Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Nov;71(5):2669–2679. doi: 10.1016/S0006-3495(96)79458-4

Mechanism of alamethicin insertion into lipid bilayers.

K He 1, S J Ludtke 1, W T Heller 1, H W Huang 1
PMCID: PMC1233753  PMID: 8913604

Abstract

Alamethicin adsorbs on the membrane surface at low peptide concentrations. However, above a critical peptide-to-lipid ratio (P/L), a fraction of the peptide molecules insert in the membrane. This critical ratio is lipid dependent. For diphytanoyl phosphatidylcholine it is about 1/40. At even higher concentrations P/L > or = 1/15, all of the alamethicin inserts into the membrane and forms well-defined pores as detected by neutron in-plane scattering. A previous x-ray diffraction measurement showed that alamethicin adsorbed on the surface has the effect of thinning the bilayer in proportion to the peptide concentration. A theoretical study showed that the energy cost of membrane thinning can indeed lead to peptide insertion. This paper extends the previous studies to the high-concentration region P/L > 1/40. X-ray diffraction shows that the bilayer thickness increases with the peptide concentration for P/L > 1/23 as the insertion approaches 100%. The thickness change with the percentage of insertion is consistent with the assumption that the hydrocarbon region of the bilayer matches the hydrophobic region of the inserted peptide. The elastic energy of a lipid bilayer including both adsorption and insertion of peptide is discussed. The Gibbs free energy is calculated as a function of P/L and the percentage of insertion phi in a simplified one-dimensional model. The model exhibits an insertion phase transition in qualitative agreement with the data. We conclude that the membrane deformation energy is the major driving force for the alamethicin insertion transition.

Full text

PDF
2669

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiruvolu S., Warriner H. E., Naranjo E., Idziak S. H., Rädler J. O., Plano R. J., Zasadzinski J. A., Safinya C. R. A phase of liposomes with entangled tubular vesicles. Science. 1994 Nov 18;266(5188):1222–1225. doi: 10.1126/science.7973704. [DOI] [PubMed] [Google Scholar]
  2. He K., Ludtke S. J., Worcester D. L., Huang H. W. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J. 1996 Jun;70(6):2659–2666. doi: 10.1016/S0006-3495(96)79835-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  4. Hladky S. B., Gruen D. W. Thickness fluctuations in black lipid membranes. Biophys J. 1982 Jun;38(3):251–258. doi: 10.1016/S0006-3495(82)84556-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huang H. W., Olah G. A. Uniformly oriented gramicidin channels embedded in thick monodomain lecithin multilayers. Biophys J. 1987 Jun;51(6):989–992. doi: 10.1016/S0006-3495(87)83427-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang H. W., Wu Y. Lipid-alamethicin interactions influence alamethicin orientation. Biophys J. 1991 Nov;60(5):1079–1087. doi: 10.1016/S0006-3495(91)82144-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jen W. C., Jones G. A., Brewer D., Parkinson V. O., Taylor A. The antibacterial activity of alamethicins and zervamicins. J Appl Bacteriol. 1987 Oct;63(4):293–298. doi: 10.1111/j.1365-2672.1987.tb02705.x. [DOI] [PubMed] [Google Scholar]
  8. Latorre R., Alvarez O. Voltage-dependent channels in planar lipid bilayer membranes. Physiol Rev. 1981 Jan;61(1):77–150. doi: 10.1152/physrev.1981.61.1.77. [DOI] [PubMed] [Google Scholar]
  9. Ludtke S. J., He K., Wu Y., Huang H. W. Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta. 1994 Feb 23;1190(1):181–184. doi: 10.1016/0005-2736(94)90050-7. [DOI] [PubMed] [Google Scholar]
  10. Ludtke S., He K., Huang H. Membrane thinning caused by magainin 2. Biochemistry. 1995 Dec 26;34(51):16764–16769. doi: 10.1021/bi00051a026. [DOI] [PubMed] [Google Scholar]
  11. Ludtke S., He K., Huang H. Membrane thinning caused by magainin 2. Biochemistry. 1995 Dec 26;34(51):16764–16769. doi: 10.1021/bi00051a026. [DOI] [PubMed] [Google Scholar]
  12. Mak D. O., Webb W. W. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties. Biophys J. 1995 Dec;69(6):2323–2336. doi: 10.1016/S0006-3495(95)80102-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meyer C. E., Reusser F. A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia. 1967 Feb 15;23(2):85–86. doi: 10.1007/BF02135929. [DOI] [PubMed] [Google Scholar]
  14. Nagle J. F., Zhang R., Tristram-Nagle S., Sun W., Petrache H. I., Suter R. M. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996 Mar;70(3):1419–1431. doi: 10.1016/S0006-3495(96)79701-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vogel H. Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry. 1987 Jul 14;26(14):4562–4572. doi: 10.1021/bi00388a060. [DOI] [PubMed] [Google Scholar]
  16. Wu Y., He K., Ludtke S. J., Huang H. W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J. 1995 Jun;68(6):2361–2369. doi: 10.1016/S0006-3495(95)80418-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wu Y., Huang H. W., Olah G. A. Method of oriented circular dichroism. Biophys J. 1990 Apr;57(4):797–806. doi: 10.1016/S0006-3495(90)82599-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zhang R, Suter RM, Nagle JF. Theory of the structure factor of lipid bilayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Dec;50(6):5047–5060. doi: 10.1103/physreve.50.5047. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES