Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Jul 29;81(Pt 8):765–769. doi: 10.1107/S2056989025006541

Synthesis, crystal structure, and Hirshfeld surface analysis of undeca­carbon­yl{tris­[4-(methyl­sulfan­yl)phen­yl]arsine}-triangulo-triosmium(0)

Siti Syaida Sirat a,b,*, Mohd Mustaqim Rosli c, Sang Loon Tan d, Ibrahim Abdul Razak c, Omar bin Shawkataly e
Editor: B Therrienf
PMCID: PMC12326488  PMID: 40777524

The title compound comprises a triangle of Os atoms, two of which are bonded to four carbonyl ligands. The third Os atom is bound to three carbonyl ligands, and the arsine ligand [As(C6H4SCH3)3] occupies the equatorial position. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds.

Keywords: osmium, crystal-structure, cluster, Hirshfeld surface analysis

Abstract

The title compound, [Os3(C21H21AsS3)(CO)11] or [Os3{As(C6H4SCH3)3}(CO)11], comprises a triangle of Os atoms, two of which are bonded to four carbonyl ligands. The third Os atom is bound to three carbonyl ligands, and the arsine ligand [As(C6H4SCH3)3] occupies the equatorial position. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis was performed. Two out of the three methyl­sulfanyl groups are disordered over two sites with final refinement occupancy ratios of 0.612 (12):0.388 (12) and 0.620 (9):0.380 (9).

1. Chemical context

The chemistry of triosmium carbonyl clusters with group 15 ligands has been extensively studied (Raithby, 2024). The majority of reported structures have focused on tertiary phosphine ligands (PR3) with R = alkyl or aryl groups, with fewer examples involving tertiary arsine ligands (AsPR3) (webCSD, accessed May 2025; Groom et al., 2016). These ligands stabilize low oxidation states of metal centres and can be used to modify both the electronic and steric properties of resulting coordination compounds (Honaker et al., 2007). Numerous triosmium carbonyl clusters containing one, two, or three PR3 have been synthesized and fully characterised (Bruce et al., 1988a,b; Biradha et al., 2000). Os3(CO)11(PR3) is the most reported crystal structure among derivatives in this series, the earlier ones being Os3(CO)11(PPh3), and Os3(CO)11{PPh(OMe)2}, which were prepared in refluxing toluene for more than 10 h (Bruce et al., 1988a). Biradha and co-workers reported a series of Os3(CO)11(PR3) with R = F, OPh, Et, p-C6H4Me, o-C6H4Me, p-C6H4(CF3) and C6H11 (Biradha et al., 2000) by reacting Os3(CO)11(CH3CN) with PR3 in di­chloro­methane for 15 min (Hansen et al., 1998). According to these structures, the steric and electronic effects of PR3 often result in variations of the Os—Os bond that is cis to PR3 and the Os—P bond length (Biradha et al., 2000). However, there are not many reactions conducted on Os3(CO)12 with AsPR3. Os3(CO)11(AsPh3) is the only reported structure in this series (Oh et al., 2015). Thus, we are currently exploring the reaction between Os3(CO)12 and the AsPR3 ligand, focusing on how such ligands influence structural parameters within the triangular osmium cluster. We anti­cipate that the resulting compound will serve as a representative example contributing to the broader understanding of this structural series Os3(CO)11(P/AsR3). Herein, we report the synthesis of Os3(CO)11{As(C6H4SCH3)3}, 1, and its examination using single-crystal X-ray diffraction and Hirshfeld surface analysis.1.

2. Structural commentary

The mol­ecular structure of 1 is shown in Fig. 1. The mol­ecule comprises an Os3 triangle with one Os centre being equator­ially coordinated by the tris­{4-(methyl­sulfan­yl)phen­yl}arsine ligand [As(C6H4SCH3)3]. The Os—Os bond lengths in the Os3 triangle are not equivalent, with the Os1—Os2 bond [2.9150 (3) Å] being longer than the Os1—Os3 and Os2—Os3 bonds, at 2.8611 (3) and 2.8817 (4) Å, respectively. The longest Os—Os bond is cis to As(C6H4SCH3)3 and comparable with a similar Os—Os bond [2.9148 (7) Å] in Os3(CO)11AsPh3 (Oh et al., 2015). These observations are attributed to the steric and electronic effects of the arsine ligand on the Os—Os bonds. The Os—As bond length in 1 is 2.4603 (5) Å and almost similar to the related bond in Os3(CO)11(AsPh3) 2.4670 (9) Å (Oh et al., 2015). The Os—C(CO) bond lengths are in the range 1.872 (6)–1.951 (7) Å. The equatorial Os—C≡O bond angles range from 175.7 (5) to 178.4 (5)°, whereas the axial Os—C≡O bond angles range from 174.3 (6) to 177.2 (5)°.

Figure 1.

Figure 1

The mol­ecular structure of 1 with 30% displacement ellipsoids.

3. Supra­molecular features

In the crystal, C5—H5A⋯O10 inter­molecular inter­actions (Table 1, Fig. 2) lead to the formation of an inversion dimer between two mol­ecules. This dimer is further consolidated by a short S3⋯O10 contact [3.21 (2) Å, symmetry code: Inline graphic + x, Inline graphic − y, Inline graphic + z].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O10i 0.93 2.55 3.41 (1) 154

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

The crystal structure of the title compound viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

4. Hirshfeld surface analysis

The major and minor components of the disorder in 1 were subjected to Hirshfeld surface analysis using CrystalExplorer21 (Spackman et al., 2021). This is based on the procedures described in the literature (Tan et al., 2019) to better understand the nature of the inter­molecular inter­actions that exist in the crystal.

The dnorm mapping reveals a relatively simple landscape of mol­ecular inter­actions, with only a few red spots being observed on the Hirshfeld surfaces. For the major component, the red spots originated from H5A, O10, H21B, C20, S3, O7, H20A, and C21 (Fig. 3a), corresponding to the close contacts for C5—H5A⋯O10, C21—H21B⋯C20, S3⋯O10, O7⋯O7, and C20—H20A⋯C21 (Table 2). The respective deviations of these contacts from the sum of the van der Waals radii are 0.20, 0.15, 0.11, 0.09 and 0.04 Å, reflecting the intensity of the corresponding red spots. For the minor component, red spots are detected on the disorder fragments of S3X and H21D, corresponding to S3X⋯O10 and C21X—H21D⋯O1 in addition to the intrinsic C5—H5A⋯O10 and O7⋯O7 close contacts for 1 (Fig. 3b). The deviations between the dnorm contact distance and the sum of the van der Waals radii for S3X⋯O10 and H21D⋯O1 are 0.19 and 0.06 Å, respectively (Table 3).

Figure 3.

Figure 3

Two views of the dnorm map showing the atoms with close contacts, as indicated by the corresponding red spots, with varying intensities for (a) the major component and (b) the minor component of 1.

Table 2. The dnorm contact distances (Å, adjusted to neutron values) for all identified inter­actions present in the major and minor components of 1 with respect to the corresponding sum of van der Waals radii of the relevant contact atoms.

Contact dnorm Distance ΣvdW radii Δ(ΣvdW – dnorm distance) Symmetry operation
Major        
C5–H5A⋯O10 2.41 2.61 0.20 1 − x, 2 − y, 2 − z
C20–H20A⋯C21 2.57 2.61 0.04 Inline graphic + x, Inline graphic − y, −Inline graphic + z
C21–H21B⋯C20 2.64 2.79 0.15 Inline graphic + x, Inline graphic − y, Inline graphic + z
S3⋯O10 3.21 3.32 0.11 Inline graphic + x, Inline graphic − y, Inline graphic + z
O7⋯O7 2.95 3.04 0.09 2 − x, 2 − y, 2 − z
Minor        
C5–H5A⋯O10 2.41 2.61 0.20 1 − x, 2 − y, 2 − z
S3X⋯O10 3.13 3.32 0.19 Inline graphic + x, Inline graphic − y, Inline graphic + z
O7⋯O7 2.95 3.04 0.09 2 − x, 2 − y, 2 − z
C21X–H21D⋯O1 2.55 2.61 0.06 2 − x, 1 − y, 2 − z

Table 3. Experimental details.

Crystal data
Chemical formula [Os3(C21H21AsS3)(CO)11]
M r 1323.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 297
a, b, c (Å) 14.5019 (15), 15.3759 (16), 17.8575 (19)
β (°) 107.870 (2)
V3) 3789.8 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.12
Crystal size (mm) 0.41 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker APEX Duo CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.024, 0.076
No. of measured, independent and observed [I > 2σ(I)] reflections 52142, 13246, 8766
R int 0.054
(sin θ/λ)max−1) 0.749
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 0.97
No. of reflections 13246
No. of parameters 482
No. of restraints 64
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.46, −1.46

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), SHELXTL (Sheldrick, 2015a) and PLATON (Spek, 2020).

Apart from the close contacts indicated by red spots, another significant feature emerges from the shape-index mapping on the Hirshfeld surface. This mapping highlights a complementary inter­molecular stacking inter­action between C32—O11 and the C7–C12 ring (symmetry code: Inline graphic − x, Inline graphic + y, Inline graphic − z), providing evidence of a lone pair⋯π inter­action (Fig. 4). This finding aligns with the analysis from PLATON (Spek, 2020), which identified a contact distance of 3.867 (5) Å between O11 and the aromatic π-ring, along with a C≡O⋯π angle of 94.0 (4)°. Studies suggested that such inter­actions typically occur within a distance range of 3.0–4.5 Å, with angles varying between 60 and 160° (Caracelli et al., 2016; Chen et al., 2024), depending on the specific lone-pair donor and π-acceptor involved.

Figure 4.

Figure 4

The partial Hirshfeld surface mapped with shape-index for C32–O11 (top) and the C7–C12 ring (bottom; Inline graphic − x, Inline graphic + y, Inline graphic − z), showing the shape complementarity between the inter­molecular stacking fragments of 1. The remaining parts of the mol­ecules were omitted for clarity.

The major and minor components of 1 were subjected to 2D fingerprint plot analysis to qu­anti­tatively assess close contacts within the structure. Both exhibit distinct shield- and paw-like fingerprint profiles, which, upon decomposition, reveal symmetrical H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, O⋯S/S⋯O, O⋯O, and O⋯C/C⋯O inter­actions (Fig. 5), indicating homogeneous reciprocal contacts between inter­nal-XY-external and external-XY-inter­nal inter­faces.

Figure 5.

Figure 5

The comparison of the overall and prominent decomposed fingerprint print plots (> 5%) delineated into H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, O⋯S/S⋯O, O⋯O, and O⋯C/C⋯O close contacts for the major (top) and minor (bottom) components of 1.

Slight deviations are observed in the decomposed fingerprint plots of H⋯H and O⋯S/S⋯O. The major component features a distinct H⋯H peak at a di + de of approximately 1.80 Å (H20A⋯H21A), whereas the minor component exhibits a broader profile with a larger di + de of about 2.30 Å (H21F⋯H19B). In the pincer-like decomposed fingerprint plots of O⋯S/S⋯O, the reciprocal contacts correspond to O10⋯S3 (di + de ≃ 3.21 Å) in the major component and O10⋯S3X (di + de ≃ 3.12 Å) in the minor component. Other fingerprint plots remain consistent across both components, with close contact distributions being as follows: H⋯O/O⋯H (34.3% vs 38.6%), H⋯H (20.5% vs 17.5%), H⋯C/C⋯H (10.0% vs 12.2%), O⋯S/S⋯O (9.2% vs 8.0%), O⋯O (9.1% vs 7.7%), and O⋯C/C⋯O (8.4% vs 7.7%), while the remaining less prominent contacts contribute to approximately 4.1% to 4.2% (Fig. 6).

Figure 6.

Figure 6

The percentage contributions of different close contacts to the Hirshfeld surfaces of the major and minor components of 1.

5. Database survey

A search of the Cambridge Structural Database (webCSD accessed May 2025; Groom et al., 2016) for the title compound returned no relevant hits. However, a search with generalized tertiary arsine ligand (AsR3) returned one hit [Os3(CO)11(AsPh3)] [CSD refcode YUCXEB; Oh et al., 2015). The structure of the title compound is very similar to that of Ru3(CO)11{As(C6H4SCH3)3} (SUXQEI; Shawkataly et al., 2010), in which tris­{4-(methyl­sulfan­yl)phen­yl}arsine [As(C6H4SCH3)3] is equatorially bonded to the metal centre. The structure is consistent with literature precedents for complexes with the general formula Os3(CO)11PR3 [HIYVUG (Hansen et al., 1998), MASPEB, MASPIF and MASPUR (Biradha et al., 2000), VADYEE (Bruce et al., 1988a, VAWWUL (Ang et al., 1989), YEDZOW and YEFCAN (Adams et al., 1994)].

6. Synthesis and crystallization

A solution of Os3(CO)11(CH3CN) (Nicholls et al., 1990; Hansen et al., 1998) (80 mg, 0.087 mmol) and As(C6H4SCH3)3 (60 mg, 0.13 mmol) in CH2Cl2 (25 ml) was stirred at room temperature for 60 min. The reaction was carried out under nitro­gen-free oxygen using standard Schlenk techniques. The solution was dried in vacuo, and the residue was chromatographed by preparative thin-layer chromatography on silica gel with C6H14/CH2Cl2 (3:2) as the eluent. Chromatographic separation afforded two bands: the first yellow band was identified as the starting material Os3(CO)12. The desired product Os3(CO)11{As(C6H4SCH3)3} was isolated as the second yellow band in 50% yield and recrystallized from CH2Cl2/CH3OH (1:3). IR (ATR): ν(CO) 2107 s, 2051 m, 2006 w, 1974 m, 1942 w cm−1.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93 or 0.96 Å (for methyl groups) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Two out of the three methyl­sulfanyl groups were disordered over two sites with a final refinement occupancy ratios of 0.612 (12):0.388 (12) and 0.620 (9):0.380 (9). Anisotropic displacement parameters and rigid-body restraints were applied to the disordered components. Due to poor agreement, reflections 020, Inline graphic33, 680, Inline graphic07, and 379 were omitted from the final cycles of refinement. Maximum and minimum residual electron densities of 1.46 and −1.46 e Å−3 were observed at 0.83 Å from Os1 and 0.70 Å from Os3, respectively.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006541/tx2100sup1.cif

e-81-00765-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006541/tx2100Isup2.hkl

CCDC reference: 2474325

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Dr Imthyaz Ahmed Khan for his contribution to the synthesis of the title compound. SSS thanks Universiti Teknologi MARA (UiTM) for providing the research facilities.

supplementary crystallographic information

Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Crystal data

[Os3(C21H21AsS3)(CO)11] F(000) = 2440
Mr = 1323.19 Dx = 2.319 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.5019 (15) Å Cell parameters from 9975 reflections
b = 15.3759 (16) Å θ = 2.7–27.7°
c = 17.8575 (19) Å µ = 11.12 mm1
β = 107.870 (2)° T = 297 K
V = 3789.8 (7) Å3 Plate, yellow
Z = 4 0.41 × 0.15 × 0.09 mm

Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Data collection

Bruker APEX Duo CCD area detector diffractometer 8766 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.054
φ and ω scans θmax = 32.2°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −20→21
Tmin = 0.024, Tmax = 0.076 k = −22→23
52142 measured reflections l = −25→26
13246 independent reflections

Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Refinement

Refinement on F2 64 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0331P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.003
13246 reflections Δρmax = 1.46 e Å3
482 parameters Δρmin = −1.46 e Å3

Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Os1 0.64030 (2) 0.79000 (2) 0.83741 (2) 0.04272 (5)
Os2 0.77751 (2) 0.87250 (2) 0.97335 (2) 0.05053 (6)
Os3 0.75404 (2) 0.93459 (2) 0.81633 (2) 0.05645 (6)
As1 0.58467 (3) 0.66988 (3) 0.90375 (2) 0.04018 (9)
S1 0.26975 (11) 0.78176 (13) 1.07849 (11) 0.0909 (6)
S2 0.3328 (6) 0.3694 (4) 0.6797 (4) 0.098 (2) 0.612 (12)
C20 0.3547 (12) 0.2721 (10) 0.7360 (9) 0.126 (4) 0.612 (12)
H20A 0.3099 0.2281 0.7089 0.189* 0.612 (12)
H20B 0.3465 0.2829 0.7865 0.189* 0.612 (12)
H20C 0.4197 0.2528 0.7429 0.189* 0.612 (12)
S2X 0.3528 (7) 0.3392 (6) 0.7063 (7) 0.089 (3) 0.388 (12)
C20X 0.252 (2) 0.3784 (14) 0.6533 (15) 0.126 (4) 0.388 (12)
H20D 0.2008 0.3392 0.6530 0.189* 0.388 (12)
H20E 0.2544 0.3862 0.6005 0.189* 0.388 (12)
H20F 0.2414 0.4336 0.6743 0.189* 0.388 (12)
S3 0.9056 (13) 0.4559 (13) 1.1746 (11) 0.102 (4) 0.620 (9)
C21 0.8517 (8) 0.4338 (9) 1.2521 (7) 0.104 (3) 0.620 (9)
H21A 0.8994 0.4082 1.2963 0.156* 0.620 (9)
H21B 0.7984 0.3943 1.2329 0.156* 0.620 (9)
H21C 0.8289 0.4872 1.2680 0.156* 0.620 (9)
S3X 0.905 (2) 0.4698 (19) 1.1841 (16) 0.083 (4) 0.380 (9)
C21X 0.9804 (14) 0.4194 (15) 1.1371 (12) 0.104 (3) 0.380 (9)
H21D 1.0389 0.4004 1.1757 0.156* 0.380 (9)
H21E 0.9960 0.4598 1.1019 0.156* 0.380 (9)
H21F 0.9474 0.3701 1.1079 0.156* 0.380 (9)
O1 0.7863 (3) 0.6672 (3) 0.7993 (2) 0.0725 (10)
O2 0.5161 (3) 0.7732 (3) 0.6676 (2) 0.0875 (13)
O3 0.4744 (3) 0.9005 (3) 0.8608 (3) 0.0838 (12)
O4 0.9236 (3) 0.7338 (4) 0.9578 (3) 0.1041 (16)
O5 0.7750 (4) 0.7808 (3) 1.1233 (3) 0.0938 (14)
O6 0.6178 (4) 0.9914 (3) 0.9960 (3) 0.0998 (15)
O7 0.9269 (3) 1.0144 (3) 1.0409 (3) 0.0917 (14)
O8 0.9216 (5) 0.8158 (4) 0.8063 (4) 0.136 (2)
O9 0.6690 (7) 0.9423 (4) 0.6384 (3) 0.152 (3)
O10 0.5906 (3) 1.0542 (3) 0.8289 (2) 0.0752 (11)
O11 0.8903 (3) 1.0898 (3) 0.8460 (3) 0.0991 (15)
C1 0.4875 (3) 0.6994 (3) 0.9544 (3) 0.0444 (9)
C2 0.4001 (3) 0.6577 (3) 0.9364 (3) 0.0555 (12)
H2A 0.3860 0.6135 0.8992 0.067*
C3 0.3318 (3) 0.6811 (4) 0.9734 (3) 0.0598 (12)
H3A 0.2727 0.6520 0.9605 0.072*
C4 0.3507 (3) 0.7467 (3) 1.0290 (3) 0.0520 (11)
C5 0.4391 (3) 0.7880 (3) 1.0464 (3) 0.0583 (12)
H5A 0.4534 0.8322 1.0838 0.070*
C6 0.5069 (3) 0.7657 (3) 1.0100 (3) 0.0538 (11)
H6A 0.5658 0.7951 1.0226 0.065*
C7 0.5209 (3) 0.5744 (3) 0.8363 (2) 0.0442 (9)
C8 0.5417 (4) 0.4876 (3) 0.8579 (3) 0.0527 (10)
H8A 0.5917 0.4744 0.9034 0.063*
C9 0.4893 (4) 0.4213 (4) 0.8128 (3) 0.0666 (14)
H9A 0.5053 0.3638 0.8272 0.080*
C10 0.4135 (4) 0.4392 (4) 0.7466 (3) 0.0651 (14)
C11 0.3932 (4) 0.5262 (4) 0.7243 (3) 0.0690 (14)
H11A 0.3424 0.5395 0.6794 0.083*
C12 0.4478 (4) 0.5918 (4) 0.7684 (3) 0.0582 (12)
H12A 0.4350 0.6492 0.7520 0.070*
C13 0.6804 (3) 0.6093 (3) 0.9873 (2) 0.0421 (9)
C14 0.7659 (4) 0.5830 (4) 0.9766 (3) 0.0617 (13)
H14A 0.7786 0.5965 0.9299 0.074*
C15 0.8332 (4) 0.5369 (4) 1.0342 (3) 0.0682 (14)
H15A 0.8899 0.5181 1.0252 0.082*
C16 0.8178 (3) 0.5182 (4) 1.1049 (3) 0.0589 (12)
C17 0.7331 (4) 0.5453 (3) 1.1170 (3) 0.0615 (13)
H17A 0.7214 0.5336 1.1644 0.074*
C18 0.6649 (4) 0.5903 (3) 1.0575 (3) 0.0559 (11)
H18A 0.6074 0.6080 1.0657 0.067*
C19 0.1568 (4) 0.7396 (5) 1.0225 (4) 0.090 (2)
H19A 0.1085 0.7550 1.0468 0.135*
H19B 0.1610 0.6774 1.0198 0.135*
H19C 0.1394 0.7634 0.9703 0.135*
C22 0.7360 (4) 0.7139 (3) 0.8156 (3) 0.0518 (10)
C23 0.5636 (4) 0.7775 (3) 0.7325 (3) 0.0603 (12)
C24 0.5387 (4) 0.8629 (3) 0.8546 (3) 0.0536 (11)
C25 0.8686 (4) 0.7860 (4) 0.9595 (3) 0.0687 (15)
C26 0.7747 (4) 0.8120 (4) 1.0660 (4) 0.0670 (14)
C27 0.6752 (4) 0.9480 (4) 0.9840 (3) 0.0648 (13)
C28 0.8726 (4) 0.9610 (4) 1.0160 (3) 0.0653 (13)
C29 0.8587 (6) 0.8578 (4) 0.8105 (5) 0.094 (2)
C30 0.7036 (7) 0.9381 (4) 0.7049 (4) 0.095 (2)
C31 0.6500 (4) 1.0078 (3) 0.8269 (3) 0.0557 (11)
C32 0.8418 (4) 1.0322 (4) 0.8361 (4) 0.0701 (15)

Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Os1 0.04402 (9) 0.04182 (9) 0.04327 (10) 0.00121 (7) 0.01478 (7) 0.00311 (6)
Os2 0.04408 (9) 0.05623 (11) 0.05050 (11) −0.00492 (8) 0.01333 (7) −0.00148 (8)
Os3 0.06879 (12) 0.04738 (10) 0.06249 (13) −0.00426 (9) 0.03387 (10) 0.00544 (8)
As1 0.0409 (2) 0.0400 (2) 0.0403 (2) 0.00060 (16) 0.01330 (17) −0.00004 (16)
S1 0.0575 (8) 0.1229 (15) 0.1047 (13) −0.0127 (8) 0.0434 (8) −0.0478 (11)
S2 0.127 (5) 0.084 (4) 0.081 (3) −0.049 (4) 0.029 (3) −0.031 (2)
C20 0.144 (9) 0.087 (7) 0.124 (9) −0.049 (7) 0.006 (8) −0.023 (6)
S2X 0.094 (4) 0.058 (5) 0.114 (7) −0.028 (3) 0.028 (4) −0.025 (3)
C20X 0.144 (9) 0.087 (7) 0.124 (9) −0.049 (7) 0.006 (8) −0.023 (6)
S3 0.070 (4) 0.142 (10) 0.075 (5) 0.025 (5) −0.007 (3) 0.036 (5)
C21 0.074 (5) 0.134 (9) 0.090 (7) 0.001 (5) 0.005 (4) 0.032 (6)
S3X 0.079 (7) 0.097 (5) 0.066 (6) 0.032 (4) 0.014 (5) 0.027 (5)
C21X 0.074 (5) 0.134 (9) 0.090 (7) 0.001 (5) 0.005 (4) 0.032 (6)
O1 0.076 (2) 0.069 (2) 0.081 (3) 0.018 (2) 0.037 (2) −0.0059 (19)
O2 0.089 (3) 0.111 (4) 0.047 (2) 0.008 (3) −0.001 (2) 0.008 (2)
O3 0.067 (2) 0.075 (3) 0.117 (4) 0.022 (2) 0.040 (2) 0.009 (2)
O4 0.065 (2) 0.116 (4) 0.117 (4) 0.026 (3) 0.007 (3) −0.020 (3)
O5 0.107 (3) 0.103 (3) 0.062 (3) −0.028 (3) 0.013 (2) 0.019 (2)
O6 0.098 (3) 0.112 (4) 0.095 (3) 0.033 (3) 0.038 (3) −0.018 (3)
O7 0.086 (3) 0.099 (3) 0.097 (3) −0.044 (3) 0.038 (2) −0.028 (3)
O8 0.134 (4) 0.092 (4) 0.239 (7) 0.029 (3) 0.141 (5) 0.042 (4)
O9 0.286 (9) 0.112 (4) 0.062 (4) −0.028 (5) 0.059 (5) −0.002 (3)
O10 0.065 (2) 0.065 (2) 0.083 (3) 0.003 (2) 0.005 (2) −0.0114 (19)
O11 0.090 (3) 0.070 (3) 0.143 (4) −0.025 (2) 0.043 (3) 0.016 (3)
C1 0.045 (2) 0.041 (2) 0.049 (2) 0.0043 (17) 0.0162 (18) −0.0003 (17)
C2 0.048 (2) 0.059 (3) 0.061 (3) −0.012 (2) 0.019 (2) −0.019 (2)
C3 0.044 (2) 0.068 (3) 0.072 (3) −0.018 (2) 0.024 (2) −0.017 (2)
C4 0.042 (2) 0.060 (3) 0.057 (3) 0.003 (2) 0.019 (2) −0.004 (2)
C5 0.052 (2) 0.063 (3) 0.067 (3) −0.010 (2) 0.027 (2) −0.022 (2)
C6 0.043 (2) 0.062 (3) 0.060 (3) −0.012 (2) 0.020 (2) −0.015 (2)
C7 0.047 (2) 0.048 (2) 0.038 (2) 0.0006 (18) 0.0132 (17) −0.0042 (16)
C8 0.062 (3) 0.044 (2) 0.054 (3) −0.001 (2) 0.021 (2) −0.0018 (19)
C9 0.084 (4) 0.053 (3) 0.070 (4) −0.008 (3) 0.036 (3) −0.013 (2)
C10 0.069 (3) 0.067 (3) 0.067 (4) −0.020 (3) 0.032 (3) −0.028 (3)
C11 0.065 (3) 0.087 (4) 0.050 (3) −0.010 (3) 0.010 (2) −0.018 (3)
C12 0.067 (3) 0.058 (3) 0.047 (3) −0.001 (2) 0.012 (2) −0.001 (2)
C13 0.043 (2) 0.041 (2) 0.042 (2) −0.0020 (16) 0.0122 (17) −0.0006 (16)
C14 0.057 (3) 0.077 (4) 0.057 (3) 0.014 (2) 0.027 (2) 0.014 (2)
C15 0.052 (3) 0.083 (4) 0.074 (4) 0.019 (3) 0.025 (3) 0.017 (3)
C16 0.046 (2) 0.068 (3) 0.052 (3) 0.002 (2) −0.001 (2) 0.005 (2)
C17 0.069 (3) 0.069 (3) 0.042 (3) 0.001 (3) 0.010 (2) 0.008 (2)
C18 0.057 (3) 0.065 (3) 0.049 (3) 0.012 (2) 0.021 (2) 0.010 (2)
C19 0.049 (3) 0.130 (6) 0.100 (5) −0.005 (3) 0.037 (3) −0.012 (4)
C22 0.056 (2) 0.055 (3) 0.047 (3) 0.000 (2) 0.020 (2) −0.0001 (19)
C23 0.064 (3) 0.058 (3) 0.061 (3) 0.006 (2) 0.022 (3) 0.012 (2)
C24 0.052 (2) 0.047 (3) 0.064 (3) 0.002 (2) 0.020 (2) 0.004 (2)
C25 0.044 (2) 0.080 (4) 0.076 (4) 0.001 (3) 0.009 (2) −0.012 (3)
C26 0.057 (3) 0.073 (4) 0.065 (4) −0.017 (3) 0.010 (3) 0.001 (3)
C27 0.071 (3) 0.073 (4) 0.051 (3) 0.000 (3) 0.019 (3) −0.003 (2)
C28 0.058 (3) 0.075 (4) 0.065 (3) −0.015 (3) 0.022 (3) −0.011 (3)
C29 0.106 (5) 0.061 (4) 0.152 (7) 0.002 (3) 0.094 (5) 0.016 (4)
C30 0.162 (7) 0.064 (4) 0.072 (5) −0.015 (4) 0.054 (5) −0.001 (3)
C31 0.059 (3) 0.050 (3) 0.054 (3) −0.007 (2) 0.012 (2) −0.002 (2)
C32 0.068 (3) 0.063 (3) 0.084 (4) −0.003 (3) 0.029 (3) 0.016 (3)

Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Geometric parameters (Å, º)

Os1—C23 1.872 (6) O3—C24 1.131 (6)
Os1—C22 1.944 (5) O4—C25 1.139 (7)
Os1—C24 1.950 (5) O5—C26 1.129 (7)
Os1—As1 2.4603 (5) O6—C27 1.137 (7)
Os1—Os3 2.8611 (3) O7—C28 1.130 (6)
Os1—Os2 2.9150 (3) O8—C29 1.139 (7)
Os2—C26 1.910 (6) O9—C30 1.142 (8)
Os2—C28 1.921 (6) O10—C31 1.128 (6)
Os2—C27 1.939 (6) O11—C32 1.112 (7)
Os2—C25 1.943 (6) C1—C2 1.368 (6)
Os2—Os3 2.8817 (4) C1—C6 1.389 (6)
Os3—C30 1.898 (8) C2—C3 1.396 (7)
Os3—C32 1.929 (6) C2—H2A 0.9300
Os3—C31 1.938 (6) C3—C4 1.383 (7)
Os3—C29 1.951 (7) C3—H3A 0.9300
As1—C13 1.936 (4) C4—C5 1.377 (6)
As1—C7 1.943 (4) C5—C6 1.379 (6)
As1—C1 1.948 (4) C5—H5A 0.9300
S1—C4 1.757 (5) C6—H6A 0.9300
S1—C19 1.760 (6) C7—C12 1.369 (6)
S2—C10 1.759 (8) C7—C8 1.397 (6)
S2—C20 1.775 (17) C8—C9 1.376 (7)
C20—H20A 0.9600 C8—H8A 0.9300
C20—H20B 0.9600 C9—C10 1.372 (8)
C20—H20C 0.9600 C9—H9A 0.9300
S2X—C20X 1.59 (3) C10—C11 1.400 (8)
S2X—C10 1.809 (10) C11—C12 1.373 (7)
C20X—H20D 0.9600 C11—H11A 0.9300
C20X—H20E 0.9600 C12—H12A 0.9300
C20X—H20F 0.9600 C13—C14 1.372 (6)
S3—C16 1.765 (16) C13—C18 1.372 (6)
S3—C21 1.82 (2) C14—C15 1.377 (7)
C21—H21A 0.9600 C14—H14A 0.9300
C21—H21B 0.9600 C15—C16 1.380 (7)
C21—H21C 0.9600 C15—H15A 0.9300
S3X—C21X 1.75 (4) C16—C17 1.375 (8)
S3X—C16 1.75 (3) C17—C18 1.393 (7)
C21X—H21D 0.9600 C17—H17A 0.9300
C21X—H21E 0.9600 C18—H18A 0.9300
C21X—H21F 0.9600 C19—H19A 0.9600
O1—C22 1.124 (6) C19—H19B 0.9600
O2—C23 1.155 (6) C19—H19C 0.9600
C23—Os1—C22 88.8 (2) H21D—C21X—H21F 109.5
C23—Os1—C24 88.3 (2) H21E—C21X—H21F 109.5
C22—Os1—C24 176.7 (2) C2—C1—C6 118.8 (4)
C23—Os1—As1 102.89 (16) C2—C1—As1 122.1 (3)
C22—Os1—As1 90.24 (14) C6—C1—As1 119.1 (3)
C24—Os1—As1 88.87 (14) C1—C2—C3 120.6 (4)
C23—Os1—Os3 97.90 (16) C1—C2—H2A 119.7
C22—Os1—Os3 88.04 (14) C3—C2—H2A 119.7
C24—Os1—Os3 93.91 (14) C4—C3—C2 120.9 (4)
As1—Os1—Os3 159.100 (13) C4—C3—H3A 119.5
C23—Os1—Os2 157.23 (16) C2—C3—H3A 119.5
C22—Os1—Os2 94.70 (14) C5—C4—C3 117.7 (4)
C24—Os1—Os2 88.54 (15) C5—C4—S1 117.7 (4)
As1—Os1—Os2 99.586 (13) C3—C4—S1 124.7 (4)
Os3—Os1—Os2 59.847 (8) C4—C5—C6 121.9 (4)
C26—Os2—C28 101.9 (2) C4—C5—H5A 119.1
C26—Os2—C27 89.2 (2) C6—C5—H5A 119.1
C28—Os2—C27 90.9 (2) C5—C6—C1 120.1 (4)
C26—Os2—C25 88.5 (3) C5—C6—H6A 120.0
C28—Os2—C25 95.8 (2) C1—C6—H6A 120.0
C27—Os2—C25 173.2 (2) C12—C7—C8 118.3 (4)
C26—Os2—Os3 167.70 (16) C12—C7—As1 119.5 (3)
C28—Os2—Os3 90.40 (17) C8—C7—As1 121.9 (3)
C27—Os2—Os3 91.81 (16) C9—C8—C7 120.8 (5)
C25—Os2—Os3 89.11 (19) C9—C8—H8A 119.6
C26—Os2—Os1 108.61 (16) C7—C8—H8A 119.6
C28—Os2—Os1 149.54 (17) C10—C9—C8 120.6 (5)
C27—Os2—Os1 89.70 (16) C10—C9—H9A 119.7
C25—Os2—Os1 85.01 (16) C8—C9—H9A 119.7
Os3—Os2—Os1 59.148 (8) C9—C10—C11 118.7 (5)
C30—Os3—C32 101.0 (3) C9—C10—S2 130.7 (5)
C30—Os3—C31 91.4 (3) C11—C10—S2 110.6 (5)
C32—Os3—C31 91.2 (2) C9—C10—S2X 109.6 (5)
C30—Os3—C29 91.0 (4) C11—C10—S2X 131.7 (6)
C32—Os3—C29 90.0 (3) C12—C11—C10 120.3 (5)
C31—Os3—C29 177.1 (3) C12—C11—H11A 119.9
C30—Os3—Os1 96.2 (2) C10—C11—H11A 119.9
C32—Os3—Os1 162.78 (18) C7—C12—C11 121.2 (5)
C31—Os3—Os1 86.62 (15) C7—C12—H12A 119.4
C29—Os3—Os1 91.50 (18) C11—C12—H12A 119.4
C30—Os3—Os2 157.2 (2) C14—C13—C18 118.2 (4)
C32—Os3—Os2 101.86 (18) C14—C13—As1 120.0 (3)
C31—Os3—Os2 87.73 (15) C18—C13—As1 121.8 (3)
C29—Os3—Os2 89.4 (2) C13—C14—C15 120.8 (5)
Os1—Os3—Os2 61.005 (6) C13—C14—H14A 119.6
C13—As1—C7 101.94 (18) C15—C14—H14A 119.6
C13—As1—C1 101.79 (18) C14—C15—C16 120.9 (5)
C7—As1—C1 100.94 (18) C14—C15—H15A 119.5
C13—As1—Os1 117.92 (12) C16—C15—H15A 119.5
C7—As1—Os1 115.62 (13) C17—C16—C15 119.0 (4)
C1—As1—Os1 116.07 (12) C17—C16—S3X 117.6 (10)
C4—S1—C19 104.5 (3) C15—C16—S3X 123.1 (10)
C10—S2—C20 99.4 (6) C17—C16—S3 122.7 (7)
S2—C20—H20A 109.5 C15—C16—S3 118.2 (7)
S2—C20—H20B 109.5 C16—C17—C18 119.3 (5)
H20A—C20—H20B 109.5 C16—C17—H17A 120.3
S2—C20—H20C 109.5 C18—C17—H17A 120.3
H20A—C20—H20C 109.5 C13—C18—C17 121.7 (5)
H20B—C20—H20C 109.5 C13—C18—H18A 119.1
C20X—S2X—C10 99.1 (9) C17—C18—H18A 119.1
S2X—C20X—H20D 109.5 S1—C19—H19A 109.5
S2X—C20X—H20E 109.5 S1—C19—H19B 109.5
H20D—C20X—H20E 109.5 H19A—C19—H19B 109.5
S2X—C20X—H20F 109.5 S1—C19—H19C 109.5
H20D—C20X—H20F 109.5 H19A—C19—H19C 109.5
H20E—C20X—H20F 109.5 H19B—C19—H19C 109.5
C16—S3—C21 104.6 (10) O1—C22—Os1 175.3 (4)
S3—C21—H21A 109.5 O2—C23—Os1 177.4 (5)
S3—C21—H21B 109.5 O3—C24—Os1 174.4 (5)
H21A—C21—H21B 109.5 O4—C25—Os2 174.3 (6)
S3—C21—H21C 109.5 O5—C26—Os2 175.7 (5)
H21A—C21—H21C 109.5 O6—C27—Os2 175.0 (5)
H21B—C21—H21C 109.5 O7—C28—Os2 178.4 (5)
C21X—S3X—C16 101.8 (16) O8—C29—Os3 177.2 (5)
S3X—C21X—H21D 109.5 O9—C30—Os3 176.4 (8)
S3X—C21X—H21E 109.5 O10—C31—Os3 174.9 (5)
H21D—C21X—H21E 109.5 O11—C32—Os3 177.9 (6)
S3X—C21X—H21F 109.5
C6—C1—C2—C3 −0.3 (8) C9—C10—C11—C12 −0.6 (8)
As1—C1—C2—C3 −179.5 (4) S2—C10—C11—C12 −179.9 (5)
C1—C2—C3—C4 0.1 (9) S2X—C10—C11—C12 175.7 (7)
C2—C3—C4—C5 0.0 (8) C8—C7—C12—C11 2.9 (7)
C2—C3—C4—S1 179.5 (4) As1—C7—C12—C11 −171.9 (4)
C19—S1—C4—C5 163.2 (5) C10—C11—C12—C7 −2.2 (8)
C19—S1—C4—C3 −16.3 (6) C18—C13—C14—C15 1.6 (8)
C3—C4—C5—C6 0.3 (8) As1—C13—C14—C15 −177.4 (5)
S1—C4—C5—C6 −179.3 (4) C13—C14—C15—C16 −2.0 (9)
C4—C5—C6—C1 −0.5 (8) C14—C15—C16—C17 1.0 (9)
C2—C1—C6—C5 0.6 (8) C14—C15—C16—S3X −173.2 (14)
As1—C1—C6—C5 179.7 (4) C14—C15—C16—S3 178.0 (9)
C12—C7—C8—C9 −0.9 (7) C21X—S3X—C16—C17 163.8 (12)
As1—C7—C8—C9 173.8 (4) C21X—S3X—C16—C15 −22 (2)
C7—C8—C9—C10 −1.9 (8) C21—S3—C16—C17 4.3 (15)
C8—C9—C10—C11 2.6 (8) C21—S3—C16—C15 −172.7 (8)
C8—C9—C10—S2 −178.3 (5) C15—C16—C17—C18 0.3 (8)
C8—C9—C10—S2X −174.5 (6) S3X—C16—C17—C18 174.9 (13)
C20—S2—C10—C9 15.4 (10) S3—C16—C17—C18 −176.6 (9)
C20—S2—C10—C11 −165.3 (8) C14—C13—C18—C17 −0.3 (7)
C20X—S2X—C10—C9 161.1 (12) As1—C13—C18—C17 178.7 (4)
C20X—S2X—C10—C11 −15.4 (15) C16—C17—C18—C13 −0.7 (8)

Undecacarbonyl{tris[4-(methylsulfanyl)phenyl]arsine}-triangulo-triosmium(0) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5A···O10i 0.93 2.55 3.41 (1) 154

Symmetry code: (i) −x+1, −y+2, −z+2.

References

  1. Adams, C. J., Bruce, M. I., Duckworth, P. A., Humphrey, P. A., Kühl, O., Tiekink, E. R. T., Cullen, W. R., Braunstein, P., Coco Cea, S., Skelton, B. W. & White, A. H. (1994). J. Organomet. Chem.467, 251–281.
  2. Ang, H. G., Kwik, W. L., Leong, W. K. & Potenza, J. A. (1989). Acta Cryst. C45, 1713–1715. [DOI] [PubMed]
  3. Biradha, K., Hansen, V. M., Leong, W. K., Pomeroy, R. K. & Zaworotko, M. J. (2000). J. Cluster Sci.11, 285–306.
  4. Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem.347, 181–205.
  5. Bruce, M. I., Liddell, M. J., Hughes, C. A., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem.347, 157–180.
  6. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Caracelli, I., Zukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2016). CrystEngComm18, 6960–6978.
  8. Chen, Y., Zhen, Q., Meng, F.-J. Y. P., Yu, P. & Xu, C. (2024). Chem. Rev.124, 13370–13396. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hansen, V. M., Ma, A. K., Biradha, K., Pomeroy, R. K. & Zaworotko, M. J. (1998). Organometallics17, 5267–5274.
  11. Honaker, M. T., Hovland, J. M. & Nicholas Salvatore, R. (2007). Curr. Org. Synth.4, 31–45.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Nicholls, J. N., Vargas, M. D., Deeming, A. J. & Kabir, S. E. (1990). Inorg. Synth. 28, 232-235.
  14. Oh, S. P., Li, Y.-Z. & Leong, W. K. (2015). J. Organomet. Chem.783, 46–48.
  15. Raithby, P. R. (2024). J. Organomet. Chem.1005, 122979.
  16. Shawkataly, O. B., Khan, I. A., Sirat, S. S., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1047–m1048. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006541/tx2100sup1.cif

e-81-00765-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006541/tx2100Isup2.hkl

CCDC reference: 2474325

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES