Abstract
To determine if lateral phase separation occurs in films of pulmonary surfactant, we used epifluorescence microscopy and Brewster angle microscopy (BAM) to study spread films of calf lung surfactant extract (CLSE). Both microscopic methods demonstrated that compression produced domains of liquid-condensed lipids surrounded by a liquid-expanded film. The temperature dependence of the pressure at which domains first emerged for CLSE paralleled the behavior of its most prevalent component, dipalmitoyl phosphatidylcholine (DPPC), although the domains appeared at pressures 8-10 mN/m higher than for DPPC over the range of 20-37 degrees C. The total area occupied by the domains at room temperature increased to a maximum value at 35 mN/m during compression. The area of domains reached 25 +/- 5% of the interface, which corresponds to the predicted area of DPPC in the monolayer. At pressures above 35 mN/m, however, both epifluorescence and BAM showed that the area of the domains decreased dramatically. These studies therefore demonstrate a pressure-dependent gap in the miscibility of surfactant constituents. The monolayers separate into two phases during compression but remain largely miscible at higher and lower surface pressures.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Clements J. A. Functions of the alveolar lining. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):67–71. doi: 10.1164/arrd.1977.115.S.67. [DOI] [PubMed] [Google Scholar]
- Dluhy R. A., Reilly K. E., Hunt R. D., Mitchell M. L., Mautone A. J., Mendelsohn R. Infrared spectroscopic investigations of pulmonary surfactant. Surface film transitions at the air-water interface and bulk phase thermotropism. Biophys J. 1989 Dec;56(6):1173–1181. doi: 10.1016/S0006-3495(89)82764-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall S. B., Venkitaraman A. R., Whitsett J. A., Holm B. A., Notter R. H. Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants. Am Rev Respir Dis. 1992 Jan;145(1):24–30. doi: 10.1164/ajrccm/145.1.24. [DOI] [PubMed] [Google Scholar]
- Hall S. B., Wang Z., Notter R. H. Separation of subfractions of the hydrophobic components of calf lung surfactant. J Lipid Res. 1994 Aug;35(8):1386–1394. [PubMed] [Google Scholar]
- Jobe A. H. Pulmonary surfactant therapy. N Engl J Med. 1993 Mar 25;328(12):861–868. doi: 10.1056/NEJM199303253281208. [DOI] [PubMed] [Google Scholar]
- Kahn M. C., Anderson G. J., Anyan W. R., Hall S. B. Phosphatidylcholine molecular species of calf lung surfactant. Am J Physiol. 1995 Nov;269(5 Pt 1):L567–L573. doi: 10.1152/ajplung.1995.269.5.L567. [DOI] [PubMed] [Google Scholar]
- Maloney K. M., Grainger D. W. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface. Chem Phys Lipids. 1993 Apr;65(1):31–42. doi: 10.1016/0009-3084(93)90079-i. [DOI] [PubMed] [Google Scholar]
- McConnell H. M., Tamm L. K., Weis R. M. Periodic structures in lipid monolayer phase transitions. Proc Natl Acad Sci U S A. 1984 May;81(10):3249–3253. doi: 10.1073/pnas.81.10.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nag K., Keough K. M. Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl- and dipalmitoylphosphatidylcholines. Biophys J. 1993 Sep;65(3):1019–1026. doi: 10.1016/S0006-3495(93)81155-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters R., Beck K. Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7183–7187. doi: 10.1073/pnas.80.23.7183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putz G., Goerke J., Clements J. A. Surface activity of rabbit pulmonary surfactant subfractions at different concentrations in a captive bubble. J Appl Physiol (1985) 1994 Aug;77(2):597–605. doi: 10.1152/jappl.1994.77.2.597. [DOI] [PubMed] [Google Scholar]
- Rice P. A., McConnell H. M. Critical shape transitions of monolayer lipid domains. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6445–6448. doi: 10.1073/pnas.86.17.6445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schürch S. Surface tension at low lung volumes: dependence on time and alveolar size. Respir Physiol. 1982 Jun;48(3):339–355. doi: 10.1016/0034-5687(82)90038-x. [DOI] [PubMed] [Google Scholar]
- Slotte J. P. Lateral domain formation in mixed monolayers containing cholesterol and dipalmitoylphosphatidylcholine or N-palmitoylsphingomyelin. Biochim Biophys Acta. 1995 May 4;1235(2):419–427. doi: 10.1016/0005-2736(95)80031-a. [DOI] [PubMed] [Google Scholar]
- Weis R. M., McConnell H. M. Two-dimensional chiral crystals of phospholipid. Nature. 1984 Jul 5;310(5972):47–49. doi: 10.1038/310047a0. [DOI] [PubMed] [Google Scholar]



