Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Nov;71(5):2680–2691. doi: 10.1016/S0006-3495(96)79459-6

Voltage-dependent translocation of R18 and DiI across lipid bilayers leads to fluorescence changes.

G B Melikyan 1, B N Deriy 1, D C Ok 1, F S Cohen 1
PMCID: PMC1233754  PMID: 8913605

Abstract

We show that the lipophilic, cationic fluorescent dyes R18 and Dil translocate from one monolayer of a phospholipid bilayer membrane to the other in a concentration and voltage-dependent manner. When the probes were incorporated into voltage-clamped planar membranes and potentials were applied, displacement currents resulted. The charged probes sensed a large fraction of the applied field. When these probes were added to only one monolayer, displacement currents were symmetrical around 0 mV, indicating that the probes distributed equally between the two monolayers. Charge translocation required that the bilayer be fluid. When membranes were in a condensed gel phase, displacement currents were not observed; raising the temperature to above the gel-liquid crystalline transition restored the currents. Translocation of R18 was also shown by fluorescence measurements. When R18 was in the bilayer at high, self-quenching concentrations, voltage pulses led to voltage-dependent fluorescence changes. The kinetics of the fluorescence changes and charge translocations correlated. Adding the quencher I- to one aqueous phase caused fluorescence to decrease or increase when voltage moved R18 toward or away from the quencher at low, nonquenching concentrations of R18. In contrast to R18, Dil incorporated into bilayers was a carrier fo I-, and hence I- altered Dil currents. Voltage-driven translocations allow R18 and Dil to be used to probe membrane potential changes.

Full text

PDF
2680

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiuchi T., Daimatsu T., Nakaya K., Nakamura Y. Fluorescence changes of rhodamine 6G associated with changes in membrane potential in synaptosomes. Biochim Biophys Acta. 1982 Mar 8;685(3):289–296. doi: 10.1016/0005-2736(82)90070-0. [DOI] [PubMed] [Google Scholar]
  2. Andersen O. S., Feldberg S., Nakadomari H., Levy S., McLaughlin S. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 1978 Jan;21(1):35–70. doi: 10.1016/S0006-3495(78)85507-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen O. S., Fuchs M. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys J. 1975 Aug;15(8):795–830. doi: 10.1016/S0006-3495(75)85856-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arbuzova A., Korte T., Müller P., Herrmann A. On the validity of lipid dequenching assays for estimating virus fusion kinetics. Biochim Biophys Acta. 1994 Mar 23;1190(2):360–366. doi: 10.1016/0005-2736(94)90095-7. [DOI] [PubMed] [Google Scholar]
  5. Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J. 1979 Jun;26(3):557–573. doi: 10.1016/S0006-3495(79)85271-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benz R., Läuger P. Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure. Biochim Biophys Acta. 1977 Jul 14;468(2):245–258. doi: 10.1016/0005-2736(77)90118-3. [DOI] [PubMed] [Google Scholar]
  7. Benz R. Structural requirement for the rapid movement of charged molecules across membranes. Experiments with tetraphenylborate analogues. Biophys J. 1988 Jul;54(1):25–33. doi: 10.1016/S0006-3495(88)82927-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cabrini G., Verkman A. S. Mechanism of interaction of the cyanine dye diS-C3-(5) with renal brush-border vesicles. J Membr Biol. 1986;90(2):163–175. doi: 10.1007/BF01869934. [DOI] [PubMed] [Google Scholar]
  9. Clague M. J., Schoch C., Zech L., Blumenthal R. Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped-flow measurements by dequenching of octadecylrhodamine fluorescence. Biochemistry. 1990 Feb 6;29(5):1303–1308. doi: 10.1021/bi00457a028. [DOI] [PubMed] [Google Scholar]
  10. Cohen L. B., Salzberg B. M. Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol. 1978;83:35–88. doi: 10.1007/3-540-08907-1_2. [DOI] [PubMed] [Google Scholar]
  11. Dragsten P. R., Blumenthal R., Handler J. S. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature. 1981 Dec 24;294(5843):718–722. doi: 10.1038/294718a0. [DOI] [PubMed] [Google Scholar]
  12. Emaus R. K., Grunwald R., Lemasters J. J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986 Jul 23;850(3):436–448. doi: 10.1016/0005-2728(86)90112-x. [DOI] [PubMed] [Google Scholar]
  13. Ganong B. R., Bell R. M. Transmembrane movement of phosphatidylglycerol and diacylglycerol sulfhydryl analogues. Biochemistry. 1984 Oct 9;23(21):4977–4983. doi: 10.1021/bi00316a023. [DOI] [PubMed] [Google Scholar]
  14. González J. E., Tsien R. Y. Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys J. 1995 Oct;69(4):1272–1280. doi: 10.1016/S0006-3495(95)80029-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hall J. E., Latorre R. Nonactin-K+ complex as a probe for membrane asymmetry. Biophys J. 1976 Jan;16(1):99–103. doi: 10.1016/S0006-3495(76)85667-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heffner C. D., Lumsden A. G., O'Leary D. D. Target control of collateral extension and directional axon growth in the mammalian brain. Science. 1990 Jan 12;247(4939):217–220. doi: 10.1126/science.2294603. [DOI] [PubMed] [Google Scholar]
  17. Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984 Nov 20;23(24):5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
  18. Kaplan D., Zimmerberg J., Puri A., Sarkar D. P., Blumenthal R. Single cell fusion events induced by influenza hemagglutinin: studies with rapid-flow, quantitative fluorescence microscopy. Exp Cell Res. 1991 Jul;195(1):137–144. doi: 10.1016/0014-4827(91)90509-s. [DOI] [PubMed] [Google Scholar]
  19. Kemble G. W., Danieli T., White J. M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell. 1994 Jan 28;76(2):383–391. doi: 10.1016/0092-8674(94)90344-1. [DOI] [PubMed] [Google Scholar]
  20. Kinnally K. W., Tedeschi H., Maloff B. L. Use of dyes to estimate the electrical potential of the mitochondrial membrane. Biochemistry. 1978 Aug 8;17(16):3419–3428. doi: 10.1021/bi00609a036. [DOI] [PubMed] [Google Scholar]
  21. Krasne S., Eisenman G., Szabo G. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin. Science. 1971 Oct 22;174(4007):412–415. doi: 10.1126/science.174.4007.412. [DOI] [PubMed] [Google Scholar]
  22. Leenhouts J. M., De Kruijff B. Membrane potential-driven translocation of a lipid-conjugated rhodamine. Biochim Biophys Acta. 1995 Jul 26;1237(2):121–126. doi: 10.1016/0005-2736(95)00093-i. [DOI] [PubMed] [Google Scholar]
  23. Lewis R. N., Sykes B. D., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry. 1988 Feb 9;27(3):880–887. doi: 10.1021/bi00403a007. [DOI] [PubMed] [Google Scholar]
  24. Loew L. M., Benson L., Lazarovici P., Rosenberg I. Fluorometric analysis of transferable membrane pores. Biochemistry. 1985 Apr 23;24(9):2101–2104. doi: 10.1021/bi00330a001. [DOI] [PubMed] [Google Scholar]
  25. Lollike K., Borregaard N., Lindau M. The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J Cell Biol. 1995 Apr;129(1):99–104. doi: 10.1083/jcb.129.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacDonald R. I. Characteristics of self-quenching of the fluorescence of lipid-conjugated rhodamine in membranes. J Biol Chem. 1990 Aug 15;265(23):13533–13539. [PubMed] [Google Scholar]
  27. Massari S., Colonna R., Folena E. Interaction of the fluorescent probe N-(lissamine Rhodamine B sulfonyl)dipalmitoylphosphatidylethanolamine with phosphatidylcholine bilayers. Biochim Biophys Acta. 1988 May 9;940(1):149–157. doi: 10.1016/0005-2736(88)90019-3. [DOI] [PubMed] [Google Scholar]
  28. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  29. Melikyan G. B., White J. M., Cohen F. S. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol. 1995 Nov;131(3):679–691. doi: 10.1083/jcb.131.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Monck J. R., Alvarez de Toledo G., Fernandez J. M. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7804–7808. doi: 10.1073/pnas.87.20.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morris S. J., Sarkar D. P., White J. M., Blumenthal R. Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells. Measurement by dequenching of fluorescence. J Biol Chem. 1989 Mar 5;264(7):3972–3978. [PubMed] [Google Scholar]
  32. Neumcke B., Läuger P. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations. Biophys J. 1969 Sep;9(9):1160–1170. doi: 10.1016/S0006-3495(69)86443-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Niles W. D., Levis R. A., Cohen F. S. Planar bilayer membranes made from phospholipid monolayers form by a thinning process. Biophys J. 1988 Mar;53(3):327–335. doi: 10.1016/S0006-3495(88)83110-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Plant A. L. Mechanism of concentration quenching of a xanthene dye encapsulated in phospholipid vesicles. Photochem Photobiol. 1986 Oct;44(4):453–459. doi: 10.1111/j.1751-1097.1986.tb04692.x. [DOI] [PubMed] [Google Scholar]
  35. Ramalho-Santos J., Nir S., Düzgünes N., de Carvalho A. P., de Lima M. da C. A common mechanism for influenza virus fusion activity and inactivation. Biochemistry. 1993 Mar 23;32(11):2771–2779. doi: 10.1021/bi00062a006. [DOI] [PubMed] [Google Scholar]
  36. Redelmeier T. E., Hope M. J., Cullis P. R. On the mechanism of transbilayer transport of phosphatidylglycerol in response to transmembrane pH gradients. Biochemistry. 1990 Mar 27;29(12):3046–3053. doi: 10.1021/bi00464a022. [DOI] [PubMed] [Google Scholar]
  37. Rothman J. E., Lenard J. Membrane asymmetry. Science. 1977 Feb 25;195(4280):743–753. doi: 10.1126/science.402030. [DOI] [PubMed] [Google Scholar]
  38. Spruce A. E., Iwata A., Almers W. The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3623–3627. doi: 10.1073/pnas.88.9.3623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stegmann T., Nir S., Wilschut J. Membrane fusion activity of influenza virus. Effects of gangliosides and negatively charged phospholipids in target liposomes. Biochemistry. 1989 Feb 21;28(4):1698–1704. doi: 10.1021/bi00430a041. [DOI] [PubMed] [Google Scholar]
  40. Stegmann T., Schoen P., Bron R., Wey J., Bartoldus I., Ortiz A., Nieva J. L., Wilschut J. Evaluation of viral membrane fusion assays. Comparison of the octadecylrhodamine dequenching assay with the pyrene excimer assay. Biochemistry. 1993 Oct 26;32(42):11330–11337. doi: 10.1021/bi00093a009. [DOI] [PubMed] [Google Scholar]
  41. Szabo G. Dual mechanism for the action of cholesterol on membrane permeability. Nature. 1974 Nov 1;252(5478):47–49. doi: 10.1038/252047a0. [DOI] [PubMed] [Google Scholar]
  42. Tse F. W., Iwata A., Almers W. Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion. J Cell Biol. 1993 May;121(3):543–552. doi: 10.1083/jcb.121.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tsien R. Y., Hladky S. B. Ion repulsion within membranes. Biophys J. 1982 Jul;39(1):49–56. doi: 10.1016/S0006-3495(82)84489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Waggoner A. S. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 1979;8:47–68. doi: 10.1146/annurev.bb.08.060179.000403. [DOI] [PubMed] [Google Scholar]
  45. Waggoner A. S., Wang C. H., Tolles R. L. Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes. J Membr Biol. 1977 May 6;33(1-2):109–140. doi: 10.1007/BF01869513. [DOI] [PubMed] [Google Scholar]
  46. Winckler B., Poo M. M. No diffusion barrier at axon hillock. Nature. 1996 Jan 18;379(6562):213–213. doi: 10.1038/379213a0. [DOI] [PubMed] [Google Scholar]
  47. Wolf D. E. Determination of the sidedness of carbocyanine dye labeling of membranes. Biochemistry. 1985 Jan 29;24(3):582–586. doi: 10.1021/bi00324a006. [DOI] [PubMed] [Google Scholar]
  48. Wunderli-Allenspach H., Günthert M., Ott S. Inactivation of PR8 influenza virus through the octadecylrhodamine B chloride membrane marker. Biochemistry. 1993 Jan 26;32(3):900–907. doi: 10.1021/bi00054a022. [DOI] [PubMed] [Google Scholar]
  49. Zimmerberg J., Blumenthal R., Sarkar D. P., Curran M., Morris S. J. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J Cell Biol. 1994 Dec;127(6 Pt 2):1885–1894. doi: 10.1083/jcb.127.6.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. van Meer G., Simons K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 1986 Jul;5(7):1455–1464. doi: 10.1002/j.1460-2075.1986.tb04382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES