Abstract
We have employed two independent techniques to measure the intracellular pH (pHi) in giant glial cells of the leech Hirudo medicinalis, using the fluorescent dye 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF) and double-barreled neutral-carrier, pH-sensitive microelectrodes, which also record the membrane potential. We have compared two procedures for calibrating the ratio of the BCECF signal, excited at 440 nm and 495 nm: 1) the cell membrane was H(+)-permeabilized with nigericin in high-K+ saline at different external pH (pHo) values, and 2) the pHi of intact cells was perturbed in CO2/HCO3(-) -buffered saline of different pH, and the BCECF ratio was calibrated according to a simultaneous microelectrode pH reading. As indicated by the microelectrode measurements, the pHi did not fully equilibrate to the pHo values in nigericin-containing, high-K+ saline, but deviated by -0.12 +/- 0.02 (mean +/- SEM, n = 37) pH units. In intact cells, the microelectrode readings yielded up to 0.15 pH unit lower values than the calibrated BCECF signal. In addition, larger dye injections into the cells (> 100 microM) caused an irreversible membrane potential loss indicative of some damage to the cells. The amplitude and kinetics of slow pHi changes were equally followed by both sensors, and the dye ratio recorded slightly higher amplitudes during faster pHi shifts as induced by the addition and removal of NH4+.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babcock D. F. Examination of the intracellular ionic environment and of ionophore action by null point measurements employing the fluorescein chromophore. J Biol Chem. 1983 May 25;258(10):6380–6389. [PubMed] [Google Scholar]
- Boron W. F., De Weer P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol. 1976 Jan;67(1):91–112. doi: 10.1085/jgp.67.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borrelli M. J., Carlini W. G., Dewey W. C., Ransom B. R. A simple method for making ion-selective microelectrodes suitable for intracellular recording in vertebrate cells. J Neurosci Methods. 1985 Oct-Nov;15(2):141–154. doi: 10.1016/0165-0270(85)90051-2. [DOI] [PubMed] [Google Scholar]
- Boyarsky G., Ransom B., Schlue W. R., Davis M. B., Boron W. F. Intracellular pH regulation in single cultured astrocytes from rat forebrain. Glia. 1993 Aug;8(4):241–248. doi: 10.1002/glia.440080404. [DOI] [PubMed] [Google Scholar]
- Chaillet J. R., Boron W. F. Intracellular calibration of a pH-sensitive dye in isolated, perfused salamander proximal tubules. J Gen Physiol. 1985 Dec;86(6):765–794. doi: 10.1085/jgp.86.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chesler M. The regulation and modulation of pH in the nervous system. Prog Neurobiol. 1990;34(5):401–427. doi: 10.1016/0301-0082(90)90034-e. [DOI] [PubMed] [Google Scholar]
- Deitmer J. W. Bicarbonate-dependent changes of intracellular sodium and pH in identified leech glial cells. Pflugers Arch. 1992 Apr;420(5-6):584–589. doi: 10.1007/BF00374637. [DOI] [PubMed] [Google Scholar]
- Deitmer J. W. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system. J Gen Physiol. 1991 Sep;98(3):637–655. doi: 10.1085/jgp.98.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deitmer J. W., Rose C. R. pH regulation and proton signalling by glial cells. Prog Neurobiol. 1996 Feb;48(2):73–103. doi: 10.1016/0301-0082(95)00039-9. [DOI] [PubMed] [Google Scholar]
- Deitmer J. W., Schlue W. R. An inwardly directed electrogenic sodium-bicarbonate co-transport in leech glial cells. J Physiol. 1989 Apr;411:179–194. doi: 10.1113/jphysiol.1989.sp017567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deitmer J. W., Schlue W. R. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. J Physiol. 1987 Jul;388:261–283. doi: 10.1113/jphysiol.1987.sp016614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deitmer J. W., Schneider H. P. Voltage-dependent clamp of intracellular pH of identified leech glial cells. J Physiol. 1995 May 15;485(Pt 1):157–166. doi: 10.1113/jphysiol.1995.sp020720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deitmer J. W., Szatkowski M. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. J Physiol. 1990 Feb;421:617–631. doi: 10.1113/jphysiol.1990.sp017965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris-Warrick R. M., Flamm R. E. Multiple mechanisms of bursting in a conditional bursting neuron. J Neurosci. 1987 Jul;7(7):2113–2128. doi: 10.1523/JNEUROSCI.07-07-02113.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James-Kracke M. R. Quick and accurate method to convert BCECF fluorescence to pHi: calibration in three different types of cell preparations. J Cell Physiol. 1992 Jun;151(3):596–603. doi: 10.1002/jcp.1041510320. [DOI] [PubMed] [Google Scholar]
- Kemenes G., Daykin K., Elliott C. J. Photoinactivation of neurones axonally filled with the fluorescent dye 5(6)-carboxyfluorescein in the pond snail, Lymnaea stagnalis. J Neurosci Methods. 1991 Oct;39(3):207–216. doi: 10.1016/0165-0270(91)90099-l. [DOI] [PubMed] [Google Scholar]
- Moody W., Jr Effects of intracellular H+ on the electrical properties of excitable cells. Annu Rev Neurosci. 1984;7:257–278. doi: 10.1146/annurev.ne.07.030184.001353. [DOI] [PubMed] [Google Scholar]
- Munsch T., Deitmer J. W. Calcium transients in identified leech glial cells in situ evoked by high potassium concentrations and 5-hydroxytryptamine. J Exp Biol. 1992 Jun;167:251–265. doi: 10.1242/jeb.167.1.251. [DOI] [PubMed] [Google Scholar]
- Munsch T., Deitmer J. W. Maintenance of Fura-2 fluorescence in glial cells and neurons of the leech central nervous system. J Neurosci Methods. 1995 Apr;57(2):195–204. doi: 10.1016/0165-0270(94)00149-b. [DOI] [PubMed] [Google Scholar]
- Munsch T., Deitmer J. W. Sodium-bicarbonate cotransport current in identified leech glial cells. J Physiol. 1994 Jan 1;474(1):43–53. doi: 10.1113/jphysiol.1994.sp020001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munsch T., Nett W., Deitmer J. W. Fura-2 signals evoked by kainate in leech glial cells in the presence of different divalent cations. Glia. 1994 Aug;11(4):345–353. doi: 10.1002/glia.440110407. [DOI] [PubMed] [Google Scholar]
- Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
- Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Slayman C. L., Moussatos V. V., Webb W. W. Endosomal accumulation of pH indicator dyes delivered as acetoxymethyl esters. J Exp Biol. 1994 Nov;196:419–438. doi: 10.1242/jeb.196.1.419. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Weille J. R., Müller M., Lazdunski M. Activation and inhibition of ATP-sensitive K+ channels by fluorescein derivatives. J Biol Chem. 1992 Mar 5;267(7):4557–4563. [PubMed] [Google Scholar]
