Abstract
Single-photon radioluminescence (SPR), the excitation of fluorophores by short-range beta-decay electrons, was developed for the measurement of submicroscopic distances. The cytoplasmic domain of band 3 (cdb3) is the primary, multisite anchorage for the erythrocyte skeleton. To begin to define the membrane arrangement of the highly asymmetrical cdb3 structure, the distance from the bilayer of Cys-201 next to the "hinge" of cdb3 was measured by both SPR and resonance energy transfer (RET). cdb3 was labeled at Cys-201 with fluorescein maleimide. For SPR measurements, the bilayer was labeled with [3H]oleic acid. The corrected cdb3-specific SPR signal was 98 +/- 2 cps microCi-1 [mumol band 3]-1. From this and the signal from a parallel sample in which 3H2O was substituted for [3H]oleic acid to create uniform geometry between 3H and the fluorophores, a Cys-201-to-bilayer separation of 39 +/- 7 A was calculated. Confirmatory distances of 40 and 43 A were obtained by RET between fluorescein on Cys-201 and eosin and rhodamine B lipid probes, respectively. This distance indicates that Cys-201 lies near band 3's vertical axis of symmetry and that the subdomain of cdb3 between the hinge and the membrane is not significantly extended. In addition, these results validate SPR as a measure of molecular distances in biological systems.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agre P., Orringer E. P., Chui D. H., Bennett V. A molecular defect in two families with hemolytic poikilocytic anemia: reduction of high affinity membrane binding sites for ankyrin. J Clin Invest. 1981 Dec;68(6):1566–1576. doi: 10.1172/JCI110411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett V. Proteins involved in membrane--cytoskeleton association in human erythrocytes: spectrin, ankyrin, and band 3. Methods Enzymol. 1983;96:313–324. doi: 10.1016/s0076-6879(83)96029-9. [DOI] [PubMed] [Google Scholar]
- Bicknese S., Shahrokh Z., Shohet S. B., Verkman A. S. Single photon radioluminescence. I. Theory and spectroscopic properties. Biophys J. 1992 Nov;63(5):1256–1266. doi: 10.1016/S0006-3495(92)81720-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bicknese S., Zimet D., Park J., van Hoek A. N., Shohet S. B., Verkman A. S. Detection of water proximity to tryptophan residues in proteins by single photon radioluminescence. Biophys Chem. 1995 May;54(3):279–290. doi: 10.1016/0301-4622(94)00127-6. [DOI] [PubMed] [Google Scholar]
- Bigelow D. J., Inesi G. Frequency-domain fluorescence spectroscopy resolves the location of maleimide-directed spectroscopic probes within the tertiary structure of the Ca-ATPase of sarcoplasmic reticulum. Biochemistry. 1991 Feb 26;30(8):2113–2125. doi: 10.1021/bi00222a016. [DOI] [PubMed] [Google Scholar]
- Carraway K. L., 3rd, Koland J. G., Cerione R. A. Location of the epidermal growth factor binding site on the EGF receptor. A resonance energy transfer study. Biochemistry. 1990 Sep 18;29(37):8741–8747. doi: 10.1021/bi00489a034. [DOI] [PubMed] [Google Scholar]
- Casey J. R., Reithmeier R. A. Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. J Biol Chem. 1991 Aug 25;266(24):15726–15737. [PubMed] [Google Scholar]
- Corbalan-Garcia S., Teruel J. A., Gomez-Fernandez J. C. Intramolecular distances within the Ca(2+)-ATPase from sarcoplasmic reticulum as estimated through fluorescence energy transfer between probes. Eur J Biochem. 1993 Oct 15;217(2):737–744. doi: 10.1111/j.1432-1033.1993.tb18300.x. [DOI] [PubMed] [Google Scholar]
- Dale R. E., Eisinger J., Blumberg W. E. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J. 1979 May;26(2):161–193. doi: 10.1016/S0006-3495(79)85243-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eidelman O., Yani P., Englert H. C., Lang H. G., Greger R., Cabantchik Z. I. Macromolecular conjugates of transport inhibitors: new tools for probing topography of anion transport proteins. Am J Physiol. 1991 May;260(5 Pt 1):C1094–C1103. doi: 10.1152/ajpcell.1991.260.5.C1094. [DOI] [PubMed] [Google Scholar]
- Fleming P. J., Koppel D. E., Lau A. L., Strittmatter P. Intramembrane position of the fluorescent tryptophanyl residue in membrane-bound cytochrome b5. Biochemistry. 1979 Nov 27;18(24):5458–5464. doi: 10.1021/bi00591a031. [DOI] [PubMed] [Google Scholar]
- Funder J., Tosteson D. C., Wieth J. O. Effects of bicarbonate on lithium transport in human red cells. J Gen Physiol. 1978 Jun;71(6):721–746. doi: 10.1085/jgp.71.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fung B. K., Stryer L. Surface density determination in membranes by fluorescence energy transfer. Biochemistry. 1978 Nov 28;17(24):5241–5248. doi: 10.1021/bi00617a025. [DOI] [PubMed] [Google Scholar]
- Halestrap A. P. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J. 1976 May 15;156(2):193–207. doi: 10.1042/bj1560193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holowka D., Baird B. Structural studies on the membrane-bound immunoglobulin E-receptor complex. 1. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes. Biochemistry. 1983 Jul 5;22(14):3466–3474. doi: 10.1021/bi00283a025. [DOI] [PubMed] [Google Scholar]
- Isaacs B. S., Husten E. J., Esmon C. T., Johnson A. E. A domain of membrane-bound blood coagulation factor Va is located far from the phospholipid surface. A fluorescence energy transfer measurement. Biochemistry. 1986 Aug 26;25(17):4958–4969. doi: 10.1021/bi00365a036. [DOI] [PubMed] [Google Scholar]
- Jennings M. L. Structure and function of the red blood cell anion transport protein. Annu Rev Biophys Biophys Chem. 1989;18:397–430. doi: 10.1146/annurev.bb.18.060189.002145. [DOI] [PubMed] [Google Scholar]
- Kleinfeld A. M., Lukacovic M. F. Energy-transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes. Biochemistry. 1985 Apr 9;24(8):1883–1890. doi: 10.1021/bi00329a012. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
- Low P. S., Westfall M. A., Allen D. P., Appell K. C. Characterization of the reversible conformational equilibrium of the cytoplasmic domain of erythrocyte membrane band 3. J Biol Chem. 1984 Nov 10;259(21):13070–13076. [PubMed] [Google Scholar]
- Low P. S., Willardson B. M., Mohandas N., Rossi M., Shohet S. Contribution of the band 3-ankyrin interaction to erythrocyte membrane mechanical stability. Blood. 1991 Apr 1;77(7):1581–1586. [PubMed] [Google Scholar]
- Macara I. G., Cantley L. C. Interactions between transport inhibitors at the anion binding sites of the band 3 dimer. Biochemistry. 1981 Sep 1;20(18):5095–5105. doi: 10.1021/bi00521a001. [DOI] [PubMed] [Google Scholar]
- Moog R. S., Kuki A., Fayer M. D., Boxer S. G. Excitation transport and trapping in a synthetic chlorophyllide substituted hemoglobin: orientation of the chlorophyll S1 transition dipole. Biochemistry. 1984 Mar 27;23(7):1564–1571. doi: 10.1021/bi00302a034. [DOI] [PubMed] [Google Scholar]
- Peters L. L., Lux S. E. Ankyrins: structure and function in normal cells and hereditary spherocytes. Semin Hematol. 1993 Apr;30(2):85–118. [PubMed] [Google Scholar]
- Rao A., Martin P., Reithmeier R. A., Cantley L. C. Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry. 1979 Oct 16;18(21):4505–4516. doi: 10.1021/bi00588a008. [DOI] [PubMed] [Google Scholar]
- Salhany J. M., Cassoly R. Kinetics of p-mercuribenzoate binding to sulfhydryl groups on the isolated cytoplasmic fragment of band 3 protein. Effect of hemoglobin binding on the conformation. J Biol Chem. 1989 Jan 25;264(3):1399–1404. [PubMed] [Google Scholar]
- Saxton M. J. Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient. Biophys J. 1989 Sep;56(3):615–622. doi: 10.1016/S0006-3495(89)82708-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shahrokh Z., Bicknese S., Shohet S. B., Verkman A. S. Single photon radioluminescence. II. Signal detection and biological applications. Biophys J. 1992 Nov;63(5):1267–1279. doi: 10.1016/S0006-3495(92)81721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stefanova H. I., Mata A. M., Gore M. G., East J. M., Lee A. G. Labeling the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum at Glu-439 with 5-(bromomethyl)fluorescein. Biochemistry. 1993 Jun 15;32(23):6095–6103. doi: 10.1021/bi00074a022. [DOI] [PubMed] [Google Scholar]
- Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
- Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner M. J. Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol. 1993 Jan;30(1):34–57. [PubMed] [Google Scholar]
- Thevenin B. J., Low P. S. Kinetics and regulation of the ankyrin-band 3 interaction of the human red blood cell membrane. J Biol Chem. 1990 Sep 25;265(27):16166–16172. [PubMed] [Google Scholar]
- Thevenin B. J., Periasamy N., Shohet S. B., Verkman A. S. Segmental dynamics of the cytoplasmic domain of erythrocyte band 3 determined by time-resolved fluorescence anisotropy: sensitivity to pH and ligand binding. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1741–1745. doi: 10.1073/pnas.91.5.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thevenin B. J., Willardson B. M., Low P. S. The redox state of cysteines 201 and 317 of the erythrocyte anion exchanger is critical for ankyrin binding. J Biol Chem. 1989 Sep 25;264(27):15886–15892. [PubMed] [Google Scholar]
- Valenzuela C. F., Weign P., Yguerabide J., Johnson D. A. Transverse distance between the membrane and the agonist binding sites on the Torpedo acetylcholine receptor: a fluorescence study. Biophys J. 1994 Mar;66(3 Pt 1):674–682. doi: 10.1016/s0006-3495(94)80841-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang D. N., Sarabia V. E., Reithmeier R. A., Kühlbrandt W. Three-dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. EMBO J. 1994 Jul 15;13(14):3230–3235. doi: 10.1002/j.1460-2075.1994.tb06624.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein R. S., Khodadad J. K., Steck T. L. Fine structure of the band 3 protein in human red cell membranes: freeze-fracture studies. J Supramol Struct. 1978;8(3):325–335. doi: 10.1002/jss.400080310. [DOI] [PubMed] [Google Scholar]
- Willardson B. M., Thevenin B. J., Harrison M. L., Kuster W. M., Benson M. D., Low P. S. Localization of the ankyrin-binding site on erythrocyte membrane protein, band 3. J Biol Chem. 1989 Sep 25;264(27):15893–15899. [PubMed] [Google Scholar]
- Wojcicki W. E., Beth A. H. Structural and binding properties of the stilbenedisulfonate sites on erythrocyte band 3: an electron paramagnetic resonance study using spin-labeled stilbenedisulfonates. Biochemistry. 1993 Sep 14;32(36):9454–9464. doi: 10.1021/bi00087a025. [DOI] [PubMed] [Google Scholar]
- Wu P., Brand L. Resonance energy transfer: methods and applications. Anal Biochem. 1994 Apr;218(1):1–13. doi: 10.1006/abio.1994.1134. [DOI] [PubMed] [Google Scholar]
- Yguerabide J. Theory for establishing proximity relations in biological membranes by excitation energy transfer measurements. Biophys J. 1994 Mar;66(3 Pt 1):683–693. doi: 10.1016/s0006-3495(94)80842-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimet D. B., Thevenin B. J., Verkman A. S., Shohet S. B., Abney J. R. Calculation of resonance energy transfer in crowded biological membranes. Biophys J. 1995 Apr;68(4):1592–1603. doi: 10.1016/S0006-3495(95)80332-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

