Full text
PDF![471](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/1f7de7d6a7b4/janat00395-0054.png)
![472](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/8dedab4d0093/janat00395-0055.png)
![473](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/d21ba898f239/janat00395-0056.png)
![474](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/19436f955950/janat00395-0057.png)
![475](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/2d2fb15c812c/janat00395-0058.png)
![476](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/02a3e5eb44be/janat00395-0059.png)
![477](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/10764caf0723/janat00395-0060.png)
![478](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/1eece53a419e/janat00395-0061.png)
![479](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/b9d134eba1d5/janat00395-0062.png)
![480](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/0c17b9f30cb6/janat00395-0063.png)
![481](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/73377515ebce/janat00395-0064.png)
![482](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/c22d053872a2/janat00395-0065.png)
![483](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/4cdeb6b6800f/janat00395-0066.png)
![484](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/1a42b5fdf604/janat00395-0067.png)
![485](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/3e2c1cc6c62b/janat00395-0068.png)
![486](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/9ff53b28656d/janat00395-0069.png)
![487](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be8/1233423/e73f6a9b8a11/janat00395-0070.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADRIAN E. K., Jr, WALKER B. E. Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord. J Neuropathol Exp Neurol. 1962 Oct;21:597–609. doi: 10.1097/00005072-196210000-00007. [DOI] [PubMed] [Google Scholar]
- Adrian E. K., Jr Cell division in injuried spinal cord. Am J Anat. 1968 Nov;123(3):501–520. doi: 10.1002/aja.1001230307. [DOI] [PubMed] [Google Scholar]
- BULLOUGH W. S., LAURENCE E. B. The control of epidermal mitotic activity in the mouse. Proc R Soc Lond B Biol Sci. 1960 Mar 1;151:517–536. doi: 10.1098/rspb.1960.0014. [DOI] [PubMed] [Google Scholar]
- Blakemore W. F. The fate of escaped plasma protein after thermal necrosis of the rat brain: an electron microscope study. J Neuropathol Exp Neurol. 1969 Jan;28(1):139–152. doi: 10.1097/00005072-196901000-00008. [DOI] [PubMed] [Google Scholar]
- CAVANAGH J. B., WEBSTER G. R. On the changes in ali-esterase and pseudocholinesterase activity of chicken sciatic nerve during Wallerian degeneration and their correlation with cellular proliferation. Q J Exp Physiol Cogn Med Sci. 1955 Jan;40(1):12–23. doi: 10.1113/expphysiol.1955.sp001093. [DOI] [PubMed] [Google Scholar]
- Cammermeyer J. Juxtavascular karyokinesis and microglia cell proliferation during retrograde reaction in the mouse facial nucleus. Ergeb Anat Entwicklungsgesch. 1965;38:1–22. [PubMed] [Google Scholar]
- Cavanagh J. B., Lewis P. D. Perfusion-fixation, colchicine and mitotic activity in the adult rat brain. J Anat. 1969 Mar;104(Pt 2):341–350. [PMC free article] [PubMed] [Google Scholar]
- FRIEDE R. L. The cytochemistry of normal and reactive astrocytes. J Neuropathol Exp Neurol. 1962 Jul;21:471–478. doi: 10.1097/00005072-196207000-00015. [DOI] [PubMed] [Google Scholar]
- KLATZO I., PIRAUX A., LASKOWSKI E. J. The relationship between edema, blood-brain-barrier and tissue elements in a local brain injury. J Neuropathol Exp Neurol. 1958 Oct;17(4):548–564. doi: 10.1097/00005072-195810000-00002. [DOI] [PubMed] [Google Scholar]
- KOENIG H., BUNGE M. B., BUNGE R. P. Nucleic acid and protein metabolism in white matter. Observations during experimental demyelination and remyelination; a histochemical and autoradiographic study of spinal cord of the adult cat. Arch Neurol. 1962 Mar;6:177–193. doi: 10.1001/archneur.1962.00450210005002. [DOI] [PubMed] [Google Scholar]
- KONIGSMARK B. W., SIDMAN R. L. ORIGIN OF BRAIN MACROPHAGES IN THE MOUSE. J Neuropathol Exp Neurol. 1963 Oct;22:643–676. doi: 10.1097/00005072-196310000-00006. [DOI] [PubMed] [Google Scholar]
- Klatzo I. Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol. 1967 Jan;26(1):1–14. doi: 10.1097/00005072-196701000-00001. [DOI] [PubMed] [Google Scholar]
- LAMPERT P., CRESSMAN M. AXONAL REGENERATION IN THE DORSAL COLUMNS OF THE SPINAL CORD OF ADULT RATS. AN ELECTRON MICROSCOPIC STUDY. Lab Invest. 1964 Aug;13:825–839. [PubMed] [Google Scholar]
- LAPHAM L. W. Cytologic and cytochemical studies of neuroglia. I. A study of the problem of amitosis in reactive protoplasmic astrocytes. Am J Pathol. 1962 Jul;41:1–21. [PMC free article] [PubMed] [Google Scholar]
- LAPHAM L. W., JOHNSTONE M. A. CYTOLOGIC AND CYTOCHEMICAL STUDIES OF NEUROGLIA. 3. THE DNA CONTENT OF GIANT FIBROUS ASTROCYTES, WITH IMPLICATIONS CONCERNING THE NATURE OF THESE CELLS. J Neuropathol Exp Neurol. 1964 Jul;23:419–430. [PubMed] [Google Scholar]
- MESSIER B., LEBLOND C. P. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am J Anat. 1960 May;106:247–285. doi: 10.1002/aja.1001060305. [DOI] [PubMed] [Google Scholar]
- Sjöstrand J. Proliferative changes in glial cells during nerve regeneration. Z Zellforsch Mikrosk Anat. 1965 Nov 15;68(4):481–493. doi: 10.1007/BF00347712. [DOI] [PubMed] [Google Scholar]
- Watson W. E. An autoradiographic study of the incorporation of nucleic-acid precursors by neurones and glia during nerve regeneration. J Physiol. 1965 Oct;180(4):741–753. doi: 10.1113/jphysiol.1965.sp007728. [DOI] [PMC free article] [PubMed] [Google Scholar]