Abstract
The metanephros of the newborn opossum is very immature, consisting only of collecting tubules and a few immature nephrons. Development during the postnatal period can be divided into two distinct phases. The initial phase occurs during the first 60 days of postnatal life and is concerned with nephronogenesis and the differentiation of nephrons that have formed during this period. The second phase lasts through the remainder of the postnatal period and is concerned with further differentiation and growth of established nephrons. During this latter period the tubular portion of the nephron increases in length and the renal corpuscle increases in diameter. Ultrastructural observations suggest that metanephric nephrons are not functional during the first 4 days of postnatal life, while the mesonephros reaches the height of its development during this period: there may be some functional overlap between the mesonephros and metanephros during the latter part of the first week of postnatal life. The pattern of nephron induction and differentiation in the opossum is discussed.
Full text
PDF


















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki A. Temporary cell junctions in the developing human renal glomerulus. Dev Biol. 1967 Feb;15(2):156–164. doi: 10.1016/0012-1606(67)90011-5. [DOI] [PubMed] [Google Scholar]
- BENTLEY P. J., SHIELD J. W. Metabolism and kidney function in the pouch young of the macropod marsupial Setonix brachyurus. J Physiol. 1962 Oct;164:127–137. doi: 10.1113/jphysiol.1962.sp007007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLARK S. L., Jr Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol. 1957 May 25;3(3):349–362. doi: 10.1083/jcb.3.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutts J. H., Krause W. J., Leeson C. R. General observations on the growth and development of the young pouch opossum, Didelphis virginiana. Biol Neonate. 1978;33(5-6):264–272. doi: 10.1159/000241082. [DOI] [PubMed] [Google Scholar]
- Cutts J. H., Leeson C. R., Krause W. J. The postnatal development of the liver in a marsupial, Didelphis virginiana. 1. Light microscopy. J Anat. 1973 Sep;115(Pt 3):327–346. [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FETTERMAN G. H., SHUPLOCK N. A., PHILIPP F. J., GREGG H. S. THE GROWTH AND MATURATION OF HUMAN GLOMERULI AND PROXIMAL CONVOLUTIONS FROM TERM TO ADULTHOOD: STUDIES BY MICRODISSECTION. Pediatrics. 1965 Apr;35:601–619. [PubMed] [Google Scholar]
- GROBSTEIN C., DALTON A. J. Kidney tubule induction in mouse metanephrogenic mesenchyme without cytoplasmic contact. J Exp Zool. 1957 Jun;135(1):57–73. doi: 10.1002/jez.1401350106. [DOI] [PubMed] [Google Scholar]
- GROBSTEIN C. Some transmission characteristics of the tubule-inducing influence on mouse metanephrogenic mesenchyme. Exp Cell Res. 1957 Dec;13(3):575–587. doi: 10.1016/0014-4827(57)90087-3. [DOI] [PubMed] [Google Scholar]
- GROBSTEIN C. Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res. 1956 Apr;10(2):424–440. doi: 10.1016/0014-4827(56)90016-7. [DOI] [PubMed] [Google Scholar]
- Horster M., Kemler B. J., Valtin H. Intracortical distribution of number and volume of glomeruli during postnatal maturation in the dog. J Clin Invest. 1971 Apr;50(4):796–800. doi: 10.1172/JCI106550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King F. C., Krause W. J., Cutts J. H. Postnatal development of the pancreas in the opossum. Light microscopy. Acta Anat (Basel) 1978;101(3):259–274. doi: 10.1159/000144976. [DOI] [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., Leeson C. R. Morphological observations on the mesonephros in the postnatal opossum, Didelphis virginiana. J Anat. 1979 Sep;129(Pt 2):377–397. [PMC free article] [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., Leeson C. R. The postnatal development of the alimentary canal in the opossum. I. Oesophagus. J Anat. 1976 Nov;122(Pt 2):293–314. [PMC free article] [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., Leeson C. R. The postnatal development of the alimentary canal in the opossum. II. Stomach. J Anat. 1976 Dec;122(Pt 3):499–519. [PMC free article] [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., Leeson C. R. The postnatal development of the alimentary canal in the opossum. III. Small intestine and colon. J Anat. 1977 Feb;123(Pt 1):21–45. [PMC free article] [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., Leeson C. R. The postnatal development of the liver in a marsupial, Didelphis virginiana. 2. Electron microscopy. J Anat. 1975 Sep;120(Pt 1):191–205. [PMC free article] [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., Leeson C. R. Type II pulmonary epithelial cells of the newborn opossum lung. Am J Anat. 1976 Jun;146(2):181–187. doi: 10.1002/aja.1001460206. [DOI] [PubMed] [Google Scholar]
- Krause W. J., Leeson C. R. Postnatal development of the respiratory system of the opossum. II. Electron microscopy of the epithelium and pleura. Acta Anat (Basel) 1975;92(1):28–44. doi: 10.1159/000144426. [DOI] [PubMed] [Google Scholar]
- Krause W. J., Leeson C. R. The postnatal development of the respiratory system of the opossum. I. Light and scanning electron microscopy. Am J Anat. 1973 Jul;137(3):337–355. doi: 10.1002/aja.1001370306. [DOI] [PubMed] [Google Scholar]
- LEESON T. S. An electron microscopic study of the mesonephros and metanephros of the rabbit. J Anat. 1959 Sep;105:165–195. doi: 10.1002/aja.1001050202. [DOI] [PubMed] [Google Scholar]
- Miyoshi M., Fujita T., Tokunaga J. The differentiation of renal podocytes. A combined scanning and transmission electron microscope study in rats. Arch Histol Jpn. 1971 Jun;33(2):161–178. doi: 10.1679/aohc1950.33.161. [DOI] [PubMed] [Google Scholar]
- Osathanondh V., Potter E. L. Development of human kidney as shown by microdissection. IV. Development of tubular portions of nephrons. Arch Pathol. 1966 Nov;82(5):391–402. [PubMed] [Google Scholar]
- POTTER E. L. DEVELOPMENT OF THE HUMAN GLOMERULUS. Arch Pathol. 1965 Sep;80:241–255. [PubMed] [Google Scholar]
- Potter D., Jarrah A., Sakai T., Harrah J., Holliday M. A. Character of function and size in kidney during normal growth of rats. Pediatr Res. 1969 Jan;3(1):51–59. doi: 10.1203/00006450-196901000-00007. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WACHSTEIN M., BRADSHAW M. HISTOCHEMICAL LOCALIZATION OF ENZYME ACTIVITY IN THE KIDNEYS OF THREE MAMMALIAN SPECIES DURING THEIR POSTNATAL DEVELOPMENT. J Histochem Cytochem. 1965 Jan;13:44–56. doi: 10.1177/13.1.44. [DOI] [PubMed] [Google Scholar]





























