Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1977 Apr;123(Pt 2):501–513.

An estimation of the fibre type compostion of eleven skeletal muscles from New Zealand White rabbits between weaning and early maturity.

G E Lobley, A B Wilson, A S Bruce
PMCID: PMC1234547  PMID: 192705

Abstract

Fibre types in 11 skeletal muscles from New Zealand White rabbits were differentiated on the basis of histochemical staining reactions for Ca2+-adenosine triphosphatase (Ca2+ATPase) at pH 9-4, cytochrome oxidase, succinate dehydrogenase and L-glycerol-3-phosphate:menadione oxidoreductase activities. Using these enzyme reactions it was convenient to divide muscle fibres into three main categories in 'white' muscles and two in 'red' muscles. Between weaning and early maturity most muscles showed little change in fibre type composition, particularly when Ca2+-ATPase activity was used as the criterion. Many muscles showed an uneven distribution of fibre types in transverse sections; this was particularly so in the cases of longissimus, semitendinosus, soleus and semimembranosus proprius. The methods successful in resolving fibre types in mature muscles were not so capable of resolving fibre types in neonatal muscles.

Full text

PDF
501

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman F. P. The use of a new grade of polyvinyl alcohol for stabilising tissue sections during histochemical incubations. Histochemie. 1971;28(3):236–242. doi: 10.1007/BF00305680. [DOI] [PubMed] [Google Scholar]
  2. BURSTONE M. S. Modifications of histochemical techniques for the demonstration of cytochrome oxidase. J Histochem Cytochem. 1961 Jan;9:59–65. doi: 10.1177/9.1.59. [DOI] [PubMed] [Google Scholar]
  3. Bergman R. A., Afifi A. K. The structure of the rabbit soleus muscle and the structural alterations resulting from tenotomy. Johns Hopkins Med J. 1969 Mar;124(3):119–131. [PubMed] [Google Scholar]
  4. Burke R. E., Levine D. N., Salcman M., Tsairis P. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol. 1974 May;238(3):503–514. doi: 10.1113/jphysiol.1974.sp010540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Butcher R. G. Studies on succinate oxidation. I. The use of intact tissue sections. Exp Cell Res. 1970 Apr;60(1):54–60. doi: 10.1016/0014-4827(70)90488-x. [DOI] [PubMed] [Google Scholar]
  6. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gauthier G. F. On the relationship of ultrastructural and cytochemical features of color in mammalian skeletal muscle. Z Zellforsch Mikrosk Anat. 1969;95(3):462–482. doi: 10.1007/BF00995217. [DOI] [PubMed] [Google Scholar]
  8. Gauthier G. F. Some ultrastructural and cytochemical features of fiber populations in the soleus muscle. Anat Rec. 1974 Dec;180(4):551–563. doi: 10.1002/ar.1091800402. [DOI] [PubMed] [Google Scholar]
  9. Goldberg A. L. Protein synthesis in tonic and phasic skeletal muscles. Nature. 1967 Dec 23;216(5121):1219–1220. doi: 10.1038/2161219a0. [DOI] [PubMed] [Google Scholar]
  10. Gröschel-Stewart U., Meschede K., Lehr I. Histochemical and immunochemical studies on mammalian striated muscle fibres. Histochemie. 1973;33(1):79–85. doi: 10.1007/BF00304229. [DOI] [PubMed] [Google Scholar]
  11. Guth L., Samaha F. J. Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp Neurol. 1969 Sep;25(1):138–152. doi: 10.1016/0014-4886(69)90077-6. [DOI] [PubMed] [Google Scholar]
  12. Guth L., Yellin H. The dynamic nature of the so-called "fiber types" of nammalian skeletal muscle. Exp Neurol. 1971 May;31(2):227–300. doi: 10.1016/0014-4886(71)90196-8. [DOI] [PubMed] [Google Scholar]
  13. Gutmann E., Melichna J., Syrový I. Developmental changes in contraction time, myosin properties and fibre pattern of fast and slow skeletal muscles. Physiol Bohemoslov. 1974;23(1):19–27. [PubMed] [Google Scholar]
  14. Jöbsis A. C., Meijer A. E. Evaluation of enzyme histochemical observations for metabolic studies. A combined histochemical and biochemical investigation of experimentally induced skeletal muscle-changes. I. The histochemical investigation. Histochemie. 1973 Jul 19;36(1):51–61. doi: 10.1007/BF00310121. [DOI] [PubMed] [Google Scholar]
  15. KERR N. S. The homologies and nomenclature of the thigh muscles of the opossum, cat rabbit, and rhesus monkey. Anat Rec. 1955 Mar;121(3):481–493. doi: 10.1002/ar.1091210302. [DOI] [PubMed] [Google Scholar]
  16. Locker R. H., Hagyard C. J. The myosin of rabbit red muscles. Arch Biochem Biophys. 1968 Sep 20;127(1):370–375. doi: 10.1016/0003-9861(68)90238-5. [DOI] [PubMed] [Google Scholar]
  17. Millward D. J., Garlick P. J., Stewart R. J., Nnanyelugo D. O., Waterlow J. C. Skeletal-muscle growth and protein turnover. Biochem J. 1975 Aug;150(2):235–243. doi: 10.1042/bj1500235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peter J. B., Barnard R. J., Edgerton V. R., Gillespie C. A., Stempel K. E. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry. 1972 Jul 4;11(14):2627–2633. doi: 10.1021/bi00764a013. [DOI] [PubMed] [Google Scholar]
  19. ROMANUL F. C. ENZYMES IN MUSCLE. I. HISTOCHEMICAL STUDIES OF ENZYMES IN INDIVIDUAL MUSCLE FIBERS. Arch Neurol. 1964 Oct;11:355–358. doi: 10.1001/archneur.1964.00460220017003. [DOI] [PubMed] [Google Scholar]
  20. STEIN J. M., PADYKULA H. A. Histochemical classification of individual skeletal muscle fibers of the rat. Am J Anat. 1962 Mar;110:103–123. doi: 10.1002/aja.1001100203. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES