Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Dec;71(6):3013–3021. doi: 10.1016/S0006-3495(96)79494-8

Spontaneous action potentials due to channel fluctuations.

C C Chow 1, J A White 1
PMCID: PMC1233790  PMID: 8968572

Abstract

A theoretical and numerical analysis of the Hodgkin-Huxley equations with the inclusion of stochastic channel dynamics is presented. It is shown that the system can be approximated by a one-dimensional bistable Langevin equation. Spontaneous action potentials can arise from the channel fluctuations and are analogous to escape by a particle over a potential barrier. The mean firing rate can be calculated using Kramers' classic result for barrier escape. The probability density function of the interspike intervals can also be estimated. The analytical results compare favorably with numerical simulations of the complete stochastic system.

Full text

PDF
3013

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Conti F., Wanke E. Channel noise in nerve membranes and lipid bilayers. Q Rev Biophys. 1975 Nov;8(4):451–506. doi: 10.1017/s0033583500001967. [DOI] [PubMed] [Google Scholar]
  2. Fox RF, Lu Yn. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Apr;49(4):3421–3431. doi: 10.1103/physreve.49.3421. [DOI] [PubMed] [Google Scholar]
  3. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hines M. A program for simulation of nerve equations with branching geometries. Int J Biomed Comput. 1989 Mar;24(1):55–68. doi: 10.1016/0020-7101(89)90007-x. [DOI] [PubMed] [Google Scholar]
  5. Ito H., Ono K., Noma A. Background conductance attributable to spontaneous opening of muscarinic K+ channels in rabbit sino-atrial node cells. J Physiol. 1994 Apr 1;476(1):55–68. [PMC free article] [PubMed] [Google Scholar]
  6. Lecar H., Nossal R. Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise. Biophys J. 1971 Dec;11(12):1068–1084. doi: 10.1016/S0006-3495(71)86278-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rubinstein J. T. Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophys J. 1995 Mar;68(3):779–785. doi: 10.1016/S0006-3495(95)80252-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sigworth F. J. The variance of sodium current fluctuations at the node of Ranvier. J Physiol. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Skaugen E., Walløe L. Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol Scand. 1979 Dec;107(4):343–363. doi: 10.1111/j.1748-1716.1979.tb06486.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES