Abstract
A computer simulation is used to investigate hole formation in a model membrane. The model parameters are the stress applied to the membrane, and the edge energy per unit length along the hole boundary (edge tension). Even at zero stress, the membrane has an entropically driven instability against hole formation. Within the model, the minimum edge tension required for the stability of a typical biological membrane is in the region of 1 x 10(-11) J/m, which is similar to the edge tension obtained in many measurements of biomembranes. At the zero-stress instability threshold, the hole shape is the same as a self-avoiding ring, but under compression, the hole shape assumes a branched polymer form. In the presence of large holes at zero stress, the membrane itself behaves like a branched polymer. The boundaries of the phase diagram for membrane stability are obtained, and general features of the rate of membrane rupture under stress are investigated. A model in which the entropy of hole formation is proportional to the hole perimeter is used to interpret the simulation results at small stress near the instability threshold.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumgärtner A, Ho J. Crumpling of fluid vesicles. Phys Rev A. 1990 May 15;41(10):5747–5750. doi: 10.1103/physreva.41.5747. [DOI] [PubMed] [Google Scholar]
- Boal DH, Rao M. Scaling behavior of fluid membranes in three dimensions. Phys Rev A. 1992 May 15;45(10):R6947–R6950. doi: 10.1103/physreva.45.r6947. [DOI] [PubMed] [Google Scholar]
- Boal DH, Rao M. Topology changes in fluid membranes. Phys Rev A. 1992 Sep 15;46(6):3037–3045. doi: 10.1103/physreva.46.3037. [DOI] [PubMed] [Google Scholar]
- Boal DH. Rigidity and connectivity percolation in heterogeneous polymer-fluid networks. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jun;47(6):4604–4606. doi: 10.1103/physreve.47.4604. [DOI] [PubMed] [Google Scholar]
- Ertel A., Marangoni A. G., Marsh J., Hallett F. R., Wood J. M. Mechanical properties of vesicles. I. Coordinated analysis of osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):426–434. doi: 10.1016/S0006-3495(93)81383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freeman S. A., Wang M. A., Weaver J. C. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys J. 1994 Jul;67(1):42–56. doi: 10.1016/S0006-3495(94)80453-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaser R. W., Leikin S. L., Chernomordik L. V., Pastushenko V. F., Sokirko A. I. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta. 1988 May 24;940(2):275–287. doi: 10.1016/0005-2736(88)90202-7. [DOI] [PubMed] [Google Scholar]
- Gompper G, Kroll DM. Shape of inflated vesicles. Phys Rev A. 1992 Dec 15;46(12):7466–7473. doi: 10.1103/physreva.46.7466. [DOI] [PubMed] [Google Scholar]
- Kantor Y, Kardar M, Nelson DR. Statistical mechanics of tethered surfaces. Phys Rev Lett. 1986 Aug 18;57(7):791–794. doi: 10.1103/PhysRevLett.57.791. [DOI] [PubMed] [Google Scholar]
- Leibler S, Singh RR, Fisher ME. Thermodynamic behavior of two-dimensional vesicles. Phys Rev Lett. 1987 Nov 2;59(18):1989–1992. doi: 10.1103/PhysRevLett.59.1989. [DOI] [PubMed] [Google Scholar]
- Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J. 1993 Feb;64(2):443–453. doi: 10.1016/S0006-3495(93)81385-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needham D., Hochmuth R. M. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J. 1989 May;55(5):1001–1009. doi: 10.1016/S0006-3495(89)82898-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taupin C., Dvolaitzky M., Sauterey C. Osmotic pressure induced pores in phospholipid vesicles. Biochemistry. 1975 Oct 21;14(21):4771–4775. doi: 10.1021/bi00692a032. [DOI] [PubMed] [Google Scholar]
- Wilhelm C., Winterhalter M., Zimmermann U., Benz R. Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes. Biophys J. 1993 Jan;64(1):121–128. doi: 10.1016/S0006-3495(93)81346-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhelev D. V., Needham D. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta. 1993 Apr 8;1147(1):89–104. doi: 10.1016/0005-2736(93)90319-u. [DOI] [PubMed] [Google Scholar]

