Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Dec;71(6):3320–3329. doi: 10.1016/S0006-3495(96)79524-3

Dynamic chain conformations in dimyristoyl glycerol-dimyristoyl phosphatidylcholine mixtures. 2H-NMR studies.

K Schorn 1, D Marsh 1
PMCID: PMC1233819  PMID: 8968601

Abstract

The dynamic molecular lipid chain conformations in fully hydrated dimyristoyl phosphatidylcholine (DMPC)-dimyristoyl glycerol (DMG) mixtures have been investigated by 2H-NMR spectroscopy of the individual lipid components, the sn-2 chains of which were perdeuterated or, in the case of DMG, specifically deuterated at the C-2 position. Mixtures of compositions corresponding to the three different regions of the binary phase diagram in which the fluid phase is lamellar (DMPC:DMG 70:30 mol/mol), inverted hexagonal (DMPC:DMG 45:55 and 40:60 mol/mol), or isotropic (DMPC:DMG 20:80 mol/mol) were investigated. The gel phase in all three regions of the phase diagram has a lamellar structure, with the lipid chains rotating about the molecular long axis but executing only limited angular excursions. In the fluid lamellar phase of the 70:30 mol/mol DMPC-DMG mixture the profile of segmental chain flexibility is similar to that in single-component phospholipid bilayers and is characterized by an order parameter plateau for both lipid components. The chain order of the DMPC component is greater than in bilayers of DMPC alone and is also greater than that of the DMG component. In the inverted hexagonal phase of the 45:55 mol/mol DMPC-DMG mixture the chain flexibility profile is characterized by more widely spaced segmental order parameters off the plateau region. The intrinsic degree of chain order in the inverted hexagonal phase is less than in the lamellar phase of the 70:30 mol/mol mixture, and the difference in chain order between the DMPC and DMG components is reduced relative to that in the lamellar phase. The unique conformational features at the C-2 position of the sn-2 chain that characterize bilayers of diacyl phospholipids are found also for the diacylglycerol molecules in the fluid lamellar phase and most probably also in the inverted hexagonal phase. The DMG molecules are therefore integrated in the membrane (or nonlamellar lipid phase) in a configuration that is similar to that of the phospholipids and different from the crystal structure of diacylglycerols.

Full text

PDF
3320

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Das S., Rand R. P. Modification by diacylglycerol of the structure and interaction of various phospholipid bilayer membranes. Biochemistry. 1986 May 20;25(10):2882–2889. doi: 10.1021/bi00358a022. [DOI] [PubMed] [Google Scholar]
  2. Davis J. H. Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J. 1979 Sep;27(3):339–358. doi: 10.1016/S0006-3495(79)85222-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Boeck H., Zidovetzki R. Effects of diacylglycerols on the structure of phosphatidylcholine bilayers: a 2H and 31P NMR study. Biochemistry. 1989 Sep 5;28(18):7439–7446. doi: 10.1021/bi00444a043. [DOI] [PubMed] [Google Scholar]
  4. De Boeck H., Zidovetzki R. Interactions of saturated diacylglycerols with phosphatidylcholine bilayers: A 2H NMR study. Biochemistry. 1992 Jan 21;31(2):623–630. doi: 10.1021/bi00117a046. [DOI] [PubMed] [Google Scholar]
  5. De Young L. R., Dill K. A. Solute partitioning into lipid bilayer membranes. Biochemistry. 1988 Jul 12;27(14):5281–5289. doi: 10.1021/bi00414a050. [DOI] [PubMed] [Google Scholar]
  6. Dorset D. L., Pangborn W. A. Polymorphic forms of 1,2-dipalmitoyl-sn-glycerol: a combined X-ray and electron diffraction study. Chem Phys Lipids. 1988 Sep;48(1-2):19–28. doi: 10.1016/0009-3084(88)90130-2. [DOI] [PubMed] [Google Scholar]
  7. Goldberg E. M., Lester D. S., Borchardt D. B., Zidovetzki R. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers. Biophys J. 1994 Feb;66(2 Pt 1):382–393. doi: 10.1016/s0006-3495(94)80788-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffin R. G., Powers L., Pershan P. S. Head-group conformation in phospholipids: a phosphorus-31 nuclear magnetic resonance study of oriented monodomain dipalmitoylphosphatidylcholine bilayers. Biochemistry. 1978 Jul 11;17(14):2718–2722. doi: 10.1021/bi00607a004. [DOI] [PubMed] [Google Scholar]
  9. Hamilton J. A., Bhamidipati S. P., Kodali D. R., Small D. M. The interfacial conformation and transbilayer movement of diacylglycerols in phospholipid bilayers. J Biol Chem. 1991 Jan 15;266(2):1177–1186. [PubMed] [Google Scholar]
  10. Heimburg T., Hildebrandt P., Marsh D. Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Biochemistry. 1991 Sep 17;30(37):9084–9089. doi: 10.1021/bi00101a025. [DOI] [PubMed] [Google Scholar]
  11. Heimburg T., Würz U., Marsh D. Binary phase diagram of hydrated dimyristoylglycerol-dimyristoylphosphatidylcholine mixtures. Biophys J. 1992 Nov;63(5):1369–1378. doi: 10.1016/S0006-3495(92)81714-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lafleur M., Cullis P. R., Fine B., Bloom M. Comparison of the orientational order of lipid chains in the L alpha and HII phases. Biochemistry. 1990 Sep 11;29(36):8325–8333. doi: 10.1021/bi00488a018. [DOI] [PubMed] [Google Scholar]
  13. López-García F., Villalaín J., Gómez-Fernández J. C., Quinn P. J. The phase behavior of mixed aqueous dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Biophys J. 1994 Jun;66(6):1991–2004. doi: 10.1016/S0006-3495(94)80992-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marsh D., Watts A., Smith I. C. Dynamic structure and phase behavior of dimyristoylphosphatidylethanolamine bilayers studied by deuterium nuclear magnetic resonance. Biochemistry. 1983 Jun 7;22(12):3023–3026. doi: 10.1021/bi00281a036. [DOI] [PubMed] [Google Scholar]
  15. Mason J. T., Broccoli A. V., Huang C. A method for the synthesis of isomerically pure saturated mixed-chain phosphatidylcholines. Anal Biochem. 1981 May 1;113(1):96–101. doi: 10.1016/0003-2697(81)90049-x. [DOI] [PubMed] [Google Scholar]
  16. Moser M., Marsh D., Meier P., Wassmer K. H., Kothe G. Chain configuration and flexibility gradient in phospholipid membranes. Comparison between spin-label electron spin resonance and deuteron nuclear magnetic resonance, and identification of new conformations. Biophys J. 1989 Jan;55(1):111–123. doi: 10.1016/S0006-3495(89)82784-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Newton A. C. Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annu Rev Biophys Biomol Struct. 1993;22:1–25. doi: 10.1146/annurev.bb.22.060193.000245. [DOI] [PubMed] [Google Scholar]
  18. Oldfield E., Meadows M., Rice D., Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Biochemistry. 1978 Jul 11;17(14):2727–2740. doi: 10.1021/bi00607a006. [DOI] [PubMed] [Google Scholar]
  19. Ortiz A., Aranda F. J., Villalaín J., San Martín C., Micol V., Gómez-Fernandez J. C. 1,2-Dioleoylglycerol promotes calcium-induced fusion in phospholipid vesicles. Chem Phys Lipids. 1992 Oct;62(3):215–224. doi: 10.1016/0009-3084(92)90058-w. [DOI] [PubMed] [Google Scholar]
  20. Pascher I., Sundell S., Hauser H. Glycerol conformation and molecular packing of membrane lipids. The crystal structure of 2,3-dilauroyl-D-glycerol. J Mol Biol. 1981 Dec 15;153(3):791–806. doi: 10.1016/0022-2836(81)90419-8. [DOI] [PubMed] [Google Scholar]
  21. Sanders C. R., 2nd Qualitative comparison of the bilayer-associated structures of diacylglycerol and a fluorinated analog based upon oriented sample NMR data. Chem Phys Lipids. 1994 Jun 24;72(1):41–57. doi: 10.1016/0009-3084(94)90016-7. [DOI] [PubMed] [Google Scholar]
  22. Sankaram M. B., Marsh D. Chain order profile in lipid HII phases. Biophys J. 1989 Nov;56(5):1043–1044. doi: 10.1016/S0006-3495(89)82750-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schorn K., Marsh D. Lipid chain dynamics and molecular location of diacylglycerol in hydrated binary mixtures with phosphatidylcholine: spin label ESR studies. Biochemistry. 1996 Mar 26;35(12):3831–3836. doi: 10.1021/bi952688b. [DOI] [PubMed] [Google Scholar]
  24. Seelig A., Seelig J. Bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Conformational differences between the fatty acyl chains. Biochim Biophys Acta. 1975 Sep 16;406(1):1–5. doi: 10.1016/0005-2736(75)90037-1. [DOI] [PubMed] [Google Scholar]
  25. Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
  26. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  27. Siegel D. P., Banschbach J., Alford D., Ellens H., Lis L. J., Quinn P. J., Yeagle P. L., Bentz J. Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases. Biochemistry. 1989 May 2;28(9):3703–3709. doi: 10.1021/bi00435a012. [DOI] [PubMed] [Google Scholar]
  28. Zidovetzki R., Lester D. S. The mechanism of activation of protein kinase C: a biophysical perspective. Biochim Biophys Acta. 1992 Apr 7;1134(3):261–272. doi: 10.1016/0167-4889(92)90185-e. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES