew. Chem. Int. Ed. 2024, 63, e202318625. [DOI] [PubMed] [Google Scholar]
  • 112. Huh S., Linne E., Estaque L., Pieters G., Devereux M., Baudoin O., Angew. Chem. Int. Ed. 2025, e202500653. [DOI] [PubMed] [Google Scholar]
  • 113. Li J., Dong Z., Liu S., Liu X., Zhao C., Chem. Eur. J. 2025, 31, e202404610. [DOI] [PubMed] [Google Scholar]
  • 114. Wu Z., Fang S., He J., Che J., Liu Z., Wei X., Su Z., Wang T., Angew. Chem. Int. Ed. 2025, 64, e202423702. [DOI] [PubMed] [Google Scholar]
  • 115. Weinzierl D., Waser M., Beilstein J. Org. Chem. 2021, 17, 800–804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Potter S. E., Sutherland I. O., J. Chem. Soc. Chem. Commun. 1972, 754. [Google Scholar]
  • 117. Bacchi A., Pelizzi G., J. Comput. Aided Mol. Des. 1999, 13, 385–396. [DOI] [PubMed] [Google Scholar]
  • 118. Sakamoto K., Oki M., Bull. Chem. Soc. Jpn. 1977, 50, 3388–3392. [Google Scholar]
  • 119. Keith J. M., Larrow J. F., Jacobsen E. N., Adv. Synth. Catal. 2001, 343, 5–26. [Google Scholar]
  • 120. Vedejs E., Jure M., Angew. Chem. Int. Ed. 2005, 44, 3974–4001. [DOI] [PubMed] [Google Scholar]
  • 121. Spivey A. C., Arseniyadis S., in Asymmetric Organocatalysis (Ed.: List B.), Springer; Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 233–280. [Google Scholar]
  • 122. De Rycke N., Couty F., David O. R. P., Chem. Eur. J. 2011, 17, 12852–12871. [DOI] [PubMed] [Google Scholar]
  • 123. Pellissier H., Adv. Synth. Catal. 2011, 353, 1613–1666. [Google Scholar]
  • 124.in Stereoselective Synthesis 3 , Vol. 3, 1st ed. ed., Georg Thieme Verlag KG, Stuttgart, 2011. [Google Scholar]
  • 125. Burns A. S., Wagner A. J., Fulton J. L., Young K., Zakarian A., Rychnovsky S. D., Org. Lett. 2017, 19, 2953–2956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Birman V. B., Aldrichim. Acta 2016, 49, 23–41. [Google Scholar]
  • 127. Merad J., Pons J.‐M., Chuzel O., Bressy C., Eur. J. Org. Chem. 2016, 2016, 5589–5610. [Google Scholar]
  • 128. Seliger J., Oestreich M., Chem. Eur. J. 2019, 25, 9358–9365. [DOI] [PubMed] [Google Scholar]
  • 129. Zhang T., Redden B. K., Wiskur S. L., Eur. J. Org. Chem. 2019, 2019, 4827–4831. [Google Scholar]
  • 130. Gong Z., Smith A., Farah A. O., Dickerson S. D., González‐Montiel G. A., Laddusaw J. M., Cheong P. H.‐Y., Wiskur S. L., J. Org. Chem. 2023, 88, 16898–16905. [DOI] [PubMed] [Google Scholar]
  • 131. Harrison C. J., Dickerson S. D., Gong Z., McGowan A. S., Vista J., Wiskur S. L., Eur. J. Org. Chem. 2024, 27, e202400641. [Google Scholar]
  • 132. Ding B., Xue Q., Jia S., Cheng H.‐G., Zhou Q., Synthesis 2022, 54, 1721–1732. [Google Scholar]
  • 133. Birman V. B., Li X., Org. Lett. 2006, 8, 1351–1354. [DOI] [PubMed] [Google Scholar]
  • 134. Munday E. S., Grove M. A., Feoktistova T., Brueckner A. C., Walden D. M., Young C. M., Slawin A. M. Z., Campbell A. D., Cheong P. H.‐Y., Smith A. D., Angew. Chem. Int. Ed. 2020, 59, 7897–7905. [DOI] [PubMed] [Google Scholar]
  • 135. Qu S., Greenhalgh M. D., Smith A. D., Chem. Eur. J. 2019, 25, 2816–2823. [DOI] [PubMed] [Google Scholar]
  • 136. Heeb J.‐P., Clayden J., Smith M. D., Armstrong R. J., Nat. Protoc. 2023, 18, 2745–2771. [DOI] [PubMed] [Google Scholar]
  • 137. Kagan H. B., Fiaud J. C., in Topics in Stereochemistry 1988, pp. 249–330. [Google Scholar]
  • 138. Greenhalgh M. D., Taylor J. E., Smith A. D., Tetrahedron 2018, 74, 5554–5560. [Google Scholar]
  • 139. The X‐ray structural data can be obtained from The Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/structures) as deposition number 2432400.
  • 140. Shiina I., Nakata K., Ono K., Onda Y.‐S., Itagaki M., J. Am. Chem. Soc. 2010, 132, 11629–11641. [DOI] [PubMed] [Google Scholar]
  • 141. Shiina I., Ono K., Nakata K., Chem. Lett. 2011, 40, 147–149. [Google Scholar]
  • 142. Nakata K., Sekiguchi A., Shiina I., Tetrahedron Asymmetry 2011, 22, 1610–1619. [Google Scholar]
  • 143. Liu P., Yang X., Birman V. B., Houk K. N., Org. Lett. 2012, 14, 3288–3291. [DOI] [PubMed] [Google Scholar]
  • 144. Yang X., Liu P., Houk K. N., Birman V. B., Angew. Chem. Int. Ed. 2012, 51, 9638–9642. [DOI] [PubMed] [Google Scholar]
  • 145. Nakata K., Gotoh K., Ono K., Futami K., Shiina I., Org. Lett. 2013, 15, 1170–1173. [DOI] [PubMed] [Google Scholar]
  • 146. Shiina I., Ono K., Nakahara T., Chem. Commun. 2013, 49, 10700. [DOI] [PubMed] [Google Scholar]
  • 147. Greenhalgh M. D., Smith S. M., Walden D. M., Taylor J. E., Brice Z., Robinson E. R. T., Fallan C., Cordes D. B., Slawin A. M. Z., Richardson H. C., Grove M. A., Cheong P. H.‐Y., Smith A. D., Angew. Chem. Int. Ed. 2018, 57, 3200–3206. [DOI] [PubMed] [Google Scholar]
  • 148. Murata T., Kawanishi T., Sekiguchi A., Ishikawa R., Ono K., Nakata K., Shiina I., Molecules 2018, 23, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149. Desrues T., Merad J., Andrei D., Pons J.‐M., Parrain J.‐L., Médebielle M., Quintard A., Bressy C., Angew. Chem. Int. Ed. 2021, 60, 24924–24929. [DOI] [PubMed] [Google Scholar]
  • 150. Smith S. M., Greenhalgh M. D., Feoktistova T., Walden D. M., Taylor J. E., Cordes D. B., Slawin A. M. Z., Cheong P. H.‐Y., Smith A. D., Eur. J. Org. Chem. 2022, 2022, e202101111. [Google Scholar]
  • 151. Agrawal S. K., Majhi P. K., Goodfellow A. S., Tak R. K., Cordes D. B., McKay A. P., Kasten K., Bühl M., Smith A. D., Angew. Chem. Int. Ed. 2024, 63, e202402909. [DOI] [PubMed] [Google Scholar]
  • 152. Zhu H., Manchado A., Omar Farah A., McKay A. P., Cordes D. B., Cheong P. H.‐Y., Kasten K., Smith A. D., Angew. Chem. Int. Ed. 2024, 63, e202402908. [DOI] [PubMed] [Google Scholar]
  • 153. Bleiholder C., Gleiter R., Werz D. B., Köppel H., Inorg. Chem. 2007, 46, 2249–2260. [DOI] [PubMed] [Google Scholar]
  • 154. Gleiter R., Haberhauer G., Werz D. B., Rominger F., Bleiholder C., Chem. Rev. 2018, 118, 2010–2041. [DOI] [PubMed] [Google Scholar]
  • 155. Kolb S., Oliver G. A., Werz D. B., Angew. Chem. Int. Ed. 2020, 59, 22306–22310. [DOI] [PubMed] [Google Scholar]
  • 156. Cannizzaro C. E., Houk K. N., J. Am. Chem. Soc. 2002, 124, 7163–7169. [DOI] [PubMed] [Google Scholar]
  • 157. Xu S., Held I., Kempf B., Mayr H., Steglich W., Zipse H., Chem. Eur. J. 2005, 11, 4751–4757. [DOI] [PubMed] [Google Scholar]
  • 158. Lutz V., Glatthaar J., Würtele C., Serafin M., Hausmann H., Schreiner P. R., Chem. Eur. J. 2009, 15, 8548–8557. [DOI] [PubMed] [Google Scholar]
  • 159. Larionov E., Mahesh M., Spivey A. C., Wei Y., Zipse H., J. Am. Chem. Soc. 2012, 134, 9390–9399. [DOI] [PubMed] [Google Scholar]
  • 160. Johnston R. C., Cheong P. H.‐Y., Org. Biomol. Chem. 2013, 11, 5057. [DOI] [PubMed] [Google Scholar]
  • 161. Xu Q., Zhou H., Geng X., Chen P.‐R., Tetrahedron 2009, 65, 2232–2238. [Google Scholar]
  • 162. Chen P.‐R., Zhang Y., Zhou H., Xu Q., Acta Chim. Sinica 2010, 68, 1431–1436. [Google Scholar]
  • 163. Belmessieri D., Joannesse C., Woods P. A., MacGregor C., Jones C., Campbell C. D., Johnston C. P., Duguet N., Concellón C., Bragg R. A., Smith A. D., Org. Biomol. Chem. 2011, 9, 559–570. [DOI] [PubMed] [Google Scholar]
  • 164. Li X., Jiang H., Uffman E. W., Guo L., Zhang Y., Yang X., Birman V. B., J. Org. Chem. 2012, 77, 1722–1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165. Musolino S. F., Ojo O. S., Westwood N. J., Taylor J. E., Smith A. D., Chem. Eur. J. 2016, 22, 18916–18922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166. Shiina I., Nakata K., Ono K., Sugimoto M., Sekiguchi A., Chem. Eur. J. 2010, 16, 167–172. [DOI] [PubMed] [Google Scholar]
  • 167. Burchat A. F., Chong J. M., Nielsen N., J. Organomet. Chem. 1997, 542, 281–283. [Google Scholar]
  • 168. Krasovskiy A., Knochel P., Synthesis 2006, 2006, 0890–0891. [Google Scholar]
  • 169. Pure Appl. Chem. 1974, 37, 445–462. [Google Scholar]
  • 170. Still W. C., Kahn M., Mitra A., J. Org. Chem. 1978, 43, 2923–2925. [Google Scholar]
  • 171. Moss G. P., Pure Appl. Chem. 1996, 68, 2193–2222. [Google Scholar]
  • 172. Bertie J. E., Pure Appl. Chem. 1998, 70, 2039–2045. [Google Scholar]
  • 173. Fulmer G. R., Miller A. J. M., Sherden N. H., Gottlieb H. E., Nudelman A., Stoltz B. M., Bercaw J. E., Goldberg K. I., Organomet. 2010, 29, 2176–2179. [Google Scholar]
  • 174. Pure Appl. Chem. 1972, 29, 625–628. [Google Scholar]
  • 175. Pure Appl. Chem. 1976, 45, 217–220. [Google Scholar]
  • 176. Todd J. F. J., Pure Appl. Chem. 1991, 63, 1541–1566. [Google Scholar]
  • 177. Brimble M. A., Black D. S., Hartshorn R., Rauter A. P., Sha C.‐K., Sydnes L. K., Pure Appl. Chem. 2012, 85, 307–313. [Google Scholar]
  • 178. Cahn R. S., Ingold C. K., Prelog V., Experientia 1956, 12, 81–94. [Google Scholar]
  • 179. Favre H. A., Powell W. H., in Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013, The Royal Society of Chemistry, Cambridge, UK 2013. [Google Scholar]
  • 180. Pure Appl. Chem. 1965, 11, 1–260. [PubMed] [Google Scholar]
  • 181. Choi J. I., An E. S., in WO2014104861A1, (Ed.: Organization W. P.), Korea Research Institute of Chemical Technology, Korea: 2014. [Google Scholar]
  • 182. Huang B., Santos S. M., Felix V., Beer P. D., Chem. Commun. 2008, 4610. [DOI] [PubMed] [Google Scholar]
  • 183. Yang P.‐Y., Zou H., Chao E., Sherwood L., Nunez V., Keeney M., Ghartey‐Tagoe E., Ding Z., Quirino H., Luo X., Welzel G., Chen G., Singh P., Woods A. K., Schultz P. G., Shen W., Proc. Nat. Acad. Sci. 2016, 113, 4140–4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184. Bulman Page P. C., Chan Y., Noor Armylisas A. H., Alahmdi M., Tetrahedron 2016, 72, 8406–8416. [Google Scholar]
  • 185. Belle C., Bougault C., Averbuch M.‐T., Durif A., Pierre J.‐L., Latour J.‐M., Pape L. L.e, J. Am. Chem. Soc. 2001, 123, 8053–8066. [DOI] [PubMed] [Google Scholar]
  • 186. Wijtmans M., Pratt D. A., Brinkhorst J., Serwa R., Valgimigli L., Pedulli G. F., Porter N. A., J. Org. Chem. 2004, 69, 9215–9223. [DOI] [PubMed] [Google Scholar]
  • 187. Abid M., Nouch R., Bradshaw T. D., Lewis W., Woodward S., Eur. J. Inorg. Chem. 2019, 2019, 2774–2780. [Google Scholar]
  • 188. Sheldrick G. M., Acta Crystallogr., Sect. A: Found. Adv. Crystallogr. 2015, 71, 3–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189. Sheldrick G. M., Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190. Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A., Puschmann H., J. Appl. Crystallogr. 2009, 42, 339–341. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supporting Information

Supporting Information

Data Availability Statement

The research data supporting this publication can be accessed from “Isothiourea‐Catalysed Acylative Kinetic and Dynamic Resolution of Planar Chiral Macrocycles”. Pure ID: 316 046 332. University of St Andrews Research Portal: https://doi.org/10.17630/70b47d2f‐941b‐40b6‐9645‐036d99456577.


Articles from Angewandte Chemie (International Ed. in English) are provided here courtesy of Wiley

RESOURCES