Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Dec;71(6):3242–3250. doi: 10.1016/S0006-3495(96)79517-6

Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope.

K Akashi 1, H Miyata 1, H Itoh 1, K Kinosita Jr 1
PMCID: PMC1233812  PMID: 8968594

Abstract

Unilamellar liposomes with diameters of 25-100 microns were prepared in various physiological salt solutions, e.g., 100 mM KCl plus 1 mM CaCl2. Successful preparation of the giant liposomes at high ionic strengths required the inclusion of 10-20% of a charged lipid, such as phosphatidylglycerol, phosphatidylserine, phosphatidic acid, or cardiolipin, in phosphatidylcholine or phosphatidylethanolamine. Three criteria were employed to identify unilamellar liposomes, yielding consistent results. Under a phase-contrast microscope those liposomes that showed the thinnest contour and had a vigorously undulating membrane were judged unilamellar. When liposomes were stained with the lipophilic fluorescent dye octadecyl rhodamine B, fluorescence intensities of the membrane of individual liposomes were integer multiples (up to four) of the lowest ones, the least fluorescent liposomes being those also judged unilamellar in the phase-contrast image. Micropipette aspiration test showed that the liposomes judged unilamellar in phase and fluorescence images had an area elastic modulus of approximately 160 dyn/cm, in agreement with literature values. The giant liposomes were stable and retained a concentration gradient of K+ across the membrane, as evidenced in fluorescence images of the K(+)-indicator PBFI encapsulated in the liposomes. Ionophore-induced K+ transport and associated volume change were observed in individual liposomes.

Full text

PDF
3242

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen F. S., Akabas M. H., Zimmerberg J., Finkelstein A. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J Cell Biol. 1984 Mar;98(3):1054–1062. doi: 10.1083/jcb.98.3.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Deamer D., Bangham A. D. Large volume liposomes by an ether vaporization method. Biochim Biophys Acta. 1976 Sep 7;443(3):629–634. doi: 10.1016/0005-2736(76)90483-1. [DOI] [PubMed] [Google Scholar]
  3. Elbaum M, Kuchnir Fygenson D, Libchaber A. Buckling microtubules in vesicles. Phys Rev Lett. 1996 May 20;76(21):4078–4081. doi: 10.1103/PhysRevLett.76.4078. [DOI] [PubMed] [Google Scholar]
  4. Evans E., Ritchie K., Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J. 1995 Jun;68(6):2580–2587. doi: 10.1016/S0006-3495(95)80441-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans E, Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett. 1990 Apr 23;64(17):2094–2097. doi: 10.1103/PhysRevLett.64.2094. [DOI] [PubMed] [Google Scholar]
  6. Farge E., Devaux P. F. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J. 1992 Feb;61(2):347–357. doi: 10.1016/S0006-3495(92)81841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  8. Hibino M., Shigemori M., Itoh H., Nagayama K., Kinosita K., Jr Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J. 1991 Jan;59(1):209–220. doi: 10.1016/S0006-3495(91)82212-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higashi K., Suzuki S., Fujii H., Kirino Y. Preparation and some properties of giant liposomes and proteoliposomes. J Biochem. 1987 Feb;101(2):433–440. doi: 10.1093/oxfordjournals.jbchem.a121928. [DOI] [PubMed] [Google Scholar]
  10. Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984 Nov 20;23(24):5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
  11. Hotani H., Miyamoto H. Dynamic features of microtubules as visualized by dark-field microscopy. Adv Biophys. 1990;26:135–156. doi: 10.1016/0065-227x(90)90010-q. [DOI] [PubMed] [Google Scholar]
  12. Hotani H. Transformation pathways of liposomes. J Mol Biol. 1984 Sep 5;178(1):113–120. doi: 10.1016/0022-2836(84)90234-1. [DOI] [PubMed] [Google Scholar]
  13. Ketis N. V., Girdlestone J., Grant C. W. Positive cooperativity in a (dissected) lectin-membrane glycoprotein binding event. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3788–3790. doi: 10.1073/pnas.77.7.3788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim S., Martin G. M. Preparation of cell-size unilamellar liposomes with high captured volume and defined size distribution. Biochim Biophys Acta. 1981 Aug 6;646(1):1–9. doi: 10.1016/0005-2736(81)90264-9. [DOI] [PubMed] [Google Scholar]
  15. Kinosita K., Jr, Itoh H., Ishiwata S., Hirano K., Nishizaka T., Hayakawa T. Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium. J Cell Biol. 1991 Oct;115(1):67–73. doi: 10.1083/jcb.115.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Käs J., Sackmann E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J. 1991 Oct;60(4):825–844. doi: 10.1016/S0006-3495(91)82117-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lipowsky R. The conformation of membranes. Nature. 1991 Feb 7;349(6309):475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
  19. Longo M. L., Waring A., Zasadzinski J. A. Lipid bilayer surface association of lung surfactant protein SP-B, amphipathic segment detected by flow immunofluorescence. Biophys J. 1992 Sep;63(3):760–773. doi: 10.1016/S0006-3495(92)81643-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mathivet L., Cribier S., Devaux P. F. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys J. 1996 Mar;70(3):1112–1121. doi: 10.1016/S0006-3495(96)79693-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyata H., Kinosita K., Jr Transformation of actin-encapsulating liposomes induced by cytochalasin D. Biophys J. 1994 Aug;67(2):922–928. doi: 10.1016/S0006-3495(94)80555-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mueller P., Chien T. F., Rudy B. Formation and properties of cell-size lipid bilayer vesicles. Biophys J. 1983 Dec;44(3):375–381. doi: 10.1016/S0006-3495(83)84311-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Needham D., Evans E. Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 degrees C below to 10 degrees C above the liquid crystal-crystalline phase transition at 24 degrees C. Biochemistry. 1988 Oct 18;27(21):8261–8269. doi: 10.1021/bi00421a041. [DOI] [PubMed] [Google Scholar]
  24. Needham D., Hochmuth R. M. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J. 1989 May;55(5):1001–1009. doi: 10.1016/S0006-3495(89)82898-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Noppl-Simson D. A., Needham D. Avidin-biotin interactions at vesicle surfaces: adsorption and binding, cross-bridge formation, and lateral interactions. Biophys J. 1996 Mar;70(3):1391–1401. doi: 10.1016/S0006-3495(96)79697-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oku N., MacDonald R. C. Differential effects of alkali metal chlorides on formation of giant liposomes by freezing and thawing and dialysis. Biochemistry. 1983 Feb 15;22(4):855–863. doi: 10.1021/bi00273a023. [DOI] [PubMed] [Google Scholar]
  27. Oku N., Scheerer J. F., MacDonald R. C. Preparation of giant liposomes. Biochim Biophys Acta. 1982 Nov 22;692(3):384–388. doi: 10.1016/0005-2736(82)90388-1. [DOI] [PubMed] [Google Scholar]
  28. Opsahl L. R., Webb W. W. Transduction of membrane tension by the ion channel alamethicin. Biophys J. 1994 Jan;66(1):71–74. doi: 10.1016/S0006-3495(94)80751-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rand R. P. Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioeng. 1981;10:277–314. doi: 10.1146/annurev.bb.10.060181.001425. [DOI] [PubMed] [Google Scholar]
  30. Reeves J. P., Dowben R. M. Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol. 1969 Feb;73(1):49–60. doi: 10.1002/jcp.1040730108. [DOI] [PubMed] [Google Scholar]
  31. Servuss R. M., Harbich W., Helfrich W. Measurement of the curvature-elastic modulus of egg lecithin bilayers. Biochim Biophys Acta. 1976 Jul 15;436(4):900–903. doi: 10.1016/0005-2736(76)90422-3. [DOI] [PubMed] [Google Scholar]
  32. Sokabe M., Sachs F., Jing Z. Q. Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J. 1991 Mar;59(3):722–728. doi: 10.1016/S0006-3495(91)82285-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Soltesz S. A., Hammer D. A. Micropipette manipulation technique for the monitoring of pH-dependent membrane lysis as induced by the fusion peptide of influenza virus. Biophys J. 1995 Jan;68(1):315–325. doi: 10.1016/S0006-3495(95)80190-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stoicheva N. G., Hui S. W. Electrofusion of cell-size liposomes. Biochim Biophys Acta. 1994 Oct 12;1195(1):31–38. doi: 10.1016/0005-2736(94)90005-1. [DOI] [PubMed] [Google Scholar]
  35. Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tank D. W., Miller C., Webb W. W. Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7749–7753. doi: 10.1073/pnas.79.24.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Venema K., Gibrat R., Grouzis J. P., Grignon C. Quantitative measurement of cationic fluxes, selectivity and membrane potential using liposomes multilabelled with fluorescent probes. Biochim Biophys Acta. 1993 Feb 23;1146(1):87–96. doi: 10.1016/0005-2736(93)90342-w. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES