Skip to main content
IUCrData logoLink to IUCrData
. 2025 Jul 8;10(Pt 7):x250598. doi: 10.1107/S241431462500598X

(Nitrito-κO)(nitro-κN)(nitrosyl-κN)bis­(tri­phenylphosphane-κP)rhodium(III)

Daniel R Albert a, Michael Gau b, Edward Rajaseelan a,*
Editor: S Bernèsc
PMCID: PMC12326464  PMID: 40777624

The title RhIII complex is a rare example of a mononuclear compound gathering nitrito, nitro and nitrosyl ligands.

Keywords: crystal structure, rhodium, nitrito, nitros­yl, nitro

Abstract

The structure of the title compound, [Rh(NO)(NO2)2(C18H15P)2] or [Rh(NO)(NO2)(ONO)(PPh3)2], has been determined by single-crystal X-ray diffraction. A previous report of the title compound showed it crystallized in a monoclinic space group [Rajaseelan et al. (1999). J. PA. Acad. Sci.73, 63–66; refcode SASTOW in the CSD]. However, it was unable to be refined because of severe disorder. In this study, two distinct crystals of the title compound were found showing the compound to be polymorphic. One of the crystals was unable to be resolved but was found to be in a monoclinic space group, as in the previously reported study. The other crystal was able to be refined and crystallizes in the triclinic space group P1. The refined structure consists of two discrete monomeric mol­ecules per unit cell. The mol­ecular geometry around rhodium is that of a distorted square pyramid, with nitro­gen of the nitro ligand, oxygen of the nitrito ligand and phospho­rus atoms of the phosphane ligands lying in the basal plane and the nitro­gen atom of the bent nitrosyl occupying the apical position. The nitrosyl ligand exhibits positional disorder whereas the nitro and nitrito ligands show disorder across coordination sites with the disorder modelled in a 0.91:0.09 ratio. Both intra­molecular C—H ⋯O (nitro and nitrito) and inter­molecular C—H ⋯N (nitrito) inter­actions are observed. There are no hydrogen-bonding inter­actions with the N or O atoms of the nitrosyl ligand.graphic file with name x-10-x250598-scheme1-3D1.jpg

Structure description

Nitrosyl is a versatile ligand and synthetic, structural, chemical reactivity, and spectroscopic studies of transition metal nitrosyl complexes are of inter­est due to the role of NO in biochemical systems and in coordination chemistry (Machura, 2005; Daniel & Gourlaouen, 2019). Nitrite coordinates to transition metals in different bonding modes. The different MNO2 isomers are characterized by distinct infrared bands, 15N-NMR chemical shifts, and crystal structures of these linkages (Feltham, 1989). Synthesis and structures of many rhodium nitrosyl and nitrite complexes have been reported (English et al., 1987; Cheung et al., 2007; Gaviglio et al., 2009; Singh et al., 2011; Vorobyeva et al., 2022). The title compound has previously been reported and characterized with the bonding modes of the NOx groups confirmed by the infrared spectra, 15N labelling studies, and multinuclear NMR spectra (Rajaseelan et al., 1999).

The title complex, [Rh(NO)(NO2)(ONO)(PPh3)2], consists of two well-separated monomeric structural units per unit cell. There is no crystallographically imposed twofold axis on the mol­ecule and the NOx ligands are disordered and refined with a ratio of 0.91:0.09 as shown in Fig. 1. The coordination sphere around rhodium, formed by nitrosyl, nitro, nitrito, and two tri­phenyl­phosphane ligands, results in a distorted square-pyramidal environment as shown in Fig. 2. The square pyramidal shape is supported by τ5 parameters (Addison et al., 1984) of both the main (τ5 = 0.078) and disordered (τ5 = 0.062) structures that are close to zero. The nitro­gen atom of the nitrosyl ligand which coordinates in a bent fashion, occupies the apical position. The Rh1—N1 [Rh1—N1*] distance is 1.938 (3) [1.93 (3)] Å and the Rh1—N1—O1 [Rh1—N1*—O1*] bond angle is 126.1 (2) [111 (2)]°. The two phosphane ligands occupy the sterically favoured trans positions in the basal plane. The Rh1—P1 and Rh1—P2 bond lengths are 2.4001 (6) and 2.3978 (6) Å, respectively, and the P2—Rh1—P1 bond angle is 173.609 (19)°. The nitrito (–ONO) ligand is in the endo-conformation with a Rh1—O2 [Rh1—O5*] bond length of 2.1105 (19) [2.09 (2)] Å, and a O2—N2—O3 [O5*—N3*—O4] bond angle of 114.1 (3) [116 (2)]°. The nitro­gen atom of the nitro (–NO2) group occupies the other position on the basal plane and is trans to the oxygen of the nitrito (–ONO) ligand. The Rh1—N3 [Rh1—N2*] bond length is 2.019 (2) [2.03 (3)] Å and the O5—N3—O4 [O2*—N2*—O3*] bond angle is 120.3 (2) [118 (3)]°, as expected for an sp2 hybridized nitro­gen atom.

Figure 1.

Figure 1

Mol­ecular structure of the title compound shown with displacement ellipsoids at the 50% probability level.

Figure 2.

Figure 2

A perspective view of the main component (91%) title compound displaying the distorted square-pyramidal coordination around Rh1 with the nitrosyl ligand in the apical position.

It has been proposed and supported by mol­ecular orbital calculations that the nitrosyl group bends in the direction of the strongest π-acceptor ligand coordinating in the basal plane (Hoffmann et al., 1974; Ibers & Mingos, 1971; Pierpont & Eisenberg, 1972). In Rh(NO)Cl2(PPh3)2 the nitrosyl ligand lies in the P—Rh—P plane (Goldberg et al., 1975). The NO2 ligand is a better π-acceptor than PPh3 (Comas-Vilà & Salvador, 2024) and in the title complex the nitrosyl ligand lies approximately in the O(nitrito)—Rh—N(nitro) plane. This is clearly indicated in Fig. 3 (major component) and Fig. 4 (minor disordered component). The dihedral angle formed by the Rh1/N1/O1 and the O2/Rh1/N3 planes is 25.3 (6)°, and similarly, the dihedral angle between the Rh1/N1*/O1* and N2*/Rh/O5* planes is 7 (6)°.

Figure 3.

Figure 3

A perspective view of the main component (91%) of the title compound showing the bent nitrosyl ligand oriented along the N—Rh—O plane.

Figure 4.

Figure 4

A perspective view of the minor disordered component (9%) of the title compound showing the bent nitrosyl ligand oriented along the N—Rh—O plane.

The packing diagram for the title compound is shown in Fig. 5. Both inter­molecular and intra­molecular non-classical hydrogen-bonding inter­actions are observed. All of the C—H⋯O hydrogen bonding inter­actions with the phenyl moieties and nitro and nitrito ligands are intra­molecular. Whereas all of the C—H⋯N hydrogen-bonding inter­actions between the phenyl moieties and the nitrito ligand are inter­molecular. No hydrogen-bonding inter­actions are observed with the nitrosyl ligand. All hydrogen-bonding inter­actions are summarized in Table 1 and shown as dotted green lines in Fig. 5.

Figure 5.

Figure 5

Crystal packing of the title compound viewed along the b-axis direction. Non-classical hydrogen-bonding inter­actions are shown as dotted green lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5 0.95 2.27 3.200 (3) 166
C2—H2⋯O5* 0.95 2.40 3.213 (19) 144
C18—H18⋯O4 0.95 2.34 3.130 (3) 140
C21—H21⋯N2i 0.95 2.44 3.328 (4) 155
C32—H32⋯O2 0.95 2.40 3.118 (3) 132
C32—H32⋯O2* 0.95 2.36 3.24 (2) 154
C33—H33⋯N3*ii 0.95 2.38 3.21 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Synthesis and crystallization

The tile compound was synthesized by the previously reported procedure (Rajaseelan et al., 1999). It was crystallized by slow diffusion of pentane into a CH2Cl2 solution. The complex was polymorphic with two distinct crystals recovered. Both crystals were dark green with one of them forming irregular shaped blocks and the other forming needle-like crystals. Both types of crystals had identical infrared spectra showing the presence of the nitrosyl, nitro, and nitrito ligands. The irregular shaped block crystal crystallizes in the monoclinic crystal system with large amount of disorder in the NOx groups, and its crystal structure did not refine in a satisfactory manner. Hence, the structural set-up of the irregular shaped block crystals remains an open question. The disorder in the NOx groups for the needle-like crystals, which solved in the triclinic PInline graphic space group, was very minimal and refined well. The structure of the needle-like crystals is reported in this article.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The nitrosyl ligand exhibits positional disorder whereas the nitro and nitrito ligands show disorder across coordination sites with the disorder modelled in a 0.91:0.09 ratio. All nitro and nitrito N—O bond lengths involving disordered parts were restrained to 1.25 (2) Å. In addition, for the minor part of the nitro ligand, the O—N—O bond angle was restrained to ∼120°, with an O⋯O bond distance restrained to 2.15 (4) Å. For the disordered nitrosyl ligand, the N—O bond length in the minor part was restrained to 1.15 (2) Å. The Uij components of all disordered atoms closer to each other than 2.0 Å were restrained to be similar, within a standard deviation of 0.002 A2 (Sheldrick, 2015b).

Table 2. Experimental details.

Crystal data
Chemical formula [Rh(NO)(NO2)2(C18H15P)2]
M r 749.48
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 100
a, b, c (Å) 10.2732 (2), 10.3317 (2), 18.1514 (4)
α, β, γ (°) 90.118 (2), 105.089 (2), 118.323 (2)
V3) 1619.50 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.60
Crystal size (mm) 0.17 × 0.1 × 0.03
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2005)
Tmin, Tmax 0.850, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 38997, 6535, 6126
R int 0.047
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.08
No. of reflections 6535
No. of parameters 487
No. of restraints 160
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −1.04

Computer programs: CrysAlis PRO (Rigaku OD, 2025), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462500598X/bh4097sup1.cif

x-10-x250598-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462500598X/bh4097Isup2.hkl

x-10-x250598-Isup2.hkl (519.3KB, hkl)

CCDC reference: 2469479

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

(Nitrito-κO)(nitro-κN)(nitrosyl-κN)bis(triphenylphosphane-κP)rhodium(III) . Crystal data

[Rh(NO)(NO2)2(C18H15P)2] Z = 2
Mr = 749.48 F(000) = 764
Triclinic, P1 Dx = 1.537 Mg m3
a = 10.2732 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 10.3317 (2) Å Cell parameters from 26769 reflections
c = 18.1514 (4) Å θ = 4.9–74.4°
α = 90.118 (2)° µ = 5.60 mm1
β = 105.089 (2)° T = 100 K
γ = 118.323 (2)° Needle, green
V = 1619.50 (6) Å3 0.17 × 0.1 × 0.03 mm

(Nitrito-κO)(nitro-κN)(nitrosyl-κN)bis(triphenylphosphane-κP)rhodium(III) . Data collection

Rigaku XtaLAB Synergy-S diffractometer 6126 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.047
ω scans θmax = 74.5°, θmin = 4.9°
Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2005) h = −12→12
Tmin = 0.850, Tmax = 1.000 k = −12→12
38997 measured reflections l = −22→20
6535 independent reflections

(Nitrito-κO)(nitro-κN)(nitrosyl-κN)bis(triphenylphosphane-κP)rhodium(III) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0475P)2 + 1.2428P] where P = (Fo2 + 2Fc2)/3
6535 reflections (Δ/σ)max = 0.002
487 parameters Δρmax = 0.50 e Å3
160 restraints Δρmin = −1.04 e Å3

(Nitrito-κO)(nitro-κN)(nitrosyl-κN)bis(triphenylphosphane-κP)rhodium(III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rh1 0.69455 (2) 0.72063 (2) 0.73984 (2) 0.01782 (7)
P1 0.78304 (6) 0.84065 (6) 0.63584 (3) 0.01877 (12)
P2 0.63593 (6) 0.61376 (6) 0.85208 (3) 0.01834 (12)
O1 0.3977 (2) 0.5606 (3) 0.63816 (14) 0.0403 (5) 0.91
O1* 0.441 (3) 0.510 (3) 0.6490 (16) 0.037 (2) 0.09
O2 0.8146 (2) 0.6017 (3) 0.74115 (12) 0.0306 (4) 0.91
O2* 0.892 (3) 0.580 (2) 0.7594 (12) 0.0315 (18) 0.09
O3 0.9814 (4) 0.8223 (4) 0.7943 (3) 0.0385 (8) 0.91
O3* 1.002 (5) 0.808 (4) 0.800 (3) 0.036 (2) 0.09
O4 0.6922 (2) 0.94890 (19) 0.81800 (10) 0.0277 (3)
O5 0.4959 (2) 0.8559 (2) 0.71591 (12) 0.0309 (4) 0.91
O5* 0.528 (2) 0.788 (2) 0.7215 (11) 0.0250 (12) 0.09
N1 0.5063 (4) 0.5562 (3) 0.67278 (15) 0.0296 (5) 0.91
N1* 0.566 (3) 0.533 (3) 0.6720 (15) 0.0333 (15) 0.09
N2 0.9564 (3) 0.6945 (3) 0.77560 (15) 0.0357 (5) 0.91
N2* 0.882 (3) 0.691 (3) 0.7696 (16) 0.0344 (12) 0.09
N3 0.6127 (3) 0.8576 (3) 0.75739 (13) 0.0231 (4) 0.91
N3* 0.567 (2) 0.900 (2) 0.7675 (11) 0.0261 (11) 0.09
C1 0.6388 (3) 0.8054 (3) 0.54337 (13) 0.0227 (5)
C2 0.5094 (3) 0.8184 (3) 0.54348 (15) 0.0286 (5)
H2 0.494092 0.836812 0.590960 0.034*
C3 0.4032 (3) 0.8042 (3) 0.47396 (16) 0.0344 (6)
H3 0.315916 0.813992 0.474200 0.041*
C4 0.4236 (3) 0.7758 (3) 0.40436 (16) 0.0341 (6)
H4 0.350085 0.765054 0.357057 0.041*
C5 0.5524 (3) 0.7632 (3) 0.40421 (15) 0.0345 (6)
H5 0.567554 0.744994 0.356622 0.041*
C6 0.6591 (3) 0.7771 (3) 0.47329 (14) 0.0300 (5)
H6 0.746170 0.767166 0.472777 0.036*
C7 0.9129 (3) 0.7841 (3) 0.61338 (13) 0.0217 (4)
C8 0.8534 (3) 0.6345 (3) 0.58525 (13) 0.0242 (5)
H8 0.745487 0.566960 0.573356 0.029*
C9 0.9521 (3) 0.5854 (3) 0.57487 (14) 0.0273 (5)
H9 0.911444 0.484159 0.555225 0.033*
C10 1.1108 (3) 0.6832 (3) 0.59298 (14) 0.0278 (5)
H10 1.178146 0.648121 0.586676 0.033*
C11 1.1700 (3) 0.8316 (3) 0.62018 (14) 0.0274 (5)
H11 1.277986 0.898430 0.631972 0.033*
C12 1.0721 (3) 0.8828 (3) 0.63025 (14) 0.0235 (5)
H12 1.112988 0.984776 0.648581 0.028*
C13 0.8930 (3) 1.0430 (3) 0.65558 (13) 0.0210 (4)
C14 0.9389 (3) 1.1237 (3) 0.59653 (14) 0.0244 (5)
H14 0.913317 1.073008 0.546782 0.029*
C15 1.0216 (3) 1.2776 (3) 0.61078 (14) 0.0278 (5)
H15 1.056194 1.332126 0.571264 0.033*
C16 1.0544 (3) 1.3525 (3) 0.68239 (15) 0.0286 (5)
H16 1.107521 1.458101 0.691253 0.034*
C17 1.0093 (3) 1.2730 (3) 0.74093 (14) 0.0284 (5)
H17 1.032255 1.324186 0.790112 0.034*
C18 0.9313 (3) 1.1197 (3) 0.72809 (14) 0.0239 (5)
H18 0.903358 1.065904 0.768954 0.029*
C19 0.5170 (3) 0.6706 (3) 0.88654 (14) 0.0221 (5)
C20 0.3787 (3) 0.6470 (3) 0.83388 (15) 0.0268 (5)
H20 0.345315 0.594367 0.783672 0.032*
C21 0.2902 (3) 0.6998 (3) 0.85440 (17) 0.0335 (6)
H21 0.195776 0.682420 0.818574 0.040*
C22 0.3393 (3) 0.7781 (3) 0.92717 (18) 0.0348 (6)
H22 0.279499 0.816250 0.940739 0.042*
C23 0.4751 (3) 0.8010 (3) 0.98034 (17) 0.0332 (6)
H23 0.507462 0.853773 1.030425 0.040*
C24 0.5645 (3) 0.7466 (3) 0.96031 (14) 0.0257 (5)
H24 0.657231 0.761405 0.996838 0.031*
C25 0.8054 (3) 0.6635 (2) 0.93392 (13) 0.0203 (4)
C26 0.9306 (3) 0.8090 (3) 0.94934 (14) 0.0238 (5)
H26 0.927203 0.879629 0.916565 0.029*
C27 1.0593 (3) 0.8494 (3) 1.01262 (14) 0.0268 (5)
H27 1.143967 0.948024 1.023111 0.032*
C28 1.0653 (3) 0.7469 (3) 1.06066 (14) 0.0277 (5)
H28 1.154064 0.775106 1.103662 0.033*
C29 0.9420 (3) 0.6037 (3) 1.04595 (14) 0.0275 (5)
H29 0.946168 0.533630 1.078950 0.033*
C30 0.8113 (3) 0.5615 (3) 0.98281 (14) 0.0240 (5)
H30 0.726371 0.463211 0.973195 0.029*
C31 0.5316 (3) 0.4110 (3) 0.83444 (13) 0.0235 (5)
C32 0.6032 (3) 0.3373 (3) 0.81272 (15) 0.0295 (5)
H32 0.704272 0.393404 0.807580 0.035*
C33 0.5282 (3) 0.1835 (3) 0.79864 (15) 0.0335 (6)
H33 0.578905 0.134618 0.785066 0.040*
C34 0.3792 (4) 0.1007 (3) 0.80434 (16) 0.0383 (7)
H34 0.327126 −0.004743 0.793955 0.046*
C35 0.3069 (3) 0.1723 (3) 0.82517 (19) 0.0418 (7)
H35 0.204757 0.115570 0.828892 0.050*
C36 0.3824 (3) 0.3269 (3) 0.84077 (17) 0.0344 (6)
H36 0.332296 0.375031 0.855739 0.041*

(Nitrito-κO)(nitro-κN)(nitrosyl-κN)bis(triphenylphosphane-κP)rhodium(III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.01562 (9) 0.02078 (10) 0.01968 (10) 0.01061 (7) 0.00593 (6) 0.00453 (6)
P1 0.0167 (3) 0.0223 (3) 0.0190 (3) 0.0107 (2) 0.0056 (2) 0.0042 (2)
P2 0.0156 (2) 0.0197 (3) 0.0202 (3) 0.0090 (2) 0.0054 (2) 0.0039 (2)
O1 0.0245 (10) 0.0361 (11) 0.0473 (12) 0.0111 (9) −0.0014 (9) −0.0047 (9)
O1* 0.027 (3) 0.032 (3) 0.041 (3) 0.010 (2) 0.000 (2) −0.001 (3)
O2 0.0353 (9) 0.0436 (10) 0.0324 (9) 0.0301 (8) 0.0188 (8) 0.0158 (8)
O2* 0.033 (2) 0.047 (3) 0.032 (2) 0.030 (2) 0.017 (2) 0.018 (2)
O3 0.0268 (13) 0.0532 (13) 0.0279 (12) 0.0135 (10) 0.0084 (11) 0.0120 (11)
O3* 0.030 (3) 0.052 (3) 0.030 (2) 0.022 (2) 0.014 (2) 0.014 (2)
O4 0.0267 (8) 0.0257 (8) 0.0293 (8) 0.0107 (6) 0.0105 (6) 0.0010 (6)
O5 0.0298 (9) 0.0396 (10) 0.0313 (10) 0.0251 (8) 0.0056 (8) 0.0050 (8)
O5* 0.0251 (16) 0.0279 (16) 0.0267 (16) 0.0153 (15) 0.0102 (15) 0.0065 (16)
N1 0.0246 (12) 0.0271 (12) 0.0309 (12) 0.0104 (10) 0.0036 (10) −0.0012 (9)
N1* 0.025 (2) 0.030 (2) 0.035 (2) 0.0098 (19) 0.0020 (19) −0.0011 (19)
N2 0.0334 (10) 0.0534 (12) 0.0322 (10) 0.0274 (9) 0.0157 (9) 0.0175 (9)
N2* 0.0332 (15) 0.0499 (15) 0.0320 (15) 0.0263 (15) 0.0161 (14) 0.0159 (14)
N3 0.0231 (9) 0.0251 (9) 0.0259 (9) 0.0139 (8) 0.0105 (7) 0.0075 (7)
N3* 0.0257 (14) 0.0276 (14) 0.0276 (14) 0.0138 (13) 0.0103 (13) 0.0051 (13)
C1 0.0208 (11) 0.0220 (11) 0.0231 (11) 0.0105 (9) 0.0033 (9) 0.0044 (9)
C2 0.0213 (11) 0.0357 (13) 0.0294 (13) 0.0148 (10) 0.0067 (10) 0.0072 (10)
C3 0.0210 (12) 0.0413 (15) 0.0368 (14) 0.0143 (11) 0.0040 (10) 0.0096 (12)
C4 0.0289 (13) 0.0321 (14) 0.0281 (13) 0.0109 (11) −0.0035 (10) 0.0059 (11)
C5 0.0428 (15) 0.0361 (14) 0.0221 (12) 0.0207 (12) 0.0033 (11) 0.0028 (10)
C6 0.0340 (13) 0.0376 (14) 0.0227 (12) 0.0218 (11) 0.0066 (10) 0.0069 (10)
C7 0.0219 (11) 0.0269 (11) 0.0204 (11) 0.0143 (9) 0.0082 (9) 0.0056 (9)
C8 0.0262 (12) 0.0279 (12) 0.0223 (11) 0.0149 (10) 0.0097 (9) 0.0070 (9)
C9 0.0335 (13) 0.0295 (12) 0.0250 (12) 0.0192 (11) 0.0106 (10) 0.0048 (10)
C10 0.0322 (13) 0.0388 (14) 0.0259 (12) 0.0252 (11) 0.0138 (10) 0.0103 (10)
C11 0.0222 (11) 0.0372 (14) 0.0271 (12) 0.0164 (10) 0.0103 (9) 0.0080 (10)
C12 0.0205 (11) 0.0266 (12) 0.0254 (12) 0.0124 (9) 0.0080 (9) 0.0060 (9)
C13 0.0162 (10) 0.0246 (11) 0.0235 (11) 0.0115 (9) 0.0048 (8) 0.0039 (9)
C14 0.0250 (11) 0.0276 (12) 0.0221 (11) 0.0145 (10) 0.0061 (9) 0.0057 (9)
C15 0.0265 (12) 0.0295 (13) 0.0256 (12) 0.0126 (10) 0.0073 (10) 0.0109 (10)
C16 0.0221 (11) 0.0250 (12) 0.0317 (13) 0.0089 (10) 0.0025 (10) 0.0056 (10)
C17 0.0250 (12) 0.0282 (12) 0.0240 (12) 0.0087 (10) 0.0040 (9) −0.0013 (10)
C18 0.0200 (11) 0.0284 (12) 0.0214 (11) 0.0101 (9) 0.0067 (9) 0.0050 (9)
C19 0.0185 (10) 0.0210 (11) 0.0292 (12) 0.0094 (9) 0.0117 (9) 0.0080 (9)
C20 0.0214 (11) 0.0295 (12) 0.0334 (13) 0.0137 (10) 0.0120 (10) 0.0109 (10)
C21 0.0236 (12) 0.0357 (14) 0.0488 (16) 0.0173 (11) 0.0174 (11) 0.0170 (12)
C22 0.0347 (14) 0.0368 (14) 0.0514 (17) 0.0243 (12) 0.0278 (13) 0.0187 (12)
C23 0.0392 (15) 0.0328 (13) 0.0374 (14) 0.0195 (12) 0.0226 (12) 0.0080 (11)
C24 0.0251 (11) 0.0278 (12) 0.0289 (12) 0.0133 (10) 0.0146 (10) 0.0084 (10)
C25 0.0168 (10) 0.0222 (11) 0.0216 (11) 0.0091 (9) 0.0060 (8) 0.0024 (9)
C26 0.0217 (11) 0.0230 (11) 0.0281 (12) 0.0106 (9) 0.0102 (9) 0.0055 (9)
C27 0.0193 (11) 0.0245 (12) 0.0298 (13) 0.0068 (9) 0.0048 (9) −0.0039 (9)
C28 0.0229 (11) 0.0349 (13) 0.0243 (12) 0.0161 (10) 0.0016 (9) −0.0017 (10)
C29 0.0293 (12) 0.0299 (13) 0.0238 (12) 0.0159 (10) 0.0060 (10) 0.0055 (10)
C30 0.0229 (11) 0.0247 (11) 0.0230 (11) 0.0110 (9) 0.0060 (9) 0.0043 (9)
C31 0.0219 (11) 0.0220 (11) 0.0217 (11) 0.0092 (9) 0.0022 (9) 0.0056 (9)
C32 0.0362 (13) 0.0291 (13) 0.0257 (12) 0.0178 (11) 0.0098 (10) 0.0049 (10)
C33 0.0481 (16) 0.0293 (13) 0.0227 (12) 0.0217 (12) 0.0044 (11) 0.0034 (10)
C34 0.0445 (16) 0.0205 (12) 0.0318 (14) 0.0115 (11) −0.0078 (12) 0.0019 (10)
C35 0.0249 (13) 0.0285 (14) 0.0553 (18) 0.0066 (11) −0.0010 (12) 0.0124 (13)
C36 0.0215 (12) 0.0274 (13) 0.0493 (17) 0.0103 (10) 0.0061 (11) 0.0087 (11)

(Nitrito-κO)(nitro-κN)(nitrosyl-κN)bis(triphenylphosphane-κP)rhodium(III) . Geometric parameters (Å, º)

Rh1—P1 2.4001 (6) C12—H12 0.9500
Rh1—P2 2.3978 (6) C13—C14 1.400 (3)
Rh1—O2 2.1105 (19) C13—C18 1.395 (3)
Rh1—O5* 2.09 (2) C14—H14 0.9500
Rh1—N1 1.938 (3) C14—C15 1.385 (4)
Rh1—N1* 1.93 (3) C15—H15 0.9500
Rh1—N2* 2.03 (3) C15—C16 1.387 (4)
Rh1—N3 2.019 (2) C16—H16 0.9500
P1—C1 1.827 (2) C16—C17 1.385 (4)
P1—C7 1.819 (2) C17—H17 0.9500
P1—C13 1.822 (2) C17—C18 1.379 (4)
P2—C19 1.819 (2) C18—H18 0.9500
P2—C25 1.818 (2) C19—C20 1.398 (3)
P2—C31 1.825 (2) C19—C24 1.393 (3)
O1—N1 1.152 (4) C20—H20 0.9500
O1*—N1* 1.147 (10) C20—C21 1.381 (4)
O2—N2 1.277 (4) C21—H21 0.9500
O2*—N2* 1.216 (18) C21—C22 1.384 (4)
O3—N2 1.248 (5) C22—H22 0.9500
O3*—N2* 1.23 (2) C22—C23 1.384 (4)
O4—N3 1.251 (3) C23—H23 0.9500
O4—N3* 1.230 (16) C23—C24 1.399 (3)
O5—N3 1.231 (3) C24—H24 0.9500
O5*—N3* 1.259 (18) C25—C26 1.403 (3)
C1—C2 1.397 (3) C25—C30 1.392 (3)
C1—C6 1.394 (3) C26—H26 0.9500
C2—H2 0.9500 C26—C27 1.388 (3)
C2—C3 1.391 (4) C27—H27 0.9500
C3—H3 0.9500 C27—C28 1.387 (4)
C3—C4 1.386 (4) C28—H28 0.9500
C4—H4 0.9500 C28—C29 1.381 (4)
C4—C5 1.391 (4) C29—H29 0.9500
C5—H5 0.9500 C29—C30 1.395 (3)
C5—C6 1.388 (4) C30—H30 0.9500
C6—H6 0.9500 C31—C32 1.399 (4)
C7—C8 1.401 (3) C31—C36 1.394 (4)
C7—C12 1.401 (3) C32—H32 0.9500
C8—H8 0.9500 C32—C33 1.385 (4)
C8—C9 1.381 (3) C33—H33 0.9500
C9—H9 0.9500 C33—C34 1.388 (4)
C9—C10 1.394 (4) C34—H34 0.9500
C10—H10 0.9500 C34—C35 1.381 (5)
C10—C11 1.385 (4) C35—H35 0.9500
C11—H11 0.9500 C35—C36 1.393 (4)
C11—C12 1.388 (3) C36—H36 0.9500
P2—Rh1—P1 173.609 (19) C7—C12—H12 120.0
O2—Rh1—P1 90.54 (5) C11—C12—C7 120.0 (2)
O2—Rh1—P2 86.46 (5) C11—C12—H12 120.0
O5*—Rh1—P1 91.4 (5) C14—C13—P1 119.40 (18)
O5*—Rh1—P2 93.0 (5) C18—C13—P1 121.50 (18)
N1—Rh1—P1 94.47 (8) C18—C13—C14 119.1 (2)
N1—Rh1—P2 91.22 (8) C13—C14—H14 120.1
N1—Rh1—O2 90.83 (10) C15—C14—C13 119.9 (2)
N1—Rh1—N3 99.52 (10) C15—C14—H14 120.1
N1*—Rh1—P1 90.3 (8) C14—C15—H15 119.8
N1*—Rh1—P2 93.8 (8) C14—C15—C16 120.4 (2)
N1*—Rh1—O5* 96.8 (9) C16—C15—H15 119.8
N1*—Rh1—N2* 93.3 (11) C15—C16—H16 120.1
N2*—Rh1—P1 88.1 (8) C17—C16—C15 119.8 (2)
N2*—Rh1—P2 86.8 (8) C17—C16—H16 120.1
N2*—Rh1—O5* 169.9 (9) C16—C17—H17 119.9
N3—Rh1—P1 92.49 (6) C18—C17—C16 120.2 (2)
N3—Rh1—P2 89.44 (6) C18—C17—H17 119.9
N3—Rh1—O2 168.95 (9) C13—C18—H18 119.7
C1—P1—Rh1 118.18 (8) C17—C18—C13 120.5 (2)
C7—P1—Rh1 109.77 (8) C17—C18—H18 119.7
C7—P1—C1 104.60 (11) C20—C19—P2 117.62 (19)
C7—P1—C13 105.26 (11) C24—C19—P2 122.60 (18)
C13—P1—Rh1 115.08 (8) C24—C19—C20 119.6 (2)
C13—P1—C1 102.70 (10) C19—C20—H20 119.8
C19—P2—Rh1 112.01 (8) C21—C20—C19 120.4 (3)
C19—P2—C31 106.84 (11) C21—C20—H20 119.8
C25—P2—Rh1 114.11 (8) C20—C21—H21 120.0
C25—P2—C19 105.75 (11) C20—C21—C22 120.0 (3)
C25—P2—C31 105.04 (10) C22—C21—H21 120.0
C31—P2—Rh1 112.48 (8) C21—C22—H22 119.8
N2—O2—Rh1 105.34 (19) C21—C22—C23 120.4 (2)
N3*—O5*—Rh1 113.5 (16) C23—C22—H22 119.8
O1—N1—Rh1 126.1 (2) C22—C23—H23 120.0
O1*—N1*—Rh1 111 (2) C22—C23—C24 120.0 (3)
O3—N2—O2 114.1 (3) C24—C23—H23 120.0
O2*—N2*—Rh1 130 (2) C19—C24—C23 119.6 (2)
O2*—N2*—O3* 118 (3) C19—C24—H24 120.2
O3*—N2*—Rh1 111 (2) C23—C24—H24 120.2
O4—N3—Rh1 113.23 (16) C26—C25—P2 119.17 (18)
O5—N3—Rh1 126.50 (19) C30—C25—P2 121.30 (18)
O5—N3—O4 120.3 (2) C30—C25—C26 119.5 (2)
O4—N3*—O5* 116 (2) C25—C26—H26 120.1
C2—C1—P1 118.11 (19) C27—C26—C25 119.8 (2)
C6—C1—P1 122.31 (18) C27—C26—H26 120.1
C6—C1—C2 119.4 (2) C26—C27—H27 119.8
C1—C2—H2 120.0 C28—C27—C26 120.5 (2)
C3—C2—C1 119.9 (2) C28—C27—H27 119.8
C3—C2—H2 120.0 C27—C28—H28 120.0
C2—C3—H3 119.7 C29—C28—C27 120.0 (2)
C4—C3—C2 120.5 (3) C29—C28—H28 120.0
C4—C3—H3 119.7 C28—C29—H29 119.9
C3—C4—H4 120.2 C28—C29—C30 120.3 (2)
C3—C4—C5 119.6 (2) C30—C29—H29 119.9
C5—C4—H4 120.2 C25—C30—C29 120.0 (2)
C4—C5—H5 119.8 C25—C30—H30 120.0
C6—C5—C4 120.3 (3) C29—C30—H30 120.0
C6—C5—H5 119.8 C32—C31—P2 118.68 (19)
C1—C6—H6 119.9 C36—C31—P2 122.5 (2)
C5—C6—C1 120.2 (2) C36—C31—C32 118.9 (2)
C5—C6—H6 119.9 C31—C32—H32 119.7
C8—C7—P1 118.47 (18) C33—C32—C31 120.7 (3)
C8—C7—C12 119.6 (2) C33—C32—H32 119.7
C12—C7—P1 121.65 (18) C32—C33—H33 120.0
C7—C8—H8 120.1 C32—C33—C34 120.1 (3)
C9—C8—C7 119.7 (2) C34—C33—H33 120.0
C9—C8—H8 120.1 C33—C34—H34 120.1
C8—C9—H9 119.7 C35—C34—C33 119.7 (3)
C8—C9—C10 120.6 (2) C35—C34—H34 120.1
C10—C9—H9 119.7 C34—C35—H35 119.7
C9—C10—H10 120.1 C34—C35—C36 120.6 (3)
C11—C10—C9 119.9 (2) C36—C35—H35 119.7
C11—C10—H10 120.1 C31—C36—H36 120.0
C10—C11—H11 119.9 C35—C36—C31 120.1 (3)
C10—C11—C12 120.2 (2) C35—C36—H36 120.0
C12—C11—H11 119.9
Rh1—P1—C1—C2 48.7 (2) C9—C10—C11—C12 0.7 (4)
Rh1—P1—C1—C6 −135.99 (19) C10—C11—C12—C7 0.4 (4)
Rh1—P1—C7—C8 64.22 (19) C12—C7—C8—C9 0.4 (4)
Rh1—P1—C7—C12 −109.70 (19) C13—P1—C1—C2 −79.2 (2)
Rh1—P1—C13—C14 −174.86 (16) C13—P1—C1—C6 96.1 (2)
Rh1—P1—C13—C18 4.5 (2) C13—P1—C7—C8 −171.37 (18)
Rh1—P2—C19—C20 54.1 (2) C13—P1—C7—C12 14.7 (2)
Rh1—P2—C19—C24 −120.50 (19) C13—C14—C15—C16 −2.4 (4)
Rh1—P2—C25—C26 39.3 (2) C14—C13—C18—C17 1.9 (3)
Rh1—P2—C25—C30 −142.69 (17) C14—C15—C16—C17 2.5 (4)
Rh1—P2—C31—C32 61.4 (2) C15—C16—C17—C18 −0.4 (4)
Rh1—P2—C31—C36 −117.7 (2) C16—C17—C18—C13 −1.8 (4)
Rh1—O2—N2—O3 −2.7 (4) C18—C13—C14—C15 0.2 (3)
Rh1—O5*—N3*—O4 −4 (3) C19—P2—C25—C26 −84.2 (2)
P1—C1—C2—C3 174.9 (2) C19—P2—C25—C30 93.8 (2)
P1—C1—C6—C5 −174.6 (2) C19—P2—C31—C32 −175.35 (19)
P1—C7—C8—C9 −173.66 (18) C19—P2—C31—C36 5.6 (2)
P1—C7—C12—C11 172.88 (18) C19—C20—C21—C22 0.7 (4)
P1—C13—C14—C15 179.58 (18) C20—C19—C24—C23 −1.3 (4)
P1—C13—C18—C17 −177.46 (19) C20—C21—C22—C23 −1.5 (4)
P2—C19—C20—C21 −174.10 (19) C21—C22—C23—C24 0.8 (4)
P2—C19—C24—C23 173.17 (19) C22—C23—C24—C19 0.6 (4)
P2—C25—C26—C27 178.60 (18) C24—C19—C20—C21 0.6 (4)
P2—C25—C30—C29 −178.92 (18) C25—P2—C19—C20 178.94 (18)
P2—C31—C32—C33 −179.91 (19) C25—P2—C19—C24 4.4 (2)
P2—C31—C36—C35 178.7 (2) C25—P2—C31—C32 −63.3 (2)
C1—P1—C7—C8 −63.5 (2) C25—P2—C31—C36 117.6 (2)
C1—P1—C7—C12 122.6 (2) C25—C26—C27—C28 0.1 (4)
C1—P1—C13—C14 −45.1 (2) C26—C25—C30—C29 −0.9 (4)
C1—P1—C13—C18 134.26 (19) C26—C27—C28—C29 −0.5 (4)
C1—C2—C3—C4 0.6 (4) C27—C28—C29—C30 0.1 (4)
C2—C1—C6—C5 0.6 (4) C28—C29—C30—C25 0.6 (4)
C2—C3—C4—C5 −0.7 (4) C30—C25—C26—C27 0.6 (3)
C3—C4—C5—C6 0.8 (4) C31—P2—C19—C20 −69.5 (2)
C4—C5—C6—C1 −0.7 (4) C31—P2—C19—C24 115.9 (2)
C6—C1—C2—C3 −0.6 (4) C31—P2—C25—C26 162.96 (19)
C7—P1—C1—C2 171.12 (19) C31—P2—C25—C30 −19.0 (2)
C7—P1—C1—C6 −13.6 (2) C31—C32—C33—C34 1.4 (4)
C7—P1—C13—C14 64.2 (2) C32—C31—C36—C35 −0.4 (4)
C7—P1—C13—C18 −116.51 (19) C32—C33—C34—C35 −0.9 (4)
C7—C8—C9—C10 0.7 (4) C33—C34—C35—C36 −0.2 (4)
C8—C7—C12—C11 −1.0 (4) C34—C35—C36—C31 0.9 (4)
C8—C9—C10—C11 −1.3 (4) C36—C31—C32—C33 −0.8 (4)

(Nitrito-κO)(nitro-κN)(nitrosyl-κN)bis(triphenylphosphane-κP)rhodium(III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O5 0.95 2.27 3.200 (3) 166
C2—H2···O5* 0.95 2.40 3.213 (19) 144
C18—H18···O4 0.95 2.34 3.130 (3) 140
C21—H21···N2i 0.95 2.44 3.328 (4) 155
C32—H32···O2 0.95 2.40 3.118 (3) 132
C32—H32···O2* 0.95 2.36 3.24 (2) 154
C33—H33···N3*ii 0.95 2.38 3.21 (2) 145

Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Cheung, W.-M., Zhang, Q.-F., Lai, C.-Y., Williams, I. D. & Leung, W.-H. (2007). Polyhedron26, 4631–4637.
  3. Comas–Vilà, G. & Salvador, P. (2024). ChemPhysChem25, e202400582. [DOI] [PubMed]
  4. Daniel, C. & Gourlaouen, C. (2019). Molecules24, 3638. [DOI] [PMC free article] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  6. English, R. B., De, V., Steyn, M. M. & Haines, R. J. (1987). Polyhedron6, 1503–1507.
  7. Feltham, R. D. (1989). Pure Appl. Chem.61, 943–946.
  8. Gaviglio, C., Ben-David, Y., Shimon, L. J. W., Doctorovich, F. & Milstein, D. (2009). Organometallics28, 1917–1926.
  9. Goldberg, S. Z., Kubiak, C., Meyer, C. D. & Eisenberg, R. (1975). Inorg. Chem.14, 1650–1654.
  10. Hoffmann, R., Chen, M. M. L., Elian, M., Rossi, A. R. & Mingos, D. M. P. (1974). Inorg. Chem.13, 2666–2675.
  11. Ibers, J. A. & Mingos, D. M. P. (1971). Inorg. Chem.10, 1035–1042.
  12. Machura, B. (2005). Coord. Chem. Rev.249, 2277–2307.
  13. Oxford Diffraction (2005). SCALE3 ABSPACK. Oxford Diffraction Ltd: Abingdon, UK.
  14. Pierpont, C. G. & Eisenberg, R. (1972). Inorg. Chem.11, 1088–1094.
  15. Rajaseelan, E., Craymer, J. & Feltham, R. D. (1999). J. PA. Acad. Sci.73, 63–66.
  16. Rigaku OD (2025). CrysAlis PRO. Rigaku Corporation, Oxford, England.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Singh, S., Singh, K. K. & Singh, J. P. (2011). Orient. J. Chem.27, 1233–1237.
  20. Vorobyeva, S. N., Baidina, I. A., Sukhikh, T. S., Korolkov, I. V. & Belyaev, A. V. (2022). J. Struct. Chem.63, 569–579.
  21. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462500598X/bh4097sup1.cif

x-10-x250598-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462500598X/bh4097Isup2.hkl

x-10-x250598-Isup2.hkl (519.3KB, hkl)

CCDC reference: 2469479

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES