The title compound comprises a triangle of Os atoms, two of which are bonded to four carbonyl ligands. The third Os atom is bound to three carbonyl ligands, and the arsine ligand [As(C6H4SCH3)3] occupies the equatorial position. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds.
Keywords: osmium, crystal-structure, cluster, Hirshfeld surface analysis
Abstract
The title compound, [Os3(C21H21AsS3)(CO)11] or [Os3{As(C6H4SCH3)3}(CO)11], comprises a triangle of Os atoms, two of which are bonded to four carbonyl ligands. The third Os atom is bound to three carbonyl ligands, and the arsine ligand [As(C6H4SCH3)3] occupies the equatorial position. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds. To further analyse the intermolecular interactions, a Hirshfeld surface analysis was performed. Two out of the three methylsulfanyl groups are disordered over two sites with final refinement occupancy ratios of 0.612 (12):0.388 (12) and 0.620 (9):0.380 (9).
1. Chemical context
The chemistry of triosmium carbonyl clusters with group 15 ligands has been extensively studied (Raithby, 2024 ▸). The majority of reported structures have focused on tertiary phosphine ligands (PR3) with R = alkyl or aryl groups, with fewer examples involving tertiary arsine ligands (AsPR3) (webCSD, accessed May 2025; Groom et al., 2016 ▸). These ligands stabilize low oxidation states of metal centres and can be used to modify both the electronic and steric properties of resulting coordination compounds (Honaker et al., 2007 ▸). Numerous triosmium carbonyl clusters containing one, two, or three PR3 have been synthesized and fully characterised (Bruce et al., 1988a ▸,b ▸; Biradha et al., 2000 ▸). Os3(CO)11(PR3) is the most reported crystal structure among derivatives in this series, the earlier ones being Os3(CO)11(PPh3), and Os3(CO)11{PPh(OMe)2}, which were prepared in refluxing toluene for more than 10 h (Bruce et al., 1988a ▸). Biradha and co-workers reported a series of Os3(CO)11(PR3) with R = F, OPh, Et, p-C6H4Me, o-C6H4Me, p-C6H4(CF3) and C6H11 (Biradha et al., 2000 ▸) by reacting Os3(CO)11(CH3CN) with PR3 in dichloromethane for 15 min (Hansen et al., 1998 ▸). According to these structures, the steric and electronic effects of PR3 often result in variations of the Os—Os bond that is cis to PR3 and the Os—P bond length (Biradha et al., 2000 ▸). However, there are not many reactions conducted on Os3(CO)12 with AsPR3. Os3(CO)11(AsPh3) is the only reported structure in this series (Oh et al., 2015 ▸). Thus, we are currently exploring the reaction between Os3(CO)12 and the AsPR3 ligand, focusing on how such ligands influence structural parameters within the triangular osmium cluster. We anticipate that the resulting compound will serve as a representative example contributing to the broader understanding of this structural series Os3(CO)11(P/AsR3). Herein, we report the synthesis of Os3(CO)11{As(C6H4SCH3)3}, 1, and its examination using single-crystal X-ray diffraction and Hirshfeld surface analysis.
2. Structural commentary
The molecular structure of 1 is shown in Fig. 1 ▸. The molecule comprises an Os3 triangle with one Os centre being equatorially coordinated by the tris{4-(methylsulfanyl)phenyl}arsine ligand [As(C6H4SCH3)3]. The Os—Os bond lengths in the Os3 triangle are not equivalent, with the Os1—Os2 bond [2.9150 (3) Å] being longer than the Os1—Os3 and Os2—Os3 bonds, at 2.8611 (3) and 2.8817 (4) Å, respectively. The longest Os—Os bond is cis to As(C6H4SCH3)3 and comparable with a similar Os—Os bond [2.9148 (7) Å] in Os3(CO)11AsPh3 (Oh et al., 2015 ▸). These observations are attributed to the steric and electronic effects of the arsine ligand on the Os—Os bonds. The Os—As bond length in 1 is 2.4603 (5) Å and almost similar to the related bond in Os3(CO)11(AsPh3) 2.4670 (9) Å (Oh et al., 2015 ▸). The Os—C(CO) bond lengths are in the range 1.872 (6)–1.951 (7) Å. The equatorial Os—C≡O bond angles range from 175.7 (5) to 178.4 (5)°, whereas the axial Os—C≡O bond angles range from 174.3 (6) to 177.2 (5)°.
Figure 1.
The molecular structure of 1 with 30% displacement ellipsoids.
3. Supramolecular features
In the crystal, C5—H5A⋯O10 intermolecular interactions (Table 1 ▸, Fig. 2 ▸) lead to the formation of an inversion dimer between two molecules. This dimer is further consolidated by a short S3⋯O10 contact [3.21 (2) Å, symmetry code:
+ x,
− y,
+ z].
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C5—H5A⋯O10i | 0.93 | 2.55 | 3.41 (1) | 154 |
Symmetry code: (i)
.
Figure 2.
The crystal structure of the title compound viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
4. Hirshfeld surface analysis
The major and minor components of the disorder in 1 were subjected to Hirshfeld surface analysis using CrystalExplorer21 (Spackman et al., 2021 ▸). This is based on the procedures described in the literature (Tan et al., 2019 ▸) to better understand the nature of the intermolecular interactions that exist in the crystal.
The dnorm mapping reveals a relatively simple landscape of molecular interactions, with only a few red spots being observed on the Hirshfeld surfaces. For the major component, the red spots originated from H5A, O10, H21B, C20, S3, O7, H20A, and C21 (Fig. 3 ▸a), corresponding to the close contacts for C5—H5A⋯O10, C21—H21B⋯C20, S3⋯O10, O7⋯O7, and C20—H20A⋯C21 (Table 2 ▸). The respective deviations of these contacts from the sum of the van der Waals radii are 0.20, 0.15, 0.11, 0.09 and 0.04 Å, reflecting the intensity of the corresponding red spots. For the minor component, red spots are detected on the disorder fragments of S3X and H21D, corresponding to S3X⋯O10 and C21X—H21D⋯O1 in addition to the intrinsic C5—H5A⋯O10 and O7⋯O7 close contacts for 1 (Fig. 3 ▸b). The deviations between the dnorm contact distance and the sum of the van der Waals radii for S3X⋯O10 and H21D⋯O1 are 0.19 and 0.06 Å, respectively (Table 3 ▸).
Figure 3.

Two views of the dnorm map showing the atoms with close contacts, as indicated by the corresponding red spots, with varying intensities for (a) the major component and (b) the minor component of 1.
Table 2. The dnorm contact distances (Å, adjusted to neutron values) for all identified interactions present in the major and minor components of 1 with respect to the corresponding sum of van der Waals radii of the relevant contact atoms.
| Contact | dnorm Distance | ΣvdW radii | Δ(ΣvdW – dnorm distance) | Symmetry operation |
|---|---|---|---|---|
| Major | ||||
| C5–H5A⋯O10 | 2.41 | 2.61 | 0.20 | 1 − x, 2 − y, 2 − z |
| C20–H20A⋯C21 | 2.57 | 2.61 | 0.04 | − + x, − y, − + z
|
| C21–H21B⋯C20 | 2.64 | 2.79 | 0.15 |
+ x, − y, + z
|
| S3⋯O10 | 3.21 | 3.32 | 0.11 |
+ x, − y, + z
|
| O7⋯O7 | 2.95 | 3.04 | 0.09 | 2 − x, 2 − y, 2 − z |
| Minor | ||||
| C5–H5A⋯O10 | 2.41 | 2.61 | 0.20 | 1 − x, 2 − y, 2 − z |
| S3X⋯O10 | 3.13 | 3.32 | 0.19 |
+ x, − y, + z
|
| O7⋯O7 | 2.95 | 3.04 | 0.09 | 2 − x, 2 − y, 2 − z |
| C21X–H21D⋯O1 | 2.55 | 2.61 | 0.06 | 2 − x, 1 − y, 2 − z |
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | [Os3(C21H21AsS3)(CO)11] |
| M r | 1323.19 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 297 |
| a, b, c (Å) | 14.5019 (15), 15.3759 (16), 17.8575 (19) |
| β (°) | 107.870 (2) |
| V (Å3) | 3789.8 (7) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 11.12 |
| Crystal size (mm) | 0.41 × 0.15 × 0.09 |
| Data collection | |
| Diffractometer | Bruker APEX Duo CCD area detector |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| Tmin, Tmax | 0.024, 0.076 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 52142, 13246, 8766 |
| R int | 0.054 |
| (sin θ/λ)max (Å−1) | 0.749 |
| Refinement | |
| R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.081, 0.97 |
| No. of reflections | 13246 |
| No. of parameters | 482 |
| No. of restraints | 64 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.46, −1.46 |
Apart from the close contacts indicated by red spots, another significant feature emerges from the shape-index mapping on the Hirshfeld surface. This mapping highlights a complementary intermolecular stacking interaction between C32—O11 and the C7–C12 ring (symmetry code:
− x,
+ y,
− z), providing evidence of a lone pair⋯π interaction (Fig. 4 ▸). This finding aligns with the analysis from PLATON (Spek, 2020 ▸), which identified a contact distance of 3.867 (5) Å between O11 and the aromatic π-ring, along with a C≡O⋯π angle of 94.0 (4)°. Studies suggested that such interactions typically occur within a distance range of 3.0–4.5 Å, with angles varying between 60 and 160° (Caracelli et al., 2016 ▸; Chen et al., 2024 ▸), depending on the specific lone-pair donor and π-acceptor involved.
Figure 4.
The partial Hirshfeld surface mapped with shape-index for C32–O11 (top) and the C7–C12 ring (bottom;
− x,
+ y,
− z), showing the shape complementarity between the intermolecular stacking fragments of 1. The remaining parts of the molecules were omitted for clarity.
The major and minor components of 1 were subjected to 2D fingerprint plot analysis to quantitatively assess close contacts within the structure. Both exhibit distinct shield- and paw-like fingerprint profiles, which, upon decomposition, reveal symmetrical H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, O⋯S/S⋯O, O⋯O, and O⋯C/C⋯O interactions (Fig. 5 ▸), indicating homogeneous reciprocal contacts between internal-X⋯Y-external and external-X⋯Y-internal interfaces.
Figure 5.
The comparison of the overall and prominent decomposed fingerprint print plots (> 5%) delineated into H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, O⋯S/S⋯O, O⋯O, and O⋯C/C⋯O close contacts for the major (top) and minor (bottom) components of 1.
Slight deviations are observed in the decomposed fingerprint plots of H⋯H and O⋯S/S⋯O. The major component features a distinct H⋯H peak at a di + de of approximately 1.80 Å (H20A⋯H21A), whereas the minor component exhibits a broader profile with a larger di + de of about 2.30 Å (H21F⋯H19B). In the pincer-like decomposed fingerprint plots of O⋯S/S⋯O, the reciprocal contacts correspond to O10⋯S3 (di + de ≃ 3.21 Å) in the major component and O10⋯S3X (di + de ≃ 3.12 Å) in the minor component. Other fingerprint plots remain consistent across both components, with close contact distributions being as follows: H⋯O/O⋯H (34.3% vs 38.6%), H⋯H (20.5% vs 17.5%), H⋯C/C⋯H (10.0% vs 12.2%), O⋯S/S⋯O (9.2% vs 8.0%), O⋯O (9.1% vs 7.7%), and O⋯C/C⋯O (8.4% vs 7.7%), while the remaining less prominent contacts contribute to approximately 4.1% to 4.2% (Fig. 6 ▸).
Figure 6.
The percentage contributions of different close contacts to the Hirshfeld surfaces of the major and minor components of 1.
5. Database survey
A search of the Cambridge Structural Database (webCSD accessed May 2025; Groom et al., 2016 ▸) for the title compound returned no relevant hits. However, a search with generalized tertiary arsine ligand (AsR3) returned one hit [Os3(CO)11(AsPh3)] [CSD refcode YUCXEB; Oh et al., 2015 ▸). The structure of the title compound is very similar to that of Ru3(CO)11{As(C6H4SCH3)3} (SUXQEI; Shawkataly et al., 2010 ▸), in which tris{4-(methylsulfanyl)phenyl}arsine [As(C6H4SCH3)3] is equatorially bonded to the metal centre. The structure is consistent with literature precedents for complexes with the general formula Os3(CO)11PR3 [HIYVUG (Hansen et al., 1998 ▸), MASPEB, MASPIF and MASPUR (Biradha et al., 2000 ▸), VADYEE (Bruce et al., 1988a ▸, VAWWUL (Ang et al., 1989 ▸), YEDZOW and YEFCAN (Adams et al., 1994 ▸)].
6. Synthesis and crystallization
A solution of Os3(CO)11(CH3CN) (Nicholls et al., 1990 ▸; Hansen et al., 1998 ▸) (80 mg, 0.087 mmol) and As(C6H4SCH3)3 (60 mg, 0.13 mmol) in CH2Cl2 (25 ml) was stirred at room temperature for 60 min. The reaction was carried out under nitrogen-free oxygen using standard Schlenk techniques. The solution was dried in vacuo, and the residue was chromatographed by preparative thin-layer chromatography on silica gel with C6H14/CH2Cl2 (3:2) as the eluent. Chromatographic separation afforded two bands: the first yellow band was identified as the starting material Os3(CO)12. The desired product Os3(CO)11{As(C6H4SCH3)3} was isolated as the second yellow band in 50% yield and recrystallized from CH2Cl2/CH3OH (1:3). IR (ATR): ν(CO) 2107 s, 2051 m, 2006 w, 1974 m, 1942 w cm−1.
7. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All H atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93 or 0.96 Å (for methyl groups) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). Two out of the three methylsulfanyl groups were disordered over two sites with a final refinement occupancy ratios of 0.612 (12):0.388 (12) and 0.620 (9):0.380 (9). Anisotropic displacement parameters and rigid-body restraints were applied to the disordered components. Due to poor agreement, reflections 020,
33, 680,
07, and 379 were omitted from the final cycles of refinement. Maximum and minimum residual electron densities of 1.46 and −1.46 e Å−3 were observed at 0.83 Å from Os1 and 0.70 Å from Os3, respectively.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006541/tx2100sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006541/tx2100Isup2.hkl
CCDC reference: 2474325
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors are grateful to Dr Imthyaz Ahmed Khan for his contribution to the synthesis of the title compound. SSS thanks Universiti Teknologi MARA (UiTM) for providing the research facilities.
supplementary crystallographic information
Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Crystal data
| [Os3(C21H21AsS3)(CO)11] | F(000) = 2440 |
| Mr = 1323.19 | Dx = 2.319 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| a = 14.5019 (15) Å | Cell parameters from 9975 reflections |
| b = 15.3759 (16) Å | θ = 2.7–27.7° |
| c = 17.8575 (19) Å | µ = 11.12 mm−1 |
| β = 107.870 (2)° | T = 297 K |
| V = 3789.8 (7) Å3 | Plate, yellow |
| Z = 4 | 0.41 × 0.15 × 0.09 mm |
Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Data collection
| Bruker APEX Duo CCD area detector diffractometer | 8766 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.054 |
| φ and ω scans | θmax = 32.2°, θmin = 2.7° |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −20→21 |
| Tmin = 0.024, Tmax = 0.076 | k = −22→23 |
| 52142 measured reflections | l = −25→26 |
| 13246 independent reflections |
Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Refinement
| Refinement on F2 | 64 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
| wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0331P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 0.97 | (Δ/σ)max = 0.003 |
| 13246 reflections | Δρmax = 1.46 e Å−3 |
| 482 parameters | Δρmin = −1.46 e Å−3 |
Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Os1 | 0.64030 (2) | 0.79000 (2) | 0.83741 (2) | 0.04272 (5) | |
| Os2 | 0.77751 (2) | 0.87250 (2) | 0.97335 (2) | 0.05053 (6) | |
| Os3 | 0.75404 (2) | 0.93459 (2) | 0.81633 (2) | 0.05645 (6) | |
| As1 | 0.58467 (3) | 0.66988 (3) | 0.90375 (2) | 0.04018 (9) | |
| S1 | 0.26975 (11) | 0.78176 (13) | 1.07849 (11) | 0.0909 (6) | |
| S2 | 0.3328 (6) | 0.3694 (4) | 0.6797 (4) | 0.098 (2) | 0.612 (12) |
| C20 | 0.3547 (12) | 0.2721 (10) | 0.7360 (9) | 0.126 (4) | 0.612 (12) |
| H20A | 0.3099 | 0.2281 | 0.7089 | 0.189* | 0.612 (12) |
| H20B | 0.3465 | 0.2829 | 0.7865 | 0.189* | 0.612 (12) |
| H20C | 0.4197 | 0.2528 | 0.7429 | 0.189* | 0.612 (12) |
| S2X | 0.3528 (7) | 0.3392 (6) | 0.7063 (7) | 0.089 (3) | 0.388 (12) |
| C20X | 0.252 (2) | 0.3784 (14) | 0.6533 (15) | 0.126 (4) | 0.388 (12) |
| H20D | 0.2008 | 0.3392 | 0.6530 | 0.189* | 0.388 (12) |
| H20E | 0.2544 | 0.3862 | 0.6005 | 0.189* | 0.388 (12) |
| H20F | 0.2414 | 0.4336 | 0.6743 | 0.189* | 0.388 (12) |
| S3 | 0.9056 (13) | 0.4559 (13) | 1.1746 (11) | 0.102 (4) | 0.620 (9) |
| C21 | 0.8517 (8) | 0.4338 (9) | 1.2521 (7) | 0.104 (3) | 0.620 (9) |
| H21A | 0.8994 | 0.4082 | 1.2963 | 0.156* | 0.620 (9) |
| H21B | 0.7984 | 0.3943 | 1.2329 | 0.156* | 0.620 (9) |
| H21C | 0.8289 | 0.4872 | 1.2680 | 0.156* | 0.620 (9) |
| S3X | 0.905 (2) | 0.4698 (19) | 1.1841 (16) | 0.083 (4) | 0.380 (9) |
| C21X | 0.9804 (14) | 0.4194 (15) | 1.1371 (12) | 0.104 (3) | 0.380 (9) |
| H21D | 1.0389 | 0.4004 | 1.1757 | 0.156* | 0.380 (9) |
| H21E | 0.9960 | 0.4598 | 1.1019 | 0.156* | 0.380 (9) |
| H21F | 0.9474 | 0.3701 | 1.1079 | 0.156* | 0.380 (9) |
| O1 | 0.7863 (3) | 0.6672 (3) | 0.7993 (2) | 0.0725 (10) | |
| O2 | 0.5161 (3) | 0.7732 (3) | 0.6676 (2) | 0.0875 (13) | |
| O3 | 0.4744 (3) | 0.9005 (3) | 0.8608 (3) | 0.0838 (12) | |
| O4 | 0.9236 (3) | 0.7338 (4) | 0.9578 (3) | 0.1041 (16) | |
| O5 | 0.7750 (4) | 0.7808 (3) | 1.1233 (3) | 0.0938 (14) | |
| O6 | 0.6178 (4) | 0.9914 (3) | 0.9960 (3) | 0.0998 (15) | |
| O7 | 0.9269 (3) | 1.0144 (3) | 1.0409 (3) | 0.0917 (14) | |
| O8 | 0.9216 (5) | 0.8158 (4) | 0.8063 (4) | 0.136 (2) | |
| O9 | 0.6690 (7) | 0.9423 (4) | 0.6384 (3) | 0.152 (3) | |
| O10 | 0.5906 (3) | 1.0542 (3) | 0.8289 (2) | 0.0752 (11) | |
| O11 | 0.8903 (3) | 1.0898 (3) | 0.8460 (3) | 0.0991 (15) | |
| C1 | 0.4875 (3) | 0.6994 (3) | 0.9544 (3) | 0.0444 (9) | |
| C2 | 0.4001 (3) | 0.6577 (3) | 0.9364 (3) | 0.0555 (12) | |
| H2A | 0.3860 | 0.6135 | 0.8992 | 0.067* | |
| C3 | 0.3318 (3) | 0.6811 (4) | 0.9734 (3) | 0.0598 (12) | |
| H3A | 0.2727 | 0.6520 | 0.9605 | 0.072* | |
| C4 | 0.3507 (3) | 0.7467 (3) | 1.0290 (3) | 0.0520 (11) | |
| C5 | 0.4391 (3) | 0.7880 (3) | 1.0464 (3) | 0.0583 (12) | |
| H5A | 0.4534 | 0.8322 | 1.0838 | 0.070* | |
| C6 | 0.5069 (3) | 0.7657 (3) | 1.0100 (3) | 0.0538 (11) | |
| H6A | 0.5658 | 0.7951 | 1.0226 | 0.065* | |
| C7 | 0.5209 (3) | 0.5744 (3) | 0.8363 (2) | 0.0442 (9) | |
| C8 | 0.5417 (4) | 0.4876 (3) | 0.8579 (3) | 0.0527 (10) | |
| H8A | 0.5917 | 0.4744 | 0.9034 | 0.063* | |
| C9 | 0.4893 (4) | 0.4213 (4) | 0.8128 (3) | 0.0666 (14) | |
| H9A | 0.5053 | 0.3638 | 0.8272 | 0.080* | |
| C10 | 0.4135 (4) | 0.4392 (4) | 0.7466 (3) | 0.0651 (14) | |
| C11 | 0.3932 (4) | 0.5262 (4) | 0.7243 (3) | 0.0690 (14) | |
| H11A | 0.3424 | 0.5395 | 0.6794 | 0.083* | |
| C12 | 0.4478 (4) | 0.5918 (4) | 0.7684 (3) | 0.0582 (12) | |
| H12A | 0.4350 | 0.6492 | 0.7520 | 0.070* | |
| C13 | 0.6804 (3) | 0.6093 (3) | 0.9873 (2) | 0.0421 (9) | |
| C14 | 0.7659 (4) | 0.5830 (4) | 0.9766 (3) | 0.0617 (13) | |
| H14A | 0.7786 | 0.5965 | 0.9299 | 0.074* | |
| C15 | 0.8332 (4) | 0.5369 (4) | 1.0342 (3) | 0.0682 (14) | |
| H15A | 0.8899 | 0.5181 | 1.0252 | 0.082* | |
| C16 | 0.8178 (3) | 0.5182 (4) | 1.1049 (3) | 0.0589 (12) | |
| C17 | 0.7331 (4) | 0.5453 (3) | 1.1170 (3) | 0.0615 (13) | |
| H17A | 0.7214 | 0.5336 | 1.1644 | 0.074* | |
| C18 | 0.6649 (4) | 0.5903 (3) | 1.0575 (3) | 0.0559 (11) | |
| H18A | 0.6074 | 0.6080 | 1.0657 | 0.067* | |
| C19 | 0.1568 (4) | 0.7396 (5) | 1.0225 (4) | 0.090 (2) | |
| H19A | 0.1085 | 0.7550 | 1.0468 | 0.135* | |
| H19B | 0.1610 | 0.6774 | 1.0198 | 0.135* | |
| H19C | 0.1394 | 0.7634 | 0.9703 | 0.135* | |
| C22 | 0.7360 (4) | 0.7139 (3) | 0.8156 (3) | 0.0518 (10) | |
| C23 | 0.5636 (4) | 0.7775 (3) | 0.7325 (3) | 0.0603 (12) | |
| C24 | 0.5387 (4) | 0.8629 (3) | 0.8546 (3) | 0.0536 (11) | |
| C25 | 0.8686 (4) | 0.7860 (4) | 0.9595 (3) | 0.0687 (15) | |
| C26 | 0.7747 (4) | 0.8120 (4) | 1.0660 (4) | 0.0670 (14) | |
| C27 | 0.6752 (4) | 0.9480 (4) | 0.9840 (3) | 0.0648 (13) | |
| C28 | 0.8726 (4) | 0.9610 (4) | 1.0160 (3) | 0.0653 (13) | |
| C29 | 0.8587 (6) | 0.8578 (4) | 0.8105 (5) | 0.094 (2) | |
| C30 | 0.7036 (7) | 0.9381 (4) | 0.7049 (4) | 0.095 (2) | |
| C31 | 0.6500 (4) | 1.0078 (3) | 0.8269 (3) | 0.0557 (11) | |
| C32 | 0.8418 (4) | 1.0322 (4) | 0.8361 (4) | 0.0701 (15) |
Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Os1 | 0.04402 (9) | 0.04182 (9) | 0.04327 (10) | 0.00121 (7) | 0.01478 (7) | 0.00311 (6) |
| Os2 | 0.04408 (9) | 0.05623 (11) | 0.05050 (11) | −0.00492 (8) | 0.01333 (7) | −0.00148 (8) |
| Os3 | 0.06879 (12) | 0.04738 (10) | 0.06249 (13) | −0.00426 (9) | 0.03387 (10) | 0.00544 (8) |
| As1 | 0.0409 (2) | 0.0400 (2) | 0.0403 (2) | 0.00060 (16) | 0.01330 (17) | −0.00004 (16) |
| S1 | 0.0575 (8) | 0.1229 (15) | 0.1047 (13) | −0.0127 (8) | 0.0434 (8) | −0.0478 (11) |
| S2 | 0.127 (5) | 0.084 (4) | 0.081 (3) | −0.049 (4) | 0.029 (3) | −0.031 (2) |
| C20 | 0.144 (9) | 0.087 (7) | 0.124 (9) | −0.049 (7) | 0.006 (8) | −0.023 (6) |
| S2X | 0.094 (4) | 0.058 (5) | 0.114 (7) | −0.028 (3) | 0.028 (4) | −0.025 (3) |
| C20X | 0.144 (9) | 0.087 (7) | 0.124 (9) | −0.049 (7) | 0.006 (8) | −0.023 (6) |
| S3 | 0.070 (4) | 0.142 (10) | 0.075 (5) | 0.025 (5) | −0.007 (3) | 0.036 (5) |
| C21 | 0.074 (5) | 0.134 (9) | 0.090 (7) | 0.001 (5) | 0.005 (4) | 0.032 (6) |
| S3X | 0.079 (7) | 0.097 (5) | 0.066 (6) | 0.032 (4) | 0.014 (5) | 0.027 (5) |
| C21X | 0.074 (5) | 0.134 (9) | 0.090 (7) | 0.001 (5) | 0.005 (4) | 0.032 (6) |
| O1 | 0.076 (2) | 0.069 (2) | 0.081 (3) | 0.018 (2) | 0.037 (2) | −0.0059 (19) |
| O2 | 0.089 (3) | 0.111 (4) | 0.047 (2) | 0.008 (3) | −0.001 (2) | 0.008 (2) |
| O3 | 0.067 (2) | 0.075 (3) | 0.117 (4) | 0.022 (2) | 0.040 (2) | 0.009 (2) |
| O4 | 0.065 (2) | 0.116 (4) | 0.117 (4) | 0.026 (3) | 0.007 (3) | −0.020 (3) |
| O5 | 0.107 (3) | 0.103 (3) | 0.062 (3) | −0.028 (3) | 0.013 (2) | 0.019 (2) |
| O6 | 0.098 (3) | 0.112 (4) | 0.095 (3) | 0.033 (3) | 0.038 (3) | −0.018 (3) |
| O7 | 0.086 (3) | 0.099 (3) | 0.097 (3) | −0.044 (3) | 0.038 (2) | −0.028 (3) |
| O8 | 0.134 (4) | 0.092 (4) | 0.239 (7) | 0.029 (3) | 0.141 (5) | 0.042 (4) |
| O9 | 0.286 (9) | 0.112 (4) | 0.062 (4) | −0.028 (5) | 0.059 (5) | −0.002 (3) |
| O10 | 0.065 (2) | 0.065 (2) | 0.083 (3) | 0.003 (2) | 0.005 (2) | −0.0114 (19) |
| O11 | 0.090 (3) | 0.070 (3) | 0.143 (4) | −0.025 (2) | 0.043 (3) | 0.016 (3) |
| C1 | 0.045 (2) | 0.041 (2) | 0.049 (2) | 0.0043 (17) | 0.0162 (18) | −0.0003 (17) |
| C2 | 0.048 (2) | 0.059 (3) | 0.061 (3) | −0.012 (2) | 0.019 (2) | −0.019 (2) |
| C3 | 0.044 (2) | 0.068 (3) | 0.072 (3) | −0.018 (2) | 0.024 (2) | −0.017 (2) |
| C4 | 0.042 (2) | 0.060 (3) | 0.057 (3) | 0.003 (2) | 0.019 (2) | −0.004 (2) |
| C5 | 0.052 (2) | 0.063 (3) | 0.067 (3) | −0.010 (2) | 0.027 (2) | −0.022 (2) |
| C6 | 0.043 (2) | 0.062 (3) | 0.060 (3) | −0.012 (2) | 0.020 (2) | −0.015 (2) |
| C7 | 0.047 (2) | 0.048 (2) | 0.038 (2) | 0.0006 (18) | 0.0132 (17) | −0.0042 (16) |
| C8 | 0.062 (3) | 0.044 (2) | 0.054 (3) | −0.001 (2) | 0.021 (2) | −0.0018 (19) |
| C9 | 0.084 (4) | 0.053 (3) | 0.070 (4) | −0.008 (3) | 0.036 (3) | −0.013 (2) |
| C10 | 0.069 (3) | 0.067 (3) | 0.067 (4) | −0.020 (3) | 0.032 (3) | −0.028 (3) |
| C11 | 0.065 (3) | 0.087 (4) | 0.050 (3) | −0.010 (3) | 0.010 (2) | −0.018 (3) |
| C12 | 0.067 (3) | 0.058 (3) | 0.047 (3) | −0.001 (2) | 0.012 (2) | −0.001 (2) |
| C13 | 0.043 (2) | 0.041 (2) | 0.042 (2) | −0.0020 (16) | 0.0122 (17) | −0.0006 (16) |
| C14 | 0.057 (3) | 0.077 (4) | 0.057 (3) | 0.014 (2) | 0.027 (2) | 0.014 (2) |
| C15 | 0.052 (3) | 0.083 (4) | 0.074 (4) | 0.019 (3) | 0.025 (3) | 0.017 (3) |
| C16 | 0.046 (2) | 0.068 (3) | 0.052 (3) | 0.002 (2) | −0.001 (2) | 0.005 (2) |
| C17 | 0.069 (3) | 0.069 (3) | 0.042 (3) | 0.001 (3) | 0.010 (2) | 0.008 (2) |
| C18 | 0.057 (3) | 0.065 (3) | 0.049 (3) | 0.012 (2) | 0.021 (2) | 0.010 (2) |
| C19 | 0.049 (3) | 0.130 (6) | 0.100 (5) | −0.005 (3) | 0.037 (3) | −0.012 (4) |
| C22 | 0.056 (2) | 0.055 (3) | 0.047 (3) | 0.000 (2) | 0.020 (2) | −0.0001 (19) |
| C23 | 0.064 (3) | 0.058 (3) | 0.061 (3) | 0.006 (2) | 0.022 (3) | 0.012 (2) |
| C24 | 0.052 (2) | 0.047 (3) | 0.064 (3) | 0.002 (2) | 0.020 (2) | 0.004 (2) |
| C25 | 0.044 (2) | 0.080 (4) | 0.076 (4) | 0.001 (3) | 0.009 (2) | −0.012 (3) |
| C26 | 0.057 (3) | 0.073 (4) | 0.065 (4) | −0.017 (3) | 0.010 (3) | 0.001 (3) |
| C27 | 0.071 (3) | 0.073 (4) | 0.051 (3) | 0.000 (3) | 0.019 (3) | −0.003 (2) |
| C28 | 0.058 (3) | 0.075 (4) | 0.065 (3) | −0.015 (3) | 0.022 (3) | −0.011 (3) |
| C29 | 0.106 (5) | 0.061 (4) | 0.152 (7) | 0.002 (3) | 0.094 (5) | 0.016 (4) |
| C30 | 0.162 (7) | 0.064 (4) | 0.072 (5) | −0.015 (4) | 0.054 (5) | −0.001 (3) |
| C31 | 0.059 (3) | 0.050 (3) | 0.054 (3) | −0.007 (2) | 0.012 (2) | −0.002 (2) |
| C32 | 0.068 (3) | 0.063 (3) | 0.084 (4) | −0.003 (3) | 0.029 (3) | 0.016 (3) |
Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Geometric parameters (Å, º)
| Os1—C23 | 1.872 (6) | O3—C24 | 1.131 (6) |
| Os1—C22 | 1.944 (5) | O4—C25 | 1.139 (7) |
| Os1—C24 | 1.950 (5) | O5—C26 | 1.129 (7) |
| Os1—As1 | 2.4603 (5) | O6—C27 | 1.137 (7) |
| Os1—Os3 | 2.8611 (3) | O7—C28 | 1.130 (6) |
| Os1—Os2 | 2.9150 (3) | O8—C29 | 1.139 (7) |
| Os2—C26 | 1.910 (6) | O9—C30 | 1.142 (8) |
| Os2—C28 | 1.921 (6) | O10—C31 | 1.128 (6) |
| Os2—C27 | 1.939 (6) | O11—C32 | 1.112 (7) |
| Os2—C25 | 1.943 (6) | C1—C2 | 1.368 (6) |
| Os2—Os3 | 2.8817 (4) | C1—C6 | 1.389 (6) |
| Os3—C30 | 1.898 (8) | C2—C3 | 1.396 (7) |
| Os3—C32 | 1.929 (6) | C2—H2A | 0.9300 |
| Os3—C31 | 1.938 (6) | C3—C4 | 1.383 (7) |
| Os3—C29 | 1.951 (7) | C3—H3A | 0.9300 |
| As1—C13 | 1.936 (4) | C4—C5 | 1.377 (6) |
| As1—C7 | 1.943 (4) | C5—C6 | 1.379 (6) |
| As1—C1 | 1.948 (4) | C5—H5A | 0.9300 |
| S1—C4 | 1.757 (5) | C6—H6A | 0.9300 |
| S1—C19 | 1.760 (6) | C7—C12 | 1.369 (6) |
| S2—C10 | 1.759 (8) | C7—C8 | 1.397 (6) |
| S2—C20 | 1.775 (17) | C8—C9 | 1.376 (7) |
| C20—H20A | 0.9600 | C8—H8A | 0.9300 |
| C20—H20B | 0.9600 | C9—C10 | 1.372 (8) |
| C20—H20C | 0.9600 | C9—H9A | 0.9300 |
| S2X—C20X | 1.59 (3) | C10—C11 | 1.400 (8) |
| S2X—C10 | 1.809 (10) | C11—C12 | 1.373 (7) |
| C20X—H20D | 0.9600 | C11—H11A | 0.9300 |
| C20X—H20E | 0.9600 | C12—H12A | 0.9300 |
| C20X—H20F | 0.9600 | C13—C14 | 1.372 (6) |
| S3—C16 | 1.765 (16) | C13—C18 | 1.372 (6) |
| S3—C21 | 1.82 (2) | C14—C15 | 1.377 (7) |
| C21—H21A | 0.9600 | C14—H14A | 0.9300 |
| C21—H21B | 0.9600 | C15—C16 | 1.380 (7) |
| C21—H21C | 0.9600 | C15—H15A | 0.9300 |
| S3X—C21X | 1.75 (4) | C16—C17 | 1.375 (8) |
| S3X—C16 | 1.75 (3) | C17—C18 | 1.393 (7) |
| C21X—H21D | 0.9600 | C17—H17A | 0.9300 |
| C21X—H21E | 0.9600 | C18—H18A | 0.9300 |
| C21X—H21F | 0.9600 | C19—H19A | 0.9600 |
| O1—C22 | 1.124 (6) | C19—H19B | 0.9600 |
| O2—C23 | 1.155 (6) | C19—H19C | 0.9600 |
| C23—Os1—C22 | 88.8 (2) | H21D—C21X—H21F | 109.5 |
| C23—Os1—C24 | 88.3 (2) | H21E—C21X—H21F | 109.5 |
| C22—Os1—C24 | 176.7 (2) | C2—C1—C6 | 118.8 (4) |
| C23—Os1—As1 | 102.89 (16) | C2—C1—As1 | 122.1 (3) |
| C22—Os1—As1 | 90.24 (14) | C6—C1—As1 | 119.1 (3) |
| C24—Os1—As1 | 88.87 (14) | C1—C2—C3 | 120.6 (4) |
| C23—Os1—Os3 | 97.90 (16) | C1—C2—H2A | 119.7 |
| C22—Os1—Os3 | 88.04 (14) | C3—C2—H2A | 119.7 |
| C24—Os1—Os3 | 93.91 (14) | C4—C3—C2 | 120.9 (4) |
| As1—Os1—Os3 | 159.100 (13) | C4—C3—H3A | 119.5 |
| C23—Os1—Os2 | 157.23 (16) | C2—C3—H3A | 119.5 |
| C22—Os1—Os2 | 94.70 (14) | C5—C4—C3 | 117.7 (4) |
| C24—Os1—Os2 | 88.54 (15) | C5—C4—S1 | 117.7 (4) |
| As1—Os1—Os2 | 99.586 (13) | C3—C4—S1 | 124.7 (4) |
| Os3—Os1—Os2 | 59.847 (8) | C4—C5—C6 | 121.9 (4) |
| C26—Os2—C28 | 101.9 (2) | C4—C5—H5A | 119.1 |
| C26—Os2—C27 | 89.2 (2) | C6—C5—H5A | 119.1 |
| C28—Os2—C27 | 90.9 (2) | C5—C6—C1 | 120.1 (4) |
| C26—Os2—C25 | 88.5 (3) | C5—C6—H6A | 120.0 |
| C28—Os2—C25 | 95.8 (2) | C1—C6—H6A | 120.0 |
| C27—Os2—C25 | 173.2 (2) | C12—C7—C8 | 118.3 (4) |
| C26—Os2—Os3 | 167.70 (16) | C12—C7—As1 | 119.5 (3) |
| C28—Os2—Os3 | 90.40 (17) | C8—C7—As1 | 121.9 (3) |
| C27—Os2—Os3 | 91.81 (16) | C9—C8—C7 | 120.8 (5) |
| C25—Os2—Os3 | 89.11 (19) | C9—C8—H8A | 119.6 |
| C26—Os2—Os1 | 108.61 (16) | C7—C8—H8A | 119.6 |
| C28—Os2—Os1 | 149.54 (17) | C10—C9—C8 | 120.6 (5) |
| C27—Os2—Os1 | 89.70 (16) | C10—C9—H9A | 119.7 |
| C25—Os2—Os1 | 85.01 (16) | C8—C9—H9A | 119.7 |
| Os3—Os2—Os1 | 59.148 (8) | C9—C10—C11 | 118.7 (5) |
| C30—Os3—C32 | 101.0 (3) | C9—C10—S2 | 130.7 (5) |
| C30—Os3—C31 | 91.4 (3) | C11—C10—S2 | 110.6 (5) |
| C32—Os3—C31 | 91.2 (2) | C9—C10—S2X | 109.6 (5) |
| C30—Os3—C29 | 91.0 (4) | C11—C10—S2X | 131.7 (6) |
| C32—Os3—C29 | 90.0 (3) | C12—C11—C10 | 120.3 (5) |
| C31—Os3—C29 | 177.1 (3) | C12—C11—H11A | 119.9 |
| C30—Os3—Os1 | 96.2 (2) | C10—C11—H11A | 119.9 |
| C32—Os3—Os1 | 162.78 (18) | C7—C12—C11 | 121.2 (5) |
| C31—Os3—Os1 | 86.62 (15) | C7—C12—H12A | 119.4 |
| C29—Os3—Os1 | 91.50 (18) | C11—C12—H12A | 119.4 |
| C30—Os3—Os2 | 157.2 (2) | C14—C13—C18 | 118.2 (4) |
| C32—Os3—Os2 | 101.86 (18) | C14—C13—As1 | 120.0 (3) |
| C31—Os3—Os2 | 87.73 (15) | C18—C13—As1 | 121.8 (3) |
| C29—Os3—Os2 | 89.4 (2) | C13—C14—C15 | 120.8 (5) |
| Os1—Os3—Os2 | 61.005 (6) | C13—C14—H14A | 119.6 |
| C13—As1—C7 | 101.94 (18) | C15—C14—H14A | 119.6 |
| C13—As1—C1 | 101.79 (18) | C14—C15—C16 | 120.9 (5) |
| C7—As1—C1 | 100.94 (18) | C14—C15—H15A | 119.5 |
| C13—As1—Os1 | 117.92 (12) | C16—C15—H15A | 119.5 |
| C7—As1—Os1 | 115.62 (13) | C17—C16—C15 | 119.0 (4) |
| C1—As1—Os1 | 116.07 (12) | C17—C16—S3X | 117.6 (10) |
| C4—S1—C19 | 104.5 (3) | C15—C16—S3X | 123.1 (10) |
| C10—S2—C20 | 99.4 (6) | C17—C16—S3 | 122.7 (7) |
| S2—C20—H20A | 109.5 | C15—C16—S3 | 118.2 (7) |
| S2—C20—H20B | 109.5 | C16—C17—C18 | 119.3 (5) |
| H20A—C20—H20B | 109.5 | C16—C17—H17A | 120.3 |
| S2—C20—H20C | 109.5 | C18—C17—H17A | 120.3 |
| H20A—C20—H20C | 109.5 | C13—C18—C17 | 121.7 (5) |
| H20B—C20—H20C | 109.5 | C13—C18—H18A | 119.1 |
| C20X—S2X—C10 | 99.1 (9) | C17—C18—H18A | 119.1 |
| S2X—C20X—H20D | 109.5 | S1—C19—H19A | 109.5 |
| S2X—C20X—H20E | 109.5 | S1—C19—H19B | 109.5 |
| H20D—C20X—H20E | 109.5 | H19A—C19—H19B | 109.5 |
| S2X—C20X—H20F | 109.5 | S1—C19—H19C | 109.5 |
| H20D—C20X—H20F | 109.5 | H19A—C19—H19C | 109.5 |
| H20E—C20X—H20F | 109.5 | H19B—C19—H19C | 109.5 |
| C16—S3—C21 | 104.6 (10) | O1—C22—Os1 | 175.3 (4) |
| S3—C21—H21A | 109.5 | O2—C23—Os1 | 177.4 (5) |
| S3—C21—H21B | 109.5 | O3—C24—Os1 | 174.4 (5) |
| H21A—C21—H21B | 109.5 | O4—C25—Os2 | 174.3 (6) |
| S3—C21—H21C | 109.5 | O5—C26—Os2 | 175.7 (5) |
| H21A—C21—H21C | 109.5 | O6—C27—Os2 | 175.0 (5) |
| H21B—C21—H21C | 109.5 | O7—C28—Os2 | 178.4 (5) |
| C21X—S3X—C16 | 101.8 (16) | O8—C29—Os3 | 177.2 (5) |
| S3X—C21X—H21D | 109.5 | O9—C30—Os3 | 176.4 (8) |
| S3X—C21X—H21E | 109.5 | O10—C31—Os3 | 174.9 (5) |
| H21D—C21X—H21E | 109.5 | O11—C32—Os3 | 177.9 (6) |
| S3X—C21X—H21F | 109.5 | ||
| C6—C1—C2—C3 | −0.3 (8) | C9—C10—C11—C12 | −0.6 (8) |
| As1—C1—C2—C3 | −179.5 (4) | S2—C10—C11—C12 | −179.9 (5) |
| C1—C2—C3—C4 | 0.1 (9) | S2X—C10—C11—C12 | 175.7 (7) |
| C2—C3—C4—C5 | 0.0 (8) | C8—C7—C12—C11 | 2.9 (7) |
| C2—C3—C4—S1 | 179.5 (4) | As1—C7—C12—C11 | −171.9 (4) |
| C19—S1—C4—C5 | 163.2 (5) | C10—C11—C12—C7 | −2.2 (8) |
| C19—S1—C4—C3 | −16.3 (6) | C18—C13—C14—C15 | 1.6 (8) |
| C3—C4—C5—C6 | 0.3 (8) | As1—C13—C14—C15 | −177.4 (5) |
| S1—C4—C5—C6 | −179.3 (4) | C13—C14—C15—C16 | −2.0 (9) |
| C4—C5—C6—C1 | −0.5 (8) | C14—C15—C16—C17 | 1.0 (9) |
| C2—C1—C6—C5 | 0.6 (8) | C14—C15—C16—S3X | −173.2 (14) |
| As1—C1—C6—C5 | 179.7 (4) | C14—C15—C16—S3 | 178.0 (9) |
| C12—C7—C8—C9 | −0.9 (7) | C21X—S3X—C16—C17 | 163.8 (12) |
| As1—C7—C8—C9 | 173.8 (4) | C21X—S3X—C16—C15 | −22 (2) |
| C7—C8—C9—C10 | −1.9 (8) | C21—S3—C16—C17 | 4.3 (15) |
| C8—C9—C10—C11 | 2.6 (8) | C21—S3—C16—C15 | −172.7 (8) |
| C8—C9—C10—S2 | −178.3 (5) | C15—C16—C17—C18 | 0.3 (8) |
| C8—C9—C10—S2X | −174.5 (6) | S3X—C16—C17—C18 | 174.9 (13) |
| C20—S2—C10—C9 | 15.4 (10) | S3—C16—C17—C18 | −176.6 (9) |
| C20—S2—C10—C11 | −165.3 (8) | C14—C13—C18—C17 | −0.3 (7) |
| C20X—S2X—C10—C9 | 161.1 (12) | As1—C13—C18—C17 | 178.7 (4) |
| C20X—S2X—C10—C11 | −15.4 (15) | C16—C17—C18—C13 | −0.7 (8) |
Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C5—H5A···O10i | 0.93 | 2.55 | 3.41 (1) | 154 |
Symmetry code: (i) −x+1, −y+2, −z+2.
References
- Adams, C. J., Bruce, M. I., Duckworth, P. A., Humphrey, P. A., Kühl, O., Tiekink, E. R. T., Cullen, W. R., Braunstein, P., Coco Cea, S., Skelton, B. W. & White, A. H. (1994). J. Organomet. Chem.467, 251–281.
- Ang, H. G., Kwik, W. L., Leong, W. K. & Potenza, J. A. (1989). Acta Cryst. C45, 1713–1715. [DOI] [PubMed]
- Biradha, K., Hansen, V. M., Leong, W. K., Pomeroy, R. K. & Zaworotko, M. J. (2000). J. Cluster Sci.11, 285–306.
- Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem.347, 181–205.
- Bruce, M. I., Liddell, M. J., Hughes, C. A., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem.347, 157–180.
- Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caracelli, I., Zukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2016). CrystEngComm18, 6960–6978.
- Chen, Y., Zhen, Q., Meng, F.-J. Y. P., Yu, P. & Xu, C. (2024). Chem. Rev.124, 13370–13396. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hansen, V. M., Ma, A. K., Biradha, K., Pomeroy, R. K. & Zaworotko, M. J. (1998). Organometallics17, 5267–5274.
- Honaker, M. T., Hovland, J. M. & Nicholas Salvatore, R. (2007). Curr. Org. Synth.4, 31–45.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
- Nicholls, J. N., Vargas, M. D., Deeming, A. J. & Kabir, S. E. (1990). Inorg. Synth. 28, 232-235.
- Oh, S. P., Li, Y.-Z. & Leong, W. K. (2015). J. Organomet. Chem.783, 46–48.
- Raithby, P. R. (2024). J. Organomet. Chem.1005, 122979.
- Shawkataly, O. B., Khan, I. A., Sirat, S. S., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1047–m1048. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006541/tx2100sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006541/tx2100Isup2.hkl
CCDC reference: 2474325
Additional supporting information: crystallographic information; 3D view; checkCIF report





