Abstract
Background
Alzheimer’s Disease (AD) is a highly prevalent form of age-related dementia. However, the underlying mechanisms of AD are largely unexplored.
Materials and Methods
In this study, bioinformatics analysis was performed to identify the possible therapeutic targets for AD. The GEO database was used to screen the Differentially Expressed Genes (DEGs). Enrichment analysis, protein-protein interaction network, and LASSO model analyses were successfully performed. Furthermore, an ELISA assay was also conducted to determine the expression of principal genes within the AD and control samples.
Results
A total of 416 differentially expressed genes (DEGs) were recognized based on the GSE48350 and GSE28146 datasets. The IL-1β and CXCR4 levels were markedly elevated in the AD samples relative to the control.
Conclusion
The IL-1β and CXCR4 genes were identified as principal AD-related genes that can be targeted for anti-AD therapy.
Keywords: Alzheimer’s disease, bioinformatics, differentially expressed genes, LASSO, biomarkers, protein-protein interaction
1. INTRODUCTION
Alzheimer’s Disease (AD) is a highly degenerative neurological disorder, in which the patient suffers from tremendous memory deficits [1-4]. Based on several epidemiological studies, AD currently affects over 47 million people worldwide [5-7]. The pathophysiology of AD (particularly amyloid plaques and neurofibrillary tangles) and its genetic drivers have been extensively explored recently [8-12]. However, thus far, the precise pathogenesis of AD remains unknown, and no effective prevention and/or treatment methods exist for AD [13]. Thus, specific therapeutic targets for AD are urgently needed.
The GEO (Gene Expression Omnibus) database consists of microarray, sequencing, and high-throughput functional genomic datasets [14-17]. Our goal was to search for hub genes and potential molecular mechanisms related to AD using bioinformatics. To that end, we retrieved AD versus normal tissue microarray data from the GEO databases and performed enrichment, protein-protein interaction (PPI) network, as well as LASSO regression analyses to screen for principal AD-related genes, which were verified using ELISA assay. Hence, we provided a basis for the generation of new highly efficacious anti-AD drugs that can specifically target the underlying mechanism(s) of AD pathogenesis.
2. MATERIALS AND METHODS
2.1. Microarray Information
We retrieved data from the GEO database (GSE48350 and GSE28146). The GSE28146 dataset comprised 22 AD CA1 tissues and 8 healthy control samples, whereas the GSE48350 database contained 80 AD CA1 tissues and 173 healthy control samples. Both datasets were based on the GPL570 platform.
2.2. Data Processing
The raw GSE48350 and GSE28146 datasets were preprocessed using R (version 4.0.2). P <0.05 and |log2 Fold Change| >1 were employed for confirmation of the DEGs in AD [18]. DEGs were further processed and plotted into volcano plots using ggplot2.
2.3. Enrichment Analysis of DEGs
Metascape [19-21] is a comprehensive software for gene annotation and enrichment analysis. Gene enrichment was analysed from GO [22-24] and KEGG [25-27] through the database to predict the potential biological value of DEGs.
2.4. Construction of the PPI Network
STRING (https://string-db.org/) was employed for the construction of the Protein-Protein Interaction (PPI) networks [28]. A confidence score of ≥0.4 was set as the threshold. Cytoscape software (version 3.7.2) and the CytoHubba plugin (version 0.1) were employed for the visualization and identification of the PPI network. The filtering algorithm was then used to determine the 20 highest-ranking hub genes based on Closeness, Stress, EcCentricity, and Degree. Lastly, the Venn diagram validated the significance of the principal genes in AD.
2.5. Construction of the LASSO Model
Using the newly identified principal genes, we constructed a model of Least Absolute Shrinkage and Selection Operator (LASSO) because of its strong predictive value using the glmnet package (http://www.bioconductor.org/packages/glmnet/) [29-31].
2.6. Animals
All animal protocols abided according to the National Institutes of Health (NIH) guidelines and received approval from the Nanchang University Animal Care and Use Committee. Ten adult (3 months) and ten elderly (18 months) male C57BL/6 mice were obtained from the Hunan Slake Jingda Laboratory Animal Co., Ltd, Hunan, China. They received a standard diet and free drinking water for over 4 weeks prior to the start of the experiments. After four weeks, the mice were anesthetized with 4% isoflurane, intubated, and the hippocampal tissues were extracted.
2.7. ELISA Assays
Hippocampal tissue lysates were homogenized in PBS and stored overnight at -20°C for the ELISA assay. The following day, the homogenates underwent centrifugation at 4,000 g for 10 min, and the supernatants were placed into a new tube. The following ELISA kits (IL-1β, CXCR4, and TAC1) were next employed for the measurement of protein levels in samples, as per kit directions (Jiangsu Meimian Industrial Co., Ltd, Jiangsu, China).
2.8. Statistical Analysis
All experiments were performed thrice and expressed as mean± SD. All statistical analyses were conducted with the Prism software (version 8, GraphPad). Inter-group comparisons were made with an unpaired t-test. P <0.05 was defined as significant.
3. RESULTS
3.1. DEG Analysis
Overall, the microarray data from 101 AD patients and 181 normal subjects were found suitable for this study. A total of 416 DEGs were recognized with criteria of P at <0.05 and |log2 Fold Change| >1 (Fig. 1).
Fig. (1).
Differentially Expressed Genes (DEGs) identified among Alzheimer’s disease (AD) and control samples. (a-b) Volcano plot of GSE48350 and GSE28146; Red dots denote upregulated genes; Green dots denote downregulated genes.
3.2. Enrichment Analysis of DEGs
The GO enrichment analysis was carried out using the Metascape software. GO functional analysis was categorized into 3 groups, namely BP, CC, and MF. Based on our analysis, DEGs were primarily enriched in the ‘Extracellular space’, ‘Calcium-dependent protein binding’, and ‘Respiratory chain complex II assembly’ (Table 1 and Fig. 2). DEGs pathway enrichment analysis with KEGG further revealed that it was primarily enriched in ‘staphylococcus aureus infection’, ‘hematopoietic cell lineage’, and ‘fat digestion and absorption’ (Table 2 and Fig. 3).
Table 1.
Significantly enriched GO terms in AD.
| Category | Term ID | Description | Log P |
|---|---|---|---|
| BP | GO:0034552 | Respiratory chain complex II assembly | -4.913 |
| GO:0009617 | Response to bacterium | -4.755 | |
| GO:0072503 | Cellular divalent inorganic cation homeostasis | -4.682 | |
| GO:0071305 | Cellular response to vitamin D | -4.229 | |
| GO:0007586 | Digestion | -3.720 | |
| GO:0042119 | Neutrophil activation | -3.661 | |
| GO:0009629 | Response to gravity | -3.615 | |
| GO:0031623 | Receptor internalization | -3.560 | |
| GO:0043122 | Regulation of I-kappa B Kinase/NF-kappa B signaling | -3.364 | |
| GO:0014072 | Response to isoquinoline alkaloid | -2.834 | |
| CC | GO:0031012 | Extracellular space | -8.732 |
| GO:0099513 | Polymeric cytoskeletal fiber | -4.250 | |
| GO:1904724 | Tertiary granule lumen | -3.831 | |
| GO:0030667 | Secretory granule membrance | -3.667 | |
| GO:0001533 | Cornified envelope | -3.311 | |
| MF | GO:0048306 | Calcium-dependent protein binding | -3.511 |
| GO:0048018 | Receptor ligand activity | -3.490 | |
| GO:0005184 | Neuropeptide hormone activity | -3.042 | |
| GO:0004859 | Phospholipase inhibitor activity | -3.001 | |
| GO:0004859 | Oxidoreductase activity, acting on NAD(P)H, oxygen as acceptor | -2.909 |
Fig. (2).

Biological functions based on Gene Ontology (GO) analysis of the Differentially Expressed Genes (DEGs).
Table 2.
Significantly enriched pathways in AD.
| Pathway ID | Name | Log P |
|---|---|---|
| ko05150 | Staphylococcus aureus infection | -5.829 |
| hsa04640 | Hematopoietic cell lineage | -4.048 |
| hsa04975 | Fat digestion and absorption | -3.503 |
| hsa05332 | Graft-versus-host disease | -3.451 |
| hsa05340 | Primary immunodeficiency | -2.695 |
| hsa04672 | Intestinal immune network for IgA production | -2.248 |
Fig. (3).

KEGG pathway analysis of Differentially Expressed Genes (DEGs).
3.3. PPI Network Generation
The PPI network was generated using the STRING database in Cytoscape version 3.7.2. Using the four algorithms (Closeness, Stress, EcCentricity, and degree), the 20 highest-ranking hub genes were recognized. Next, using the Venn diagram, common genes were extracted, including SFOS, IL-1β, CXCR4, TAC1, CDH1, and CLU (Fig. 4).
Fig. (4).

Common genes, based on closeness, stress, eccentricity, and degree algorithm.
3.4. LASSO Model
The construction of the LASSO model was based on the gene expression profile of the 6 common genes. Based on this model, 3 genes were identified according to their regression coefficients that were not equal to zero (Fig. 5).
Fig. (5).

The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis of hub genes.
3.5. Verification of Gene Expression
The ELISA assay was performed for the verification of the three principal gene expressions, namely, IL-1β, CXCR4, and TAC1, in adult and elderly male C57BL/6 mice. Based on our results, the IL-1β, CXCR4, and TAC1 expressions were markedly elevated in the AD group versus controls (Fig. 6).
Fig. (6).
Validation of the expressions of IL-1β, CXCR4, and TAC1 in aged versus adult subjects. (a-c) IL-1β, CXCR4, and TAC1 levels. Data expressed as mean ± SD (n ≥ 10). *P < 0.05 vs. adult subjects, **P < 0.01 vs. adult subjects, NS (no significant difference) vs. adult subjects.
4. DISCUSSION
Multiple studies demonstrated associations between numerous genes and AD [32, 33]. Nevertheless, early diagnosis and treatment of AD remains challenging. Hence, it is both urgent and necessary to develop targeted therapeutics that can either reduce or completely relieve AD symptoms. Herein, 416 DEGs were identified as potentially significant to AD pathogenesis. Enrichment analysis of DEGs demonstrated that they particularly contributed to extracellular space, respiratory chain complex II assembly, and calcium-dependent protein binding. Furthermore, three principal AD-specific genes were revealed, namely, IL-1β, CXCR4, and TAC1. Based on our ELISA assay, we further verified that the IL-1β and CXCR4 expressions were markedly upregulated in AD patients versus normal subjects.
Interleukin-1 (IL-1) family is a crucial mediator of innate immunity and contributes to the inflammatory response of most cells and organs [34-39]. Aberrant signaling by members of the IL-1R family is also associated with multiple autoinflammatory and degenerative diseases [40-46]. Additionally, interleukin-1β (IL-1β), a member of the IL-1 family, is also associated with chronic inflammation [47]. Prior reports suggest that IL-1β not only participates in AD development but also serves as a key mediator of neuroinflammation [48-55]. Griffin et al. [56] observed that IL-1β promotes β-amyloid precursor protein generation, resulting in the synthesis and deposition of β-amyloid plaques in the brains of AD patients. Likewise, Li et al. [57] also reported that IL-1β is involved in tau phosphorylation, which, in turn, participates in key pathogenic processes.
Chemokines are a large family of cytokines known for their small size (8–10 kDa). It can be divided into four categories, namely, CXC, CC, C, and CX3C, based on the positioning of the initial 2 cysteines [58-63]. CXCR4, on the other hand, is vital for cellular development, hematopoiesis, organogenesis, and vascularization [64-71]. Parachikova et al. [72] reported that CXCR4 signaling can greatly enhance learning and memory and may be essential to AD pathogenesis. Similarly, Bonham et al. [73] demonstrated that the expression of microglial genes was associated functionally with CXCR4 and is often dysregulated in neurodegenerative diseases. Finally, Gavriel et al. [74] revealed that suppression of the CXCR4 axis can markedly augment cognitive/memory abilities, attenuate neuroinflammation, and alleviate AD symptomologies.
There are several limitations to our study. Firstly, two key genes identified in this study have not been validated in a study population. Hence, additional large-scale verification investigations are warranted to fully explore the mechanism(s) underlying AD and identify relevant genes that can be targeted for anti-AD therapy.
CONCLUSION
In summary, the present study demonstrates that IL-1β and CXCR4 are closely related to the occurrence and progression of AD. These two genes and associated signalling are excellent potential candidates for targeted anti-AD therapy. Our study may provide novel insights into possible therapeutic targets for the treatment of AD.
ACKNOWLEDGEMENTS
Declared none.
LIST OF ABBREVIATIONS
- AD
Alzheimer’s Disease
- GEO
Gene Expression Omnibus
- DEGs
Differentially Expressed Genes
- PPI
Protein-Protein Interaction
- GO
Gene Ontology
- KEGG
Kyoto Encyclopedia of Genes and Genomes
- DAVID
Database for Annotation, Visualization, and Integrated Discovery
- BP
Biological Process
- CC
Cellular Component
- MF
Molecular Function
- FDR
False Discover Rate
- IL-1β
Interleukin-1β
- CXCR4
C-X-C Chemokine Receptor Type 4
AUTHORS’ CONTRIBUTIONS
It is hereby acknowledged that all authors have accepted responsibility for the manuscript's content and consented to its submission. They have meticulously reviewed all results and unanimously approved the final version of the manuscript.
ETHICS APPROVAL AND CONSENT TO PARTICIPATE
The animal study was approved by the Animal Care and Use Committee of Nanchang University (SYXK-2021 0004).
HUMAN AND ANIMAL RIGHTS
The reported experiments in accordance with the standards set forth in The US Public Health Service's “Policy on Humane Care and Use of Laboratory Animals,” and “Guide for the Care and Use of Laboratory Animals”. The ARRIVE guidelines were employed for reporting experiments involving live animals, promoting ethical research practices.
CONSENT FOR PUBLICATION
Not applicable.
AVAILABILITY OF DATA AND MATERIALS
The GSE48350 and GSE28146 datasets were retrieved from the GEO database.
FUNDING
None.
CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or otherwise.
REFERENCES
- 1.Laurent C., Dorothée G., Hunot S., Martin E., Monnet Y., Duchamp M., Dong Y., Légeron F.P., Leboucher A., Burnouf S., Faivre E., Carvalho K., Caillierez R., Zommer N., Demeyer D., Jouy N., Sazdovitch V., Schraen-Maschke S., Delarasse C., Buée L., Blum D. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140(1):184–200. doi: 10.1093/brain/aww270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Scheltens P., De Strooper B., Kivipelto M., Holstege H., Chételat G., Teunissen C.E., Cummings J., van der Flier W.M. Alzheimer’s disease. Lancet. 2021;397(10284):1577–1590. doi: 10.1016/S0140-6736(20)32205-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Bondi M.W., Edmonds E.C., Salmon D.P. Alzheimer’s Disease: Past, Present, and Future. J. Int. Neuropsychol. Soc. 2017;23(9-10):818–831. doi: 10.1017/S135561771700100X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Lane C.A., Hardy J., Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018;25(1):59–70. doi: 10.1111/ene.13439. [DOI] [PubMed] [Google Scholar]
- 5. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17(3):327–406. doi: 10.1002/alz.12328. [DOI] [PubMed] [Google Scholar]
- 6.Koronyo-Hamaoui M., Sheyn J., Hayden E.Y., Li S., Fuchs D.T., Regis G.C., Lopes D.H.J., Black K.L., Bernstein K.E., Teplow D.B., Fuchs S., Koronyo Y., Rentsendorj A. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain. 2020;143(1):336–358. doi: 10.1093/brain/awz364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019–1031. doi: 10.1016/S0140-6736(10)61349-9. [DOI] [PubMed] [Google Scholar]
- 8.Palmqvist S., Schöll M., Strandberg O., Mattsson N., Stomrud E., Zetterberg H., Blennow K., Landau S., Jagust W., Hansson O. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 2017;8(1):1214. doi: 10.1038/s41467-017-01150-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Scelsi M.A., Khan R.R., Lorenzi M., Christopher L., Greicius M.D., Schott J.M., Ourselin S., Altmann A. Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci. Brain. 2018;141(7):2167–2180. doi: 10.1093/brain/awy141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Knopman D.S., Amieva H., Petersen R.C., Chételat G., Holtzman D.M., Hyman B.T., Nixon R.A., Jones D.T. Alzheimer disease. Nat. Rev. Dis. Primers. 2021;7(1):33. doi: 10.1038/s41572-021-00269-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Rostagno A.A. Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2022;24(1):107. doi: 10.3390/ijms24010107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Briggs R., Kennelly S.P., O’Neill D. Drug treatments in Alzheimer’s disease. Clin. Med. 2016;16(3):247–253. doi: 10.7861/clinmedicine.16-3-247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Gu X., Wu H., Xie Y., Xu L., Liu X., Wang W. Caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1 in Alzheimer’s disease. Mol. Med. 2021;27(1):8. doi: 10.1186/s10020-021-00273-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Yu Y., Liu L., Hu L.L., Yu L.L., Li J.P., Rao J., Zhu L.J., Liang Q., Zhang R.W., Bao H.H., Cheng X.S. Potential therapeutic target genes for systemic lupus erythematosus: A bioinformatics analysis. Bioengineered. 2021;12(1):2810–2819. doi: 10.1080/21655979.2021.1939637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Barrett T., Troup D.B., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M., Marshall K.A., Phillippy K.H., Sherman P.M., Muertter R.N., Holko M., Ayanbule O., Yefanov A., Soboleva A. NCBI GEO: archive for functional genomics data sets--10 years on. Nucleic Acids Res. 2011;39(Database):D1005–D1010. doi: 10.1093/nar/gkq1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Chen G., Ramírez J.C., Deng N., Qiu X., Wu C., Zheng W.J., Wu H. 2019. 2019. Restructured GEO: Restructuring Gene Expression Omnibus. [DOI] [PMC free article] [PubMed]
- 17.Zhang J., Shen Y., Chen X., Jiang M., Yuan F., Xie S., Zhang J., Xu F. Integrative network-based analysis on multiple Gene Expression Omnibus datasets identifies novel immune molecular markers implicated in non-alcoholic steatohepatitis. Front. Endocrinol. 2023;14:1115890. doi: 10.3389/fendo.2023.1115890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Bolstad B.M., Irizarry R.A., Åstrand M., Speed T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–193. doi: 10.1093/bioinformatics/19.2.185. [DOI] [PubMed] [Google Scholar]
- 19.Tripathi S., Pohl M.O., Zhou Y., Rodriguez-Frandsen A., Wang G., Stein D.A., Moulton H.M., DeJesus P., Che J., Mulder L.C.F., Yángüez E., Andenmatten D., Pache L., Manicassamy B., Albrecht R.A., Gonzalez M.G., Nguyen Q., Brass A., Elledge S., White M., Shapira S., Hacohen N., Karlas A., Meyer T.F., Shales M., Gatorano A., Johnson J.R., Jang G., Johnson T., Verschueren E., Sanders D., Krogan N., Shaw M., König R., Stertz S., García-Sastre A., Chanda S.K. Meta- and orthogonal integration of infuenza “OMICs” data defnes a role for UBR4 in virus budding. Cell Host Microbe. 2015;18(6):723–735. doi: 10.1016/j.chom.2015.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Zu G., Sun K., Li L., Zu X., Han T., Huang H. Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus. Sci. Rep. 2021;11(1):22959. doi: 10.1038/s41598-021-02248-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G., The Gene Ontology Consortium Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000;25(1):25–29. doi: 10.1038/75556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Gene Ontology Consortium Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(Database issue):D1049–D1056. doi: 10.1093/nar/gku1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.The Gene Ontology Consortium The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–D338. doi: 10.1093/nar/gky1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D361. doi: 10.1093/nar/gkw1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Wang B., Fu C., Wei Y., Xu B., Yang R., Li C., Qiu M., Yin Y., Qin D. Ferroptosis-related biomarkers for Alzheimer’s disease: Identification by bioinformatic analysis in hippocampus. Front. Cell. Neurosci. 2022;16:1023947. doi: 10.3389/fncel.2022.1023947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi: 10.1093/nar/gky1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Tibshirani R. The lasso method for variable selection in the Cox model. Stat. Med. 1997;16(4):385–395. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- 30.He S., Dou L., Li X., Zhang Y. Review of bioinformatics in Azheimer’s Disease Research. Comput. Biol. Med. 2022;143:105269. doi: 10.1016/j.compbiomed.2022.105269. [DOI] [PubMed] [Google Scholar]
- 31.Li J., Zhang Y., Lu T., Liang R., Wu Z., Liu M., Qin L., Chen H., Yan X., Deng S., Zheng J., Liu Q. Identification of diagnostic genes for both Alzheimer’s disease and Metabolic syndrome by the machine learning algorithm. Front. Immunol. 2022;13:1037318. doi: 10.3389/fimmu.2022.1037318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Huang Y.W.A., Zhou B., Nabet A.M., Wernig M., Südhof T.C. Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer’s Disease Risk. J. Neurosci. 2019;39(37):7408–7427. doi: 10.1523/JNEUROSCI.2994-18.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Yan R., Vassar R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol. 2014;13(3):319–329. doi: 10.1016/S1474-4422(13)70276-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Dinarello C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009;27(1):519–550. doi: 10.1146/annurev.immunol.021908.132612. [DOI] [PubMed] [Google Scholar]
- 35.Halle A., Hornung V., Petzold G.C., Stewart C.R., Monks B.G., Reinheckel T., Fitzgerald K.A., Latz E., Moore K.J., Golenbock D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 2008;9(8):857–865. doi: 10.1038/ni.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Efferth T., Oesch F. The immunosuppressive activity of artemisinin‐type drugs towards inflammatory and autoimmune diseases. Med. Res. Rev. 2021;41(6):3023–3061. doi: 10.1002/med.21842. [DOI] [PubMed] [Google Scholar]
- 37.Tanzi R.E. Alzheimer’s disease risk and the Interleukin-1 genes. Ann. Neurol. 2000;47(3):283–285. doi: 10.1002/1531-8249(200003)47:3<283::AID-ANA2>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- 38.Griffin W.S.T., Mrak R.E. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J. Leukoc. Biol. 2002;72(2):233–238. doi: 10.1189/jlb.72.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Lopez-Castejon G. Control of the inflammasome by the ubiquitin system. FEBS J. 2020;287(1):11–26. doi: 10.1111/febs.15118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Garlanda C., Dinarello C.A., Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–1018. doi: 10.1016/j.immuni.2013.11.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Fregnan F., Muratori L., Simões A.R., Giacobini-Robecchi M.G., Raimondo S. Role of inflammatory cytokines in peripheral nerve injury. Neural Regen. Res. 2012;7(29):2259–2266. doi: 10.3969/j.issn.1673-5374.2012.29.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Kim R.Y., Pinkerton J.W., Essilfie A.T., Robertson A.A.B., Baines K.J., Brown A.C., Mayall J.R., Ali M.K., Starkey M.R., Hansbro N.G., Hirota J.A., Wood L.G., Simpson J.L., Knight D.A., Wark P.A., Gibson P.G., O’Neill L.A.J., Cooper M.A., Horvat J.C., Hansbro P.M. Role for NLRP3 Inflammasome–mediated, IL-1β–Dependent Responses in Severe, Steroid-Resistant Asthma. Am. J. Respir. Crit. Care Med. 2017;196(3):283–297. doi: 10.1164/rccm.201609-1830OC. [DOI] [PubMed] [Google Scholar]
- 43.Xu J., Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem. Sci. 2023;48(4):331–344. doi: 10.1016/j.tibs.2022.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Lopez-Castejon G., Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011;22(4):189–195. doi: 10.1016/j.cytogfr.2011.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Zhang J., Liu X., Wan C., Liu Y., Wang Y., Meng C., Zhang Y., Jiang C. NLRP3 inflammasome mediates M1 macrophage polarization and IL‐1β production in inflammatory root resorption. J. Clin. Periodontol. 2020;47(4):451–460. doi: 10.1111/jcpe.13258. [DOI] [PubMed] [Google Scholar]
- 46.Bent R., Moll L., Grabbe S., Bros M. Interleukin-1 Beta—A Friend or Foe in Malignancies? Int. J. Mol. Sci. 2018;19(8):2155. doi: 10.3390/ijms19082155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Dolinay T., Kim Y.S., Howrylak J., Hunninghake G.M., An C.H., Fredenburgh L., Massaro A.F., Rogers A., Gazourian L., Nakahira K., Haspel J.A., Landazury R., Eppanapally S., Christie J.D., Meyer N.J., Ware L.B., Christiani D.C., Ryter S.W., Baron R.M., Choi A.M.K. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am. J. Respir. Crit. Care Med. 2012;185(11):1225–1234. doi: 10.1164/rccm.201201-0003OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Flores J., Noël A., Foveau B., Beauchet O., LeBlanc A.C. Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat. Commun. 2020;11(1):4571. doi: 10.1038/s41467-020-18405-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Maphis N., Xu G., Kokiko-Cochran O.N., Jiang S., Cardona A., Ransohoff R.M., Lamb B.T., Bhaskar K. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138(6):1738–1755. doi: 10.1093/brain/awv081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Karpenko M.N., Vasilishina A.A., Gromova E.A., Muruzheva Z.M., Bernadotte A., Bernadotte A. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease. Cell. Immunol. 2018;327:77–82. doi: 10.1016/j.cellimm.2018.02.011. [DOI] [PubMed] [Google Scholar]
- 51.Griciuc A., Patel S., Federico A.N., Choi S.H., Innes B.J., Oram M.K., Cereghetti G., McGinty D., Anselmo A., Sadreyev R.I., Hickman S.E., El Khoury J., Colonna M., Tanzi R.E. TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer’s Disease. Neuron. 2019;103(5):820–835.e7. doi: 10.1016/j.neuron.2019.06.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Lopez-Rodriguez A.B., Hennessy E., Murray C.L., Nazmi A., Delaney H.J., Healy D., Fagan S.G., Rooney M., Stewart E., Lewis A., de Barra N., Scarry P., Riggs-Miller L., Boche D., Cunningham M.O., Cunningham C. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL‐1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement. 2021;17(10):1735–1755. doi: 10.1002/alz.12341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Sun X., Li L., Dong Q.X., Zhu J., Huang Y., Hou S., Yu X., Liu R. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J. Neuroinflammation. 2021;18(1):131. doi: 10.1186/s12974-021-02182-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Dhapola R., Hota S.S., Sarma P., Bhattacharyya A., Medhi B., Reddy D.H. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology. 2021;29(6):1669–1681. doi: 10.1007/s10787-021-00889-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Chen S., Liu H., Wang S., Jiang H., Gao L., Wang L., Teng L., Wang C., Wang D. The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-κB-p65 Signaling. Nutrients. 2022;14(7):1417. doi: 10.3390/nu14071417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Griffin W.S.T., Sheng J.G., Royston M.C., Gentleman S.M., McKenzie J.E., Graham D.I., Roberts G.W., Mrak R.E. Glial-neuronal interactions in Alzheimer’s disease: The potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol. 1998;8(1):65–72. doi: 10.1111/j.1750-3639.1998.tb00136.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Li Y., Liu L., Barger S.W., Griffin W.S.T. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 2003;23(5):1605–1611. doi: 10.1523/JNEUROSCI.23-05-01605.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Zlotnik A., Yoshie O. Chemokines. Immunity. 2000;12(2):121–127. doi: 10.1016/S1074-7613(00)80165-X. [DOI] [PubMed] [Google Scholar]
- 59.Harry G.J. Microglia during development and aging. Pharmacol. Ther. 2013;139(3):313–326. doi: 10.1016/j.pharmthera.2013.04.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.van der Vorst E.P.C., Döring Y., Weber C. Chemokines. Arterioscler. Thromb. Vasc. Biol. 2015;35(11):e52–e56. doi: 10.1161/ATVBAHA.115.306359. [DOI] [PubMed] [Google Scholar]
- 61.Vilgelm A.E., Richmond A. Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy. Front. Immunol. 2019;10:333. doi: 10.3389/fimmu.2019.00333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Miller M., Mayo K. Chemokines from a Structural Perspective. Int. J. Mol. Sci. 2017;18(10):2088. doi: 10.3390/ijms18102088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Thakur S., Dhapola R., Sarma P., Medhi B., Reddy D.H. Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation. 2023;46(1):1–17. doi: 10.1007/s10753-022-01721-1. [DOI] [PubMed] [Google Scholar]
- 64.Ghosh M.C., Baatar D., Collins G., Carter A., Indig F., Biragyn A., Taub D.D. Dexamethasone augments CXCR4-mediated signaling in resting human T cells via the activation of the Src kinase Lck. Blood. 2009;113(3):575–584. doi: 10.1182/blood-2008-04-151803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Tachibana K., Hirota S., Iizasa H., Yoshida H., Kawabata K., Kataoka Y., Kitamura Y., Matsushima K., Yoshida N., Nishikawa S., Kishimoto T., Nagasawa T. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998;393(6685):591–594. doi: 10.1038/31261. [DOI] [PubMed] [Google Scholar]
- 66.Nakata Y., Tomkowicz B., Gewirtz A.M., Ptasznik A. Integrin inhibition through Lyn-dependent cross talk from CXCR4 chemokine receptors in normal human CD34+ marrow cells. Blood. 2006;107(11):4234–4239. doi: 10.1182/blood-2005-08-3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Nengroo M.A., Khan M.A., Verma A., Datta D. Demystifying the CXCR4 conundrum in cancer biology: Beyond the surface signaling paradigm. Biochim. Biophys. Acta Rev. Cancer. 2022;1877(5):188790. doi: 10.1016/j.bbcan.2022.188790. [DOI] [PubMed] [Google Scholar]
- 68.Bianchi M.E., Mezzapelle R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front. Immunol. 2020;11:2109. doi: 10.3389/fimmu.2020.02109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Janssens R., Struyf S., Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev. 2018;44:51–68. doi: 10.1016/j.cytogfr.2018.10.004. [DOI] [PubMed] [Google Scholar]
- 70.Kawaguchi N., Zhang T.T., Nakanishi T. Involvement of CXCR4 in Normal and Abnormal Development. Cells. 2019;8(2):185. doi: 10.3390/cells8020185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.McQuade A., Kang Y.J., Hasselmann J., Jairaman A., Sotelo A., Coburn M., Shabestari S.K., Chadarevian J.P., Fote G., Tu C.H., Danhash E., Silva J., Martinez E., Cotman C., Prieto G.A., Thompson L.M., Steffan J.S., Smith I., Davtyan H., Cahalan M., Cho H., Blurton-Jones M. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease. Nat. Commun. 2020;11(1):5370. doi: 10.1038/s41467-020-19227-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Parachikova A., Cotman C.W. Reduced CXCL12/CXCR4 results in impaired learning and is downregulated in a mouse model of Alzheimer disease. Neurobiol. Dis. 2007;28(2):143–153. doi: 10.1016/j.nbd.2007.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Bonham L.W., Karch C.M., Fan C.C., Tan C., Geier E.G., Wang Y., Wen N., Broce I.J., Li Y., Barkovich M.J., Ferrari R., Hardy J., Momeni P., Höglinger G., Müller U., Hess C.P., Sugrue L.P., Dillon W.P., Schellenberg G.D., Miller B.L., Andreassen O.A., Dale A.M., Barkovich A.J., Yokoyama J.S., Desikan R.S., Ferrari R., Hernandez D.G., Nalls M.A., Rohrer J.D., Ramasamy A., Kwok J.B.J., Dobson-Stone C., Schofield P.R., Halliday G.M., Hodges J.R., Piguet O., Bartley L., Thompson E., Haan E., Hernández I., Ruiz A., Boada M., Borroni B., Padovani A., Cruchaga C., Cairns N.J., Benussi L., Binetti G., Ghidoni R., Forloni G., Albani D., Galimberti D., Fenoglio C., Serpente M., Scarpini E., Clarimón J., Lleó A., Blesa R., Waldö M.L., Nilsson K., Nilsson C., Mackenzie I.R.A., Hsiung G-Y.R., Mann D.M.A., Grafman J., Morris C.M., Attems J., Griffiths T.D., McKeith I.G., Thomas A.J., Pietrini P., Huey E.D., Wassermann E.M., Baborie A., Jaros E., Tierney M.C., Pastor P., Razquin C., Ortega-Cubero S., Alonso E., Perneczky R., Diehl-Schmid J., Alexopoulos P., Kurz A., Rainero I., Rubino E., Pinessi L., Rogaeva E., George-Hyslop P.S., Rossi G., Tagliavini F., Giaccone G., Rowe J.B., Schlachetzki J.C.M., Uphill J., Collinge J., Mead S., Danek A., Van Deerlin V.M., Grossman M., Trojanowski J.Q., van der Zee J., Cruts M., Van Broeckhoven C., Cappa S.F., Leber I., Hannequin D., Golfier V., Vercelletto M., Brice A., Nacmias B., Sorbi S., Bagnoli S., Piaceri I., Nielsen J.E., Hjermind L.E., Riemenschneider M., Mayhaus M., Ibach B., Gasparoni G., Pichler S., Gu W., Rossor M.N., Fox N.C., Warren J.D., Spillantini M.G., Morris H.R., Rizzu P., Heutink P., Snowden J.S., Rollinson S., Richardson A., Gerhard A., Bruni A.C., Maletta R., Frangipane F., Cupidi C., Bernardi L., Anfossi M., Gallo M., Conidi M.E., Smirne N., Rademakers R., Baker M., Dickson D.W., Graff-Radford N.R., Petersen R.C., Knopman D., Josephs K.A., Boeve B.F., Parisi J.E., Seeley W.W., Miller B.L., Karydas A.M., Rosen H., van Swieten J.C., Dopper E.G.P., Seelaar H., Pijnenburg Y.A.L., Scheltens P., Logroscino G., Capozzo R., Novelli V., Puca A.A., Franceschi M., Postiglione A., Milan G., Sorrentino P., Kristiansen M., Chiang H-H., Graff C., Pasquier F., Rollin A., Deramecourt V., Lebouvier T., Kapogiannis D., Ferrucci L., Pickering-Brown S., Singleton A.B., Hardy J., Momeni P., International FTD-Genomics Consortium (IFGC) International Parkinson’s Disease Genetics Consortium (IPDGC) International Genomics of Alzheimer’s Project (IGAP) CXCR4 involvement in neurodegenerative diseases. Transl. Psychiatry. 2018;8(1):73. doi: 10.1038/s41398-017-0049-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Gavriel Y., Rabinovich-Nikitin I., Ezra A., Barbiro B., Solomon B. Subcutaneous Administration of AMD3100 into Mice Models of Alzheimer’s Disease Ameliorated Cognitive Impairment, Reduced Neuroinflammation, and Improved Pathophysiological Markers. J. Alzheimers Dis. 2020;78(2):653–671. doi: 10.3233/JAD-200506. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Citations
- Chen G., Ramírez J.C., Deng N., Qiu X., Wu C., Zheng W.J., Wu H. 2019. 2019. Restructured GEO: Restructuring Gene Expression Omnibus. [DOI] [PMC free article] [PubMed]
Data Availability Statement
The GSE48350 and GSE28146 datasets were retrieved from the GEO database.


