Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1980 Dec;131(Pt 4):693–704.

Effects of thymectomy on bone growth in the rat.

C Campbell Gunther, H L Lipscomb, J G Sharp
PMCID: PMC1233221  PMID: 7216906

Abstract

The effects of thymectomy (TMX) at 1 or 5 days of age on the subsequent growth of bone have been determined in male and female Holtzman rats. The rats were maintained under aseptic conditions to minimize any effects of infection or wasting disease on bone growth. Femur length and distal epiphyseal cross sectional area were significantly reduced in TMX female rats at 3 months of age. At 1 month of age, the width of the undifferentiated zone was increased and at all subsequent times the columnar zone and growth plate were narrower in TMX rats. The incorporation of 35S into the femur, particularly the proximal and distal growth plates, was uniformly reduced in TMX rats as determined by scintillation counting and autoradiography. Additionally, there was an obvious overall reduction in alcian blue stationing intensity in the growth plates of TMX rats when compared to sham-operated controls. These results suggest a significant reduction in detectable glycosaminoglycan (GAG) content and in bone growth in TMX rats. Although there were minor variations, there were no major differences attributable to sex or timing of thymectomy. At present the causes of this moderate reduction in bone growth in TMX rats are unknown. One explanation might be that the thymus supplies or is in some other way involved in the provision of a hormone and/or cells that are required for normal bone growth. Another possibility is that the thymus is normally a source of immune suppressor cells which are needed to limit auto-immune reactivity against GAG or other antigenic determinants associated with bone. Thymectomy would remove these suppressor cells, thus permitting an auto-immune response which interferes with bone growth. Finally, perhaps the most plausible explanation is that thymectomy reduces cell production in the bone marrow which, in particular, reduces the turnover of monocytes. This reduced output of monocytes in TMX rats might ultimately lead to a reduction in osteoclast activity necessary for normal remodelling and growth of bone. We currently favour this last explanation.

Full text

PDF
693

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C., Denman A. M., Barnes R. D. Cooperating and controlling functions of thymus-derived lymphocytes in relation to autoimmunity. Lancet. 1971 Jul 17;2(7716):135–140. doi: 10.1016/s0140-6736(71)92306-3. [DOI] [PubMed] [Google Scholar]
  2. Berek L., Aszódi K., Bános Z., Anderlik P., Szeri I. Changes of mucopolysaccharides in the epiphyseal plates of mice following neonatal thymectomy. Experientia. 1969 Sep 15;25(9):982–983. doi: 10.1007/BF01898103. [DOI] [PubMed] [Google Scholar]
  3. Berek L., Bános Z., Szeri I., Anderlik P., Aszódi K. Osseal changes in mice following neonatal thymectomy. Experientia. 1968 Jul 15;24(7):721–723. doi: 10.1007/BF02138339. [DOI] [PubMed] [Google Scholar]
  4. Biachi E., Pierpaoli W., Sorkin E. Cytological changes in the mouse anterior pituitary after neonatal thymectomy: a light ane electron microscopical study. J Endocrinol. 1971 Sep;51(1):1–6. doi: 10.1677/joe.0.0510001. [DOI] [PubMed] [Google Scholar]
  5. Comsa J., Philipp E. M., Leonhardt H. Effects of thymectomy on the endocrine glands of the rat. Isr J Med Sci. 1977 Apr;13(4):354–362. [PubMed] [Google Scholar]
  6. Cracchiolo A., 3rd, Michaeli D., Goldberg L. S., Fudenberg H. H. The occurrence of antibodies to collagen in synovial fluids. Clin Immunol Immunopathol. 1975 Mar;3(4):567–574. doi: 10.1016/0090-1229(75)90081-1. [DOI] [PubMed] [Google Scholar]
  7. DZIEWIATKOWSKI D. D. Radioautographic visualization of sulfur-35 disposition in the articular cartilage and bone of suckling rats following injection of labeled sodium sulfate. J Exp Med. 1951 May;93(5):451–458. doi: 10.1084/jem.93.5.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodman J. W., Basford N. L., Shinpock S. G., Chambers Z. E. An amplifier cell in hemopoiesis. Exp Hematol. 1978 Feb;6(2):151–160. [PubMed] [Google Scholar]
  9. Goodman J. W., Shinpock S. G. Influence of thymus cells on erythropoiesis of parental marrow in irradiated hybrid mice. Proc Soc Exp Biol Med. 1968 Nov;129(2):417–422. doi: 10.3181/00379727-129-33334. [DOI] [PubMed] [Google Scholar]
  10. Gunson D. E., Kefalides N. A. The use of the radioimmunoassay in the characterization of antibodies to basement membrane collagen. Immunology. 1976 Oct;31(4):563–569. [PMC free article] [PubMed] [Google Scholar]
  11. Hammarström L., Smith E., Primi D., Möller G. Induction of autoantibodies to red blood cells by polyclonal B-cell activators. Nature. 1976 Sep 2;263(5572):60–61. doi: 10.1038/263060a0. [DOI] [PubMed] [Google Scholar]
  12. Hard G. C. Thymectomy in the neonatal rat. Lab Anim. 1975 Apr;9(2):105–110. doi: 10.1258/002367775780994664. [DOI] [PubMed] [Google Scholar]
  13. Kahn A. J., Stewart C. C., Teitelbaum S. L. Contact-mediated bone resorption by human monocytes in vitro. Science. 1978 Mar 3;199(4332):988–990. doi: 10.1126/science.622581. [DOI] [PubMed] [Google Scholar]
  14. Kojima A., Tanaka-Kojima Y., Sakakura T., Nishizuka Y. Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice. Lab Invest. 1976 Jun;34(6):550–557. [PubMed] [Google Scholar]
  15. Law L. W., Dunn T. B., Trainin N., Levey R. H. Studies of thymic function. Wistar Inst Symp Monogr. 1964 Aug;2:105–120. [PubMed] [Google Scholar]
  16. Lipscomb H. L., Sharp J. G. Alterations in bone-marrow cellularity following thymectomy in rats. Experientia. 1979 Oct 15;35(10):1401–1402. doi: 10.1007/BF01964034. [DOI] [PubMed] [Google Scholar]
  17. Loutit J. F., Sansom J. M. Osteopetrosis of microphthalmic mice -- a defect of the hematopoietic stem cell.? Calcif Tissue Res. 1976 Jun 14;20(3):251–259. doi: 10.1007/BF02546413. [DOI] [PubMed] [Google Scholar]
  18. Marks S. C., Jr Osteopetrosis in the IA rat cured by spleen cells from a normal littermate. Am J Anat. 1976 Jul;146(3):331–338. doi: 10.1002/aja.1001460308. [DOI] [PubMed] [Google Scholar]
  19. Pandian M. R., Gupta P. D., Talwar G. P., Avrameas S. Presence of "receptors" for growth hormone on membranes of rat thymocytes. Acta Endocrinol (Copenh) 1975 Apr;78(4):781–790. doi: 10.1530/acta.0.0780781. [DOI] [PubMed] [Google Scholar]
  20. Pierpaoli W., Besedovsky H. O. Role of the thymus in programming of neuroendocrine functions. Clin Exp Immunol. 1975 May;20(2):323–338. [PMC free article] [PubMed] [Google Scholar]
  21. Pierpaoli W., Kopp H. G., Bianchi E. Interdependence of thymic and neuroendocrine functions in ontogeny. Clin Exp Immunol. 1976 Jun;24(3):501–506. [PMC free article] [PubMed] [Google Scholar]
  22. Pierpaoli W., Kopp H. G., Müller J., Keller M. Interdependence between neuroendocrine programming and the generation of immune recognition in ontogeny. Cell Immunol. 1977 Mar 1;29(1):16–27. doi: 10.1016/0008-8749(77)90271-4. [DOI] [PubMed] [Google Scholar]
  23. Pierpaoli W., Sorkin E. Cellular modifications in the hypophysis of neonatally thymectomized mice. Br J Exp Pathol. 1967 Dec;48(6):627–631. [PMC free article] [PubMed] [Google Scholar]
  24. Potop I., Boeru V., Mreană G. The effect of thymus extracts on phosphorus compounds in muscle and serum, and on serum calcium. Biochem J. 1966 Nov;101(2):454–459. doi: 10.1042/bj1010454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Resnitzky P., Zipori D., Trainin N. Effect of neonatal thymectomy on hemopoietic tissue in mice. Blood. 1971 Jun;37(6):634–646. [PubMed] [Google Scholar]
  26. Serafimov-Dimitrov V., Decheva-Ninova Z., Mikhalev A. Kinetics of mononuclear phagocytes after thymectomy. Haematologia (Budap) 1976;10(3-4):419–423. [PubMed] [Google Scholar]
  27. Sharkis S. J., Wiktor-Jedrzejczak W., Ahmed A., Santos G. W., McKee A., Sell K. W. Antitheta-sensitive regulatory cell (TSRC) and hematopoiesis: regulation of differentiation of transplanted stem cells in W/Wv anemic and normal mice. Blood. 1978 Oct;52(4):802–817. [PubMed] [Google Scholar]
  28. Stuart J. M., Postlethwaite A. E., Kang A. H. Evidence for cell-mediated immunity to collagen in progressive systemic sclerosis. J Lab Clin Med. 1976 Oct;88(4):601–607. [PubMed] [Google Scholar]
  29. Stutman O. Intrathymic and extrathymic T cell maturation. Immunol Rev. 1978;42:138–184. doi: 10.1111/j.1600-065x.1978.tb00261.x. [DOI] [PubMed] [Google Scholar]
  30. Thorngren K. G., Hansson L. I. Cell kinetics and morphology of the growth plate in the normal and hypophysectomized rat. Calcif Tissue Res. 1973;13(2):113–129. doi: 10.1007/BF02015402. [DOI] [PubMed] [Google Scholar]
  31. Walker D. G. Osteopetrosis cured by temporary parabiosis. Science. 1973 May 25;180(4088):875–875. doi: 10.1126/science.180.4088.875. [DOI] [PubMed] [Google Scholar]
  32. Wiktor-Jedrzejczak W., Sharkie S., Ahmed A., Sell K. W., Santos G. W. Theta-sensitive cell and erythropoiesis: identification of a defect in W/Wv anemic mice. Science. 1977 Apr 15;196(4287):313–315. doi: 10.1126/science.322288. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES