Abstract
Recent studies suggest that phosphoinositide kinases may participate in intracellular trafficking or exocytotic events. Because both of these events ultimately require fusion of biological membranes, the susceptibility of membranes containing polyphosphoinositides (PPIs) to divalent cation-induced fusion was investigated. Results of these investigations indicated that artificial liposomes containing PPI or phosphatidic acid required lower Ca2+ concentrations for induction of membrane fusion than similar vesicles containing phosphatidylserine, phosphatidylinositol, or phosphatidylcholine. This trend was first observed in liposomes composed solely of one type of phospholipid. In addition, however, liposomes designed to mimic the phospholipid composition of the endofacial leaflet of plasma membranes (i.e., liposomes composed of combinations of PPI, phosphatidylethanolamine, and phosphatidylcholine) also required lower Ca2+ concentrations for induction of aggregation and fusion. Liposomes containing PPI and phosphatidic acid also had increased sensitivity to Mg(2+)-induced fusion, an observation that is particularly intriguing given the intracellular concentration of Mg2+ ions. Moreover, the fusogenic effects of Ca2+ and Mg2+ were additive in vesicles containing phosphatidylinositol bisphosphate. These data suggest that enzymatic modification of the PPI content of intracellular membranes could be an important mechanism of fusion regulation.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bentz J., Düzgüneş N. Fusogenic capacities of divalent cations and effect of liposome size. Biochemistry. 1985 Sep 24;24(20):5436–5443. doi: 10.1021/bi00341a023. [DOI] [PubMed] [Google Scholar]
- Bentz J., Düzgüneş N., Nir S. Temperature dependence of divalent cation induced fusion of phosphatidylserine liposomes: evaluation of the kinetic rate constants. Biochemistry. 1985 Feb 12;24(4):1064–1072. doi: 10.1021/bi00325a039. [DOI] [PubMed] [Google Scholar]
- Boggs J. M., Wood D. D., Moscarello M. A., Papahadjopoulos D. Lipid phase separation induced by a hydrophobic protein in phosphatidylserine--phosphatidylcholine vesicles. Biochemistry. 1977 May 31;16(11):2325–2329. doi: 10.1021/bi00630a003. [DOI] [PubMed] [Google Scholar]
- Cleves A. E., McGee T. P., Whitters E. A., Champion K. M., Aitken J. R., Dowhan W., Goebl M., Bankaitis V. A. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell. 1991 Feb 22;64(4):789–800. doi: 10.1016/0092-8674(91)90508-v. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins C. A., Wells W. W. Identification of phosphatidylinositol kinase in rat liver lysosomal membranes. J Biol Chem. 1983 Feb 25;258(4):2130–2134. [PubMed] [Google Scholar]
- Creutz C. E. The annexins and exocytosis. Science. 1992 Nov 6;258(5084):924–931. doi: 10.1126/science.1439804. [DOI] [PubMed] [Google Scholar]
- Del Vecchio R. L., Pilch P. F. Phosphatidylinositol 4-kinase is a component of glucose transporter (GLUT 4)-containing vesicles. J Biol Chem. 1991 Jul 15;266(20):13278–13283. [PubMed] [Google Scholar]
- Düzgüneş N., Wilschut J., Fraley R., Papahadjopoulos D. Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim Biophys Acta. 1981 Mar 20;642(1):182–195. doi: 10.1016/0005-2736(81)90148-6. [DOI] [PubMed] [Google Scholar]
- Feigenson G. W. On the nature of calcium ion binding between phosphatidylserine lamellae. Biochemistry. 1986 Sep 23;25(19):5819–5825. doi: 10.1021/bi00367a071. [DOI] [PubMed] [Google Scholar]
- Fraley R., Wilschut J., Düzgüneş N., Smith C., Papahadjopoulos D. Studies on the mechanism of membrane fusion: role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles. Biochemistry. 1980 Dec 23;19(26):6021–6029. doi: 10.1021/bi00567a012. [DOI] [PubMed] [Google Scholar]
- Gascard P., Sulpice J. C., Tran D., Sauvage M., Claret M., Zachowski A., Devaux P. F., Giraud F. Trans-bilayer distribution of phosphatidylinositol 4,5-bisphosphate and its role in the changes of lipid asymmetry in the human erythrocyte membrane. Biochem Soc Trans. 1993 May;21(2):253–257. doi: 10.1042/bst0210253. [DOI] [PubMed] [Google Scholar]
- Helm C. A., Israelachvili J. N. Forces between phospholipid bilayers and relationship to membrane fusion. Methods Enzymol. 1993;220:130–143. doi: 10.1016/0076-6879(93)20079-i. [DOI] [PubMed] [Google Scholar]
- Higgins J. A., Evans W. H. Transverse organization of phospholipids across the bilayer of plasma-membrane subfractions of rat hepatocytes. Biochem J. 1978 Aug 15;174(2):563–567. doi: 10.1042/bj1740563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husebye E. S., Flatmark T. Phosphatidylinositol kinase of bovine adrenal chromaffin granules: kinetic properties and inhibition by low concentrations of Ca2+. Biochim Biophys Acta. 1988 Feb 22;968(2):261–265. doi: 10.1016/0167-4889(88)90015-8. [DOI] [PubMed] [Google Scholar]
- Jones A. T., Clague M. J. Phosphatidylinositol 3-kinase activity is required for early endosome fusion. Biochem J. 1995 Oct 1;311(Pt 1):31–34. doi: 10.1042/bj3110031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahn R. A., Yucel J. K., Malhotra V. ARF signaling: a potential role for phospholipase D in membrane traffic. Cell. 1993 Dec 17;75(6):1045–1048. doi: 10.1016/0092-8674(93)90314-g. [DOI] [PubMed] [Google Scholar]
- Kanai F., Ito K., Todaka M., Hayashi H., Kamohara S., Ishii K., Okada T., Hazeki O., Ui M., Ebina Y. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem Biophys Res Commun. 1993 Sep 15;195(2):762–768. doi: 10.1006/bbrc.1993.2111. [DOI] [PubMed] [Google Scholar]
- Kurosawa M., Parker C. W. A phosphatidylinositol kinase in rat mast cell granules. J Immunol. 1986 Jan;136(2):616–622. [PubMed] [Google Scholar]
- Lin P. Y., Wiggan G. A., Gilfillan A. M. Activation of phospholipase D in a rat mast (RBL 2H3) cell line. A possible unifying mechanism for IgE-dependent degranulation and arachidonic acid metabolite release. J Immunol. 1991 Mar 1;146(5):1609–1616. [PubMed] [Google Scholar]
- MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
- Meers P., Hong K. L., Papaphadjopoulos D. Role of specific lipids and annexins in calcium-dependent membrane fusion. Ann N Y Acad Sci. 1991;635:259–272. doi: 10.1111/j.1749-6632.1991.tb36497.x. [DOI] [PubMed] [Google Scholar]
- Ohki S., Düzgünes N. Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes. Biochim Biophys Acta. 1979 Apr 19;552(3):438–449. doi: 10.1016/0005-2736(79)90188-3. [DOI] [PubMed] [Google Scholar]
- Ohki S., Zschörnig O. Ion-induced fusion of phosphatidic acid vesicles and correlation between surface hydrophobicity and membrane fusion. Chem Phys Lipids. 1993 Oct;65(3):193–204. doi: 10.1016/0009-3084(93)90017-w. [DOI] [PubMed] [Google Scholar]
- Ortiz O. E., Lew V. L., Bookchin R. M. Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells. J Physiol. 1990 Aug;427:211–226. doi: 10.1113/jphysiol.1990.sp018168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plattner H. Regulation of membrane fusion during exocytosis. Int Rev Cytol. 1989;119:197–286. doi: 10.1016/s0074-7696(08)60652-x. [DOI] [PubMed] [Google Scholar]
- Post J. A., Langer G. A., Op den Kamp J. A., Verkleij A. J. Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and 'gas-dissected' membranes. Biochim Biophys Acta. 1988 Aug 18;943(2):256–266. doi: 10.1016/0005-2736(88)90557-3. [DOI] [PubMed] [Google Scholar]
- Santini M. T., Indovina P. L., Cantafora A., Blotta I. The cesium-induced delay in myoblast membrane fusion is accompanied by changes in isolated membrane lipids. Biochim Biophys Acta. 1990 Apr 13;1023(2):298–304. doi: 10.1016/0005-2736(90)90426-o. [DOI] [PubMed] [Google Scholar]
- Scheuermann D. W. Comparative morphology, cytochemistry and innervation of chromaffin tissue in vertebrates. J Anat. 1993 Oct;183(Pt 2):327–342. [PMC free article] [PubMed] [Google Scholar]
- Schewe M., Müller P., Korte T., Herrmann A. The role of phospholipid asymmetry in calcium-phosphate-induced fusion of human erythrocytes. J Biol Chem. 1992 Mar 25;267(9):5910–5915. [PubMed] [Google Scholar]
- Schiavo G., Gmachl M. J., Stenbeck G., Söllner T. H., Rothman J. E. A possible docking and fusion particle for synaptic transmission. Nature. 1995 Dec 14;378(6558):733–736. doi: 10.1038/378733a0. [DOI] [PubMed] [Google Scholar]
- Serunian L. A., Haber M. T., Fukui T., Kim J. W., Rhee S. G., Lowenstein J. M., Cantley L. C. Polyphosphoinositides produced by phosphatidylinositol 3-kinase are poor substrates for phospholipases C from rat liver and bovine brain. J Biol Chem. 1989 Oct 25;264(30):17809–17815. [PubMed] [Google Scholar]
- Spungin B., Levinshal T., Rubinstein S., Breitbart H. A cell free system reveals that capacitation is a prerequisite for membrane fusion during the acrosome reaction. FEBS Lett. 1992 Oct 19;311(2):155–160. doi: 10.1016/0014-5793(92)81388-3. [DOI] [PubMed] [Google Scholar]
- Stack J. H., Herman P. K., Schu P. V., Emr S. D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 1993 May;12(5):2195–2204. doi: 10.1002/j.1460-2075.1993.tb05867.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stegmann T., Schoen P., Bron R., Wey J., Bartoldus I., Ortiz A., Nieva J. L., Wilschut J. Evaluation of viral membrane fusion assays. Comparison of the octadecylrhodamine dequenching assay with the pyrene excimer assay. Biochemistry. 1993 Oct 26;32(42):11330–11337. doi: 10.1021/bi00093a009. [DOI] [PubMed] [Google Scholar]
- Sundler R., Düzgüneş N., Papahadjopoulos D. Control of membrane fusion by phospholipid head groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol. Biochim Biophys Acta. 1981 Dec 21;649(3):751–758. doi: 10.1016/0005-2736(81)90180-2. [DOI] [PubMed] [Google Scholar]
- Sundler R., Papahadjopoulos D. Control of membrane fusion by phospholipid head groups. I. Phosphatidate/phosphatidylinositol specificity. Biochim Biophys Acta. 1981 Dec 21;649(3):743–750. doi: 10.1016/0005-2736(81)90179-6. [DOI] [PubMed] [Google Scholar]
- Tooke N. E., Hales C. N., Hutton J. C. Ca2+-sensitive phosphatidylinositol 4-phosphate metabolism in a rat beta-cell tumour. Biochem J. 1984 Apr 15;219(2):471–480. doi: 10.1042/bj2190471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu P. C., Thureson-Klein A., Klein R. L. Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience. 1986 Sep;19(1):43–54. doi: 10.1016/0306-4522(86)90004-7. [DOI] [PubMed] [Google Scholar]
- Zimmerberg J., Vogel S. S., Chernomordik L. V. Mechanisms of membrane fusion. Annu Rev Biophys Biomol Struct. 1993;22:433–466. doi: 10.1146/annurev.bb.22.060193.002245. [DOI] [PubMed] [Google Scholar]
