Abstract
Naturally occurring and contaminant ferromagnetic and ferrimagnetic particles have been found within or near cells, and might allow pulsed magnetic fields to create transient cell membrane opening ("pores"). We show that this possibility is significantly constrained by the maximum rotational energy that can be transferred to the cell membrane. For single biologically synthesized magnetosomes (radius rmag approximately 10(-7) m, magnetic moment mu approximately 2 x 10(-15) A m2) and typical cell membranes, the estimated pulse magnitude must exceed Bo approximately 6 x 10(-3) to 7 x 10(-2) T, and the optimal pulse durations are in the range 10(-5) s < tpulse < 10(-1) s. For larger contaminant particles with larger net magnetic moments, the pulse magnitudes could be only somewhat smaller, and the optimal durations are about the same. Very large pulses that exceed the coercive force of a particle are predicted to have a smaller effective magnitude and shorter effective duration.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adair R. K. Effects of ELF magnetic fields on biological magnetite. Bioelectromagnetics. 1993;14(1):1–4. doi: 10.1002/bem.2250140103. [DOI] [PubMed] [Google Scholar]
- Barker A. T., Jalinous R., Freeston I. L. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985 May 11;1(8437):1106–1107. doi: 10.1016/s0140-6736(85)92413-4. [DOI] [PubMed] [Google Scholar]
- Cohen D. Ferromagnetic contamination in the lungs and other organs of the human body. Science. 1973 May 18;180(4087):745–748. doi: 10.1126/science.180.4087.745. [DOI] [PubMed] [Google Scholar]
- Delong E. F., Frankel R. B., Bazylinski D. A. Multiple evolutionary origins of magnetotaxis in bacteria. Science. 1993 Feb 5;259(5096):803–806. doi: 10.1126/science.259.5096.803. [DOI] [PubMed] [Google Scholar]
- Dunn J. R., Fuller M., Zoeger J., Dobson J., Heller F., Hammann J., Caine E., Moskowitz B. M. Magnetic material in the human hippocampus. Brain Res Bull. 1995;36(2):149–153. doi: 10.1016/0361-9230(94)00182-z. [DOI] [PubMed] [Google Scholar]
- Freeman S. A., Wang M. A., Weaver J. C. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys J. 1994 Jul;67(1):42–56. doi: 10.1016/S0006-3495(94)80453-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller M., Dobson J., Wieser H. G., Moser S. On the sensitivity of the human brain to magnetic fields: evocation of epileptiform activity. Brain Res Bull. 1995;36(2):155–159. doi: 10.1016/0361-9230(94)00183-2. [DOI] [PubMed] [Google Scholar]
- Gift E. A., Weaver J. C. Observation of extremely heterogeneous electroporative molecular uptake by Saccharomyces cerevisiae which changes with electric field pulse amplitude. Biochim Biophys Acta. 1995 Mar 8;1234(1):52–62. doi: 10.1016/0005-2736(94)00258-q. [DOI] [PubMed] [Google Scholar]
- Gould J. L., Kirschvink J. L., Deffeyes K. S. Bees have magnetic remanence. Science. 1978 Sep 15;201(4360):1026–1028. doi: 10.1126/science.201.4360.1026. [DOI] [PubMed] [Google Scholar]
- Hochmuth R. M., Waugh R. E. Erythrocyte membrane elasticity and viscosity. Annu Rev Physiol. 1987;49:209–219. doi: 10.1146/annurev.ph.49.030187.001233. [DOI] [PubMed] [Google Scholar]
- Kirschvink J. L., Kobayashi-Kirschvink A., Diaz-Ricci J. C., Kirschvink S. J. Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics. 1992;Suppl 1:101–113. doi: 10.1002/bem.2250130710. [DOI] [PubMed] [Google Scholar]
- Kirschvink J. L., Kobayashi-Kirschvink A., Woodford B. J. Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7683–7687. doi: 10.1073/pnas.89.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschvink JL. Comment on "Constraints on biological effects of weak extremely-low-frequency electromagnetic fields". Phys Rev A. 1992 Aug 15;46(4):2178–2184. doi: 10.1103/physreva.46.2178. [DOI] [PubMed] [Google Scholar]
- Parsegian A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature. 1969 Mar 1;221(5183):844–846. doi: 10.1038/221844a0. [DOI] [PubMed] [Google Scholar]
- Polk C. Effects of extremely-low-frequency magnetic fields on biological magnetite. Bioelectromagnetics. 1994;15(3):261–270. doi: 10.1002/bem.2250150308. [DOI] [PubMed] [Google Scholar]
- Prausnitz M. R., Milano C. D., Gimm J. A., Langer R., Weaver J. C. Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by erythrocyte ghosts. Biophys J. 1994 May;66(5):1522–1530. doi: 10.1016/S0006-3495(94)80943-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsong T. Y. Electroporation of cell membranes. Biophys J. 1991 Aug;60(2):297–306. doi: 10.1016/S0006-3495(91)82054-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valberg P. A., Butler J. P. Magnetic particle motions within living cells. Physical theory and techniques. Biophys J. 1987 Oct;52(4):537–550. doi: 10.1016/S0006-3495(87)83243-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valberg P. A. Magnetometry of ingested particles in pulmonary macrophages. Science. 1984 May 4;224(4648):513–516. doi: 10.1126/science.6710153. [DOI] [PubMed] [Google Scholar]
- Walcott C., Gould J. L., Kirschvink J. L. Pigeons have magnets. Science. 1979 Sep 7;205(4410):1027–1029. doi: 10.1126/science.472725. [DOI] [PubMed] [Google Scholar]
- Xie T. D., Tsong T. Y. Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields. Biophys J. 1990 Oct;58(4):897–903. doi: 10.1016/S0006-3495(90)82434-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhelev D. V., Needham D. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta. 1993 Apr 8;1147(1):89–104. doi: 10.1016/0005-2736(93)90319-u. [DOI] [PubMed] [Google Scholar]
