Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Nov;71(5):2380–2393. doi: 10.1016/S0006-3495(96)79432-8

Single neuron local rational arithmetic revealed in phase space of input conductances.

M Wang 1, C N Zhang 1
PMCID: PMC1233728  PMID: 8913579

Abstract

We present a phase space analysis to explore the potential of single neuron local arithmetic operations on its input conductances. This analysis was conducted first by deriving a rational function model of local spatial summation by using the equivalent circuits for steady-state membrane potentials. It is shown that developed functional phases exist in the space of input conductances, where a single neuron's local operation on input conductances can be described in terms of a set of well-defined arithmetic functions. It is further suggested that this single neuron local rational arithmetic is programmable, in the sense that the selection of these functional phases can be effectively instructed by presynaptic activities. This programmability adds the degree of freedom in a single neuron's ability to process the input information.

Full text

PDF
2380

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blomfield S. Arithmetical operations performed by nerve cells. Brain Res. 1974 Mar 29;69(1):115–124. doi: 10.1016/0006-8993(74)90375-8. [DOI] [PubMed] [Google Scholar]
  2. Carandini M., Heeger D. J. Summation and division by neurons in primate visual cortex. Science. 1994 May 27;264(5163):1333–1336. doi: 10.1126/science.8191289. [DOI] [PubMed] [Google Scholar]
  3. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heeger D. J. Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J Neurophysiol. 1993 Nov;70(5):1885–1898. doi: 10.1152/jn.1993.70.5.1885. [DOI] [PubMed] [Google Scholar]
  5. Heeger D. J. Normalization of cell responses in cat striate cortex. Vis Neurosci. 1992 Aug;9(2):181–197. doi: 10.1017/s0952523800009640. [DOI] [PubMed] [Google Scholar]
  6. Koch C., Poggio T., Torre V. Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos Trans R Soc Lond B Biol Sci. 1982 Jul 27;298(1090):227–263. doi: 10.1098/rstb.1982.0084. [DOI] [PubMed] [Google Scholar]
  7. Marr D. A theory for cerebral neocortex. Proc R Soc Lond B Biol Sci. 1970 Nov 3;176(1043):161–234. doi: 10.1098/rspb.1970.0040. [DOI] [PubMed] [Google Scholar]
  8. Poggio T., Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science. 1990 Feb 23;247(4945):978–982. doi: 10.1126/science.247.4945.978. [DOI] [PubMed] [Google Scholar]
  9. Shepherd G. M., Brayton R. K. Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience. 1987 Apr;21(1):151–165. doi: 10.1016/0306-4522(87)90329-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES