Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Jul;71(1):336–340. doi: 10.1016/S0006-3495(96)79229-9

Membrane skeleton involvement in cell fusion kinetics: a parameter that correlates with erythrocyte osmotic fragility.

M Baumann 1, A E Sowers 1
PMCID: PMC1233484  PMID: 8804616

Abstract

Spectrin levels in erythrocytes have been related to several biomechanical and biophysical membrane properties essential to the survival and function of the cell. Populations of erythrocytes display a natural and finite range of sensitivities to osmotic shock that has been directly correlated, in studies from other laboratories, to the presence of spectrin. We used a procedure to isolate subpopulations of 1) the osmotically most sensitive and 2) the osmotically most resistant erythrocyte membranes in an attempt to select for membranes enriched and depleted in spectrin (and/or a related component). The mechanical function of the spectrin-based membrane skeleton was further explored in these two subpopulations by searching for any effect on the time-dependent increase in fusion zone diameter in pairs of electrofused erythrocyte ghosts as a model for cell fusion. The results clearly show that the diameter expansions in fusions of membranes from osmotically resistant erythrocytes are faster in the early stage (up to 9 to 10 s after fusion) but do not thereafter expand as far as in fusions of membranes from osmotically sensitive membranes.

Full text

PDF
336

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Asimos A., Casella J. F., McMillan C. Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis. N Engl J Med. 1986 Dec 18;315(25):1579–1583. doi: 10.1056/NEJM198612183152504. [DOI] [PubMed] [Google Scholar]
  2. Bennett V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev. 1990 Oct;70(4):1029–1065. doi: 10.1152/physrev.1990.70.4.1029. [DOI] [PubMed] [Google Scholar]
  3. Chernomordik L. V., Sowers A. E. Evidence that the spectrin network and a nonosmotic force control the fusion product morphology in electrofused erythrocyte ghosts. Biophys J. 1991 Nov;60(5):1026–1037. doi: 10.1016/S0006-3495(91)82140-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cranston H. A., Boylan C. W., Carroll G. L., Sutera S. P., Williamson J. R., Gluzman I. Y., Krogstad D. J. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science. 1984 Jan 27;223(4634):400–403. doi: 10.1126/science.6362007. [DOI] [PubMed] [Google Scholar]
  5. Crum L. A., Coakley W. T., Deeley J. O. Instability development in heated human erthrocytes. Biochim Biophys Acta. 1979 Jun 13;554(1):76–89. doi: 10.1016/0005-2736(79)90008-7. [DOI] [PubMed] [Google Scholar]
  6. Elgsaeter A., Stokke B. T., Mikkelsen A., Branton D. The molecular basis of erythrocyte shape. Science. 1986 Dec 5;234(4781):1217–1223. doi: 10.1126/science.3775380. [DOI] [PubMed] [Google Scholar]
  7. Hadley T., Saul A., Lamont G., Hudson D. E., Miller L. H., Kidson C. Resistance of Melanesian elliptocytes (ovalocytes) to invasion by Plasmodium knowlesi and Plasmodium falciparum malaria parasites in vitro. J Clin Invest. 1983 Mar;71(3):780–782. doi: 10.1172/JCI110827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ho K. C., Lin P. S. Response of erythrocytes to heat in the presence of D2O, glycerol, and anisotonic saline. Radiat Res. 1991 Jan;125(1):20–27. [PubMed] [Google Scholar]
  9. Kemble G. W., Danieli T., White J. M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell. 1994 Jan 28;76(2):383–391. doi: 10.1016/0092-8674(94)90344-1. [DOI] [PubMed] [Google Scholar]
  10. Mohandas N., Greenquist A. C., Shohet S. B. Effects of heat and metabolic depletion on erythrocyte deformability, spectrin extractability and phosphorylation. Prog Clin Biol Res. 1978;21:453–477. [PubMed] [Google Scholar]
  11. Palek J., Lux S. E. Red cell membrane skeletal defects in hereditary and acquired hemolytic anemias. Semin Hematol. 1983 Jul;20(3):189–224. [PubMed] [Google Scholar]
  12. Rakow A. L., Hochmuth R. M. Effect of heat treatment on the elasticity of human erythrocyte membrane. Biophys J. 1975 Nov;15(11):1095–1100. doi: 10.1016/S0006-3495(75)85885-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shand J. H., Noble R. C. The maternal diet and its effect on the lipid composition and osmotic fragility of neonatal ovine erythrocytes. Biol Neonate. 1981;40(3-4):150–159. doi: 10.1159/000241484. [DOI] [PubMed] [Google Scholar]
  14. Song L. Y., Ahkong Q. F., Georgescauld D., Lucy J. A. Membrane fusion without cytoplasmic fusion (hemi-fusion) in erythrocytes that are subjected to electrical breakdown. Biochim Biophys Acta. 1991 May 31;1065(1):54–62. doi: 10.1016/0005-2736(91)90010-6. [DOI] [PubMed] [Google Scholar]
  15. Sowers A. E. Membrane electrofusion: a paradigm for study of membrane fusion mechanisms. Methods Enzymol. 1993;220:196–211. doi: 10.1016/0076-6879(93)20083-f. [DOI] [PubMed] [Google Scholar]
  16. Sowers A. E. Membrane skeleton restraint of surface shape change during fusion of erythrocyte membranes: evidence from use of osmotic and dielectrophoretic microforces as probes. Biophys J. 1995 Dec;69(6):2507–2516. doi: 10.1016/S0006-3495(95)80121-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Waugh R. E., Agre P. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis. J Clin Invest. 1988 Jan;81(1):133–141. doi: 10.1172/JCI113284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. White J. M. Membrane fusion. Science. 1992 Nov 6;258(5084):917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  19. Wu Y., Rosenberg J. D., Sowers A. E. Surface shape change during fusion of erythrocyte membranes is sensitive to membrane skeleton agents. Biophys J. 1994 Nov;67(5):1896–1905. doi: 10.1016/S0006-3495(94)80672-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wu Y., Sjodin R. A., Sowers A. E. Distinct mechanical relaxation components in pairs of erythrocyte ghosts undergoing fusion. Biophys J. 1994 Jan;66(1):114–119. doi: 10.1016/S0006-3495(94)80762-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Bruijne A. W., van Steveninck J. The effect of anesthetics and heart treatment on deformability and osmotic fragility of red blood cells. Biochem Pharmacol. 1979;28(2):177–182. doi: 10.1016/0006-2952(79)90499-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES