Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1980 Dec;131(Pt 4):635–642.

The origin and distribution of membrane-bound vesicles associated with the brush border of chick intestinal mucosa.

D G Hobbs
PMCID: PMC1233216  PMID: 6260723

Abstract

The chick was used to investigate the incidence of vesicles, 60-75 nm in diameter, previously observed (Chandler et al. 1975) associated with the intestinal brush border of various animals. Samples were taken from 3 positions in the small intestine, from the duodenum, 20 nm proximal to the yolk stalk and 100 mm proximal to the ileocaecal junction, and vesicles were found mainly in the duodenum. They were evident in both germ-free and conventionally reared birds and their presence was unaffected by the addition of fibre to the diet. The vesicles arise from the microvillus membrane by budding or pinching off and associated with this is a spiral contraction of the microvillus. A possible mechanism controlling this process, involving the contractile microfilament core of the microvillus, is discussed, together with the likely significance of the production of vesicles.

Full text

PDF
635

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonneville M. A., Weinstock M. Brush border development in the intestinal absorptive cells of Xenopus during metamorphosis. J Cell Biol. 1970 Jan;44(1):151–171. doi: 10.1083/jcb.44.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bretscher A., Weber K. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci U S A. 1979 May;76(5):2321–2325. doi: 10.1073/pnas.76.5.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandler R. L., Bird R. G., Bland A. P. Letter: Particles associated with microvillous border of intestinal mucosa. Lancet. 1975 Nov 8;2(7941):931–932. doi: 10.1016/s0140-6736(75)92175-3. [DOI] [PubMed] [Google Scholar]
  4. Creamer B. The turnover of the epithelium of the small intestine. Br Med Bull. 1967 Sep;23(3):226–230. doi: 10.1093/oxfordjournals.bmb.a070561. [DOI] [PubMed] [Google Scholar]
  5. Hegde S. N., Rolls B. A., Turvey A., Coates M. E. The effects on chicks of dietary fibre from different sources: a growth factor in wheat bran. Br J Nutr. 1978 Jul;40(1):63–68. doi: 10.1079/bjn19780096. [DOI] [PubMed] [Google Scholar]
  6. Holmes R. The intestinal brush border. Gut. 1971 Aug;12(8):668–677. doi: 10.1136/gut.12.8.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MILLINGTON P. F., FINEAN J. B. Electron microscope studies of the structure of the microvilli on principal epithelial cells of rat jejunum after treatment in hypo- and hypertonic saline. J Cell Biol. 1962 Jul;14:125–139. doi: 10.1083/jcb.14.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McNutt N. S. A thin-section and freeze-fracture study of microfilament-membrane attachments in choroid plexus and intestinal microvilli. J Cell Biol. 1978 Dec;79(3):774–787. doi: 10.1083/jcb.79.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Micheal E., Hodges R. D. Structure and histochemistry of the normal intestine of the fowl. I. The mature absorptive cell. Histochem J. 1973 Jul;5(4):313–333. doi: 10.1007/BF01004800. [DOI] [PubMed] [Google Scholar]
  10. Mooseker M. S. Brush border motility. Microvillar contraction in triton-treated brush borders isolated from intestinal epithelium. J Cell Biol. 1976 Nov;71(2):417–433. doi: 10.1083/jcb.71.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mukherjee T. M., Staehelin L. A. The fine-structural organization of the brush border of intestinal epithelial cells. J Cell Sci. 1971 May;8(3):573–599. doi: 10.1242/jcs.8.3.573. [DOI] [PubMed] [Google Scholar]
  13. Muller L. L., Jacks T. J. Rapid chemical dehydration of samples for electron microscopic examinations. J Histochem Cytochem. 1975 Feb;23(2):107–110. doi: 10.1177/23.2.1117127. [DOI] [PubMed] [Google Scholar]
  14. Neutra M. R. Linear arrays of intramembrane particles on microvilli in primate large intestine. Anat Rec. 1979 Mar;193(3):367–382. doi: 10.1002/ar.1091930304. [DOI] [PubMed] [Google Scholar]
  15. PADYKULA H. A. Recent functional interpretations of intestinal morphology. Fed Proc. 1962 Nov-Dec;21:873–879. [PubMed] [Google Scholar]
  16. Tilney L. G., Mooseker M. S. Actin filament-membrane attachment: are membrane particles involved? J Cell Biol. 1976 Nov;71(2):402–416. doi: 10.1083/jcb.71.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tilney L. G., Mooseker M. Actin in the brush-border of epithelial cells of the chicken intestine. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2611–2615. doi: 10.1073/pnas.68.10.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tomkins A. M., Wright S. G., Bird R. G., James W. P. Letter: Virus-like particles in jejunal mucosa. Lancet. 1975 Jul 5;2(7923):36–37. doi: 10.1016/s0140-6736(75)92983-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES