Abstract
An analytical expression for Na+-Ca2+ exchange currents in cardiac cells has been obtained for an eight-state model. The equation obtained has been used to derive theoretical expressions for current-voltage relationships, maximum Na+-Ca2+ exchange currents, and half-saturating concentrations for Na+ and Ca2+. These equations were analyzed over a wide range of cytoplasmic and extracellular Na+ and Ca2+ concentrations, under forward and reverse "zero-trans" conditions. Correspondence of theoretical results with those obtained from giant excised patch experiments are presented. Rate constants from published reports were used to evaluate turnover rates for Na+-Ca2+ exchange in the forward and reverse directions. A factor, epsilon, is introduced that permits prediction of the extent to which the Na+-Ca2+ exchange cycle is under voltage or diffusion control. This factor can be conveniently used for data interpretation and comparison. The derived equations also provide a foundation for continuing experimental evaluation of the fidelity of this model.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen T. J., Baker P. F. Comparison of the effects of potassium and membrane potential on the calcium-dependent sodium efflux in squid axons. J Physiol. 1986 Sep;378:53–76. doi: 10.1113/jphysiol.1986.sp016207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Santiago E. M. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J. 1977 Oct;20(1):79–111. doi: 10.1016/S0006-3495(77)85538-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheon J., Reeves J. P. Site density of the sodium-calcium exchange carrier in reconstituted vesicles from bovine cardiac sarcolemma. J Biol Chem. 1988 Feb 15;263(5):2309–2315. [PubMed] [Google Scholar]
- DiPolo R. Calcium influx in internally dialyzed squid giant axons. J Gen Physiol. 1979 Jan;73(1):91–113. doi: 10.1085/jgp.73.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilgemann D. W., Nicoll D. A., Philipson K. D. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature. 1991 Aug 22;352(6337):715–718. doi: 10.1038/352715a0. [DOI] [PubMed] [Google Scholar]
- Hilgemann D. W. Regulation and deregulation of cardiac Na(+)-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature. 1990 Mar 15;344(6263):242–245. doi: 10.1038/344242a0. [DOI] [PubMed] [Google Scholar]
- Johnson E. A., Kootsey J. M. A minimum mechanism for Na+-Ca++ exchange: net and unidirectional Ca++ fluxes as functions of ion composition and membrane potential. J Membr Biol. 1985;86(2):167–187. doi: 10.1007/BF01870783. [DOI] [PubMed] [Google Scholar]
- Johnson E. A., Lemieux D. R., Kootsey J. M. Sodium-calcium exchange: derivation of a state diagram and rate constants from experimental data. J Theor Biol. 1992 Jun 21;156(4):443–483. doi: 10.1016/s0022-5193(05)80638-1. [DOI] [PubMed] [Google Scholar]
- Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ledvora R. F., Hegyvary C. Dependence of Na+-Ca2+ exchange and Ca2+-Ca2+ exchange on monovalent cations. Biochim Biophys Acta. 1983 Mar 23;729(1):123–136. doi: 10.1016/0005-2736(83)90463-7. [DOI] [PubMed] [Google Scholar]
- Läuger P. Carrier-mediated ion transport. Science. 1972 Oct 6;178(4056):24–30. doi: 10.1126/science.178.4056.24. [DOI] [PubMed] [Google Scholar]
- Läuger P. Voltage dependence of sodium-calcium exchange: predictions from kinetic models. J Membr Biol. 1987;99(1):1–11. doi: 10.1007/BF01870617. [DOI] [PubMed] [Google Scholar]
- Matsuoka S., Hilgemann D. W. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol. 1992 Dec;100(6):963–1001. doi: 10.1085/jgp.100.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niggli E., Lederer W. J. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature. 1991 Feb 14;349(6310):621–624. doi: 10.1038/349621a0. [DOI] [PubMed] [Google Scholar]
- Philipson K. D., Nicoll D. A. Molecular and kinetic aspects of sodium-calcium exchange. Int Rev Cytol. 1993;137C:199–227. [PubMed] [Google Scholar]
- Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
- Powell T., Noma A., Shioya T., Kozlowski R. Z. Turnover rate of the cardiac Na(+)-Ca2+ exchanger in guinea-pig ventricular myocytes. J Physiol. 1993 Dec;472:45–53. doi: 10.1113/jphysiol.1993.sp019935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Requena J. Calcium efflux from squid axons under constant sodium electrochemical gradient. J Gen Physiol. 1978 Oct;72(4):443–470. doi: 10.1085/jgp.72.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
