Abstract
Simple sugars, especially disaccharides, stabilize biomaterials of various composition during air-drying or freeze-drying. We and others have provided evidence that direct interaction, an interaction that we believe is essential for the stabilization, between the sugar and polar groups in, for example, proteins and phospholipids occurs in the dry state. Some researchers, however, have suggested that the ability of the sugar to form a glass is the only requirement for stabilization. More recently, we have shown that both glass formation and direct interaction of the sugar and headgroup are often required for stabilization. In the present study, we present a state diagram for trehalose glass and suggest that the efficacy of this sugar for stabilization may be related to its higher glass transition temperatures at all water contents. We also show that trehalose and trehalose:liposome preparations form trehalose dihydrate as well as trehalose glass when rehydrated with water vapor. Formation of the dihydrate sequesters water, which might otherwise participate in lowering the glass transition temperature to below ambient. Because samples remain in the glassy state at ambient temperatures, viscosity is high and fusion between liposomes is prevented.
Full text
PDF![2087](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/1233675/28673a59074b/biophysj00044-0431.png)
![2088](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/1233675/eb6b06661fbb/biophysj00044-0432.png)
![2089](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/1233675/5d19d90ea924/biophysj00044-0433.png)
![2090](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/1233675/b2a5306b57a0/biophysj00044-0434.png)
![2091](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/1233675/77d248d47d8b/biophysj00044-0435.png)
![2092](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/1233675/6202dff5f182/biophysj00044-0436.png)
![2093](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/1233675/a1bc07452a7a/biophysj00044-0437.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CLEGG J. S. THE ORIGIN OF TREHALOSE AND ITS SIGNIFICANCE DURING THE FORMATION OF ENCYSTED DORMANT EMBRYOS OF ARTEMIA SALINA. Comp Biochem Physiol. 1965 Jan;14:135–143. doi: 10.1016/0010-406x(65)90014-9. [DOI] [PubMed] [Google Scholar]
- Carpenter J. F., Crowe J. H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 1989 May 2;28(9):3916–3922. doi: 10.1021/bi00435a044. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Crowe L. M., Chapman D. Infrared spectroscopic studies on interactions of water and carbohydrates with a biological membrane. Arch Biochem Biophys. 1984 Jul;232(1):400–407. doi: 10.1016/0003-9861(84)90555-1. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Hoekstra F. A., Nguyen K. H., Crowe L. M. Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochim Biophys Acta. 1996 Apr 26;1280(2):187–196. doi: 10.1016/0005-2736(95)00287-1. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Leslie S. B., Crowe L. M. Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology. 1994 Aug;31(4):355–366. doi: 10.1006/cryo.1994.1043. [DOI] [PubMed] [Google Scholar]
- Crowe J. H., Spargo B. J., Crowe L. M. Preservation of dry liposomes does not require retention of residual water. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1537–1540. doi: 10.1073/pnas.84.6.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowe L. M., Crowe J. H., Chapman D. Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine. Arch Biochem Biophys. 1985 Jan;236(1):289–296. doi: 10.1016/0003-9861(85)90628-9. [DOI] [PubMed] [Google Scholar]
- Crowe L. M., Crowe J. H. Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim Biophys Acta. 1988 Dec 22;946(2):193–201. doi: 10.1016/0005-2736(88)90392-6. [DOI] [PubMed] [Google Scholar]
- Hoekstra F. A., Crowe J. H., Crowe L. M. Effect of Sucrose on Phase Behavior of Membranes in Intact Pollen of Typha latifolia L., as Measured with Fourier Transform Infrared Spectroscopy. Plant Physiol. 1991 Nov;97(3):1073–1079. doi: 10.1104/pp.97.3.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koster K. L., Leopold A. C. Sugars and desiccation tolerance in seeds. Plant Physiol. 1988 Nov;88(3):829–832. doi: 10.1104/pp.88.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. W., Das Gupta S. K., Mattai J., Shipley G. G., Abdel-Mageed O. H., Makriyannis A., Griffin R. G. Characterization of the L lambda phase in trehalose-stabilized dry membranes by solid-state NMR and X-ray diffraction. Biochemistry. 1989 Jun 13;28(12):5000–5009. doi: 10.1021/bi00438a015. [DOI] [PubMed] [Google Scholar]
- Lee C. W., Waugh J. S., Griffin R. G. Solid-state NMR study of trehalose/1,2-dipalmitoyl-sn-phosphatidylcholine interactions. Biochemistry. 1986 Jul 1;25(13):3737–3742. doi: 10.1021/bi00361a001. [DOI] [PubMed] [Google Scholar]
- Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995 Oct;61(10):3592–3597. doi: 10.1128/aem.61.10.3592-3597.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun W. Q., Leopold A. C., Crowe L. M., Crowe J. H. Stability of dry liposomes in sugar glasses. Biophys J. 1996 Apr;70(4):1769–1776. doi: 10.1016/S0006-3495(96)79740-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsvetkov T. D., Tsonev L. I., Tsvetkova N. M., Koynova R. D., Tenchov B. G. Effect of trehalose on the phase properties of hydrated and lyophilized dipalmitoylphosphatidylcholine multilayers. Cryobiology. 1989 Apr;26(2):162–169. doi: 10.1016/0011-2240(89)90047-3. [DOI] [PubMed] [Google Scholar]
- Uritani M., Takai M., Yoshinaga K. Protective effect of disaccharides on restriction endonucleases during drying under vacuum. J Biochem. 1995 Apr;117(4):774–779. doi: 10.1093/oxfordjournals.jbchem.a124775. [DOI] [PubMed] [Google Scholar]