Skip to main content
Foods logoLink to Foods
. 2025 Aug 6;14(15):2743. doi: 10.3390/foods14152743

The Identification and Analysis of Novel Umami Peptides in Lager Beer and Their Multidimensional Effects on the Sensory Attributes of the Beer Body

Yashuai Wu 1,3,4,5,, Ruiyang Yin 2,, Liyun Guo 2, Yumei Song 2, Xiuli He 2, Mingtao Huang 1, Yi Ren 6, Xian Zhong 7, Dongrui Zhao 3,4,5,*, Jinchen Li 3,4,5, Mengyao Liu 3,4,5, Jinyuan Sun 3,4,5, Mingquan Huang 3,4, Baoguo Sun 3,4,5
Editor: Giuseppe Perretti
PMCID: PMC12345983  PMID: 40807680

Abstract

This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 valid sequences were obtained. Machine-learning models (UMPred-FRL, Tastepeptides-Meta, and Umami-MRNN) predicted 76 potential umami peptides. These candidates were docked to T1R1/T1R3 with the CDOCKER protocol, producing 57 successful complexes. Six representative peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL—were selected for 100 ns molecular-dynamics simulations and MM/GBSA binding-energy calculations. All six peptides stably occupied the narrow cleft at the T1R1/T1R3 interface. Their binding free energies ranked as DEVR (−44.09 ± 5.47 kcal mol−1) < KSTEL (−43.21 ± 3.45) < IEKYSGA (−39.60 ± 4.37) ≈ PVPL (−39.53 ± 2.52) < DELIK (−36.14 ± 3.11) < DIGISSK (−26.45 ± 4.52). Corresponding taste thresholds were 0.121, 0.217, 0.326, 0.406, 0.589, and 0.696 mmol L−1 (DEVR < KSTEL < IEKYSGA < DELIK < PVPL < DIGISSK). TDA-based sensory validation with single-factor additions showed that KSTEL, DELIK, DEVR, and PVPL increased umami scores by ≈21%, ≈22%, ≈17%, and ≈11%, respectively, while DIGISSK and IEKYSGA produced marginal changes (≤2%). The short-chain peptides thus bound with high affinity to T1R1/T1R3 and improved core taste and mouthfeel but tended to amplify certain off-flavors, and the long-chain peptides caused detrimental impacts. Future formulation optimization should balance flavor enhancement and off-flavor suppression, providing a theoretical basis for targeted brewing of umami-oriented lager beer.

Keywords: lager beer, umami peptide, single-factor sensory test, umami-oriented beer, off-flavor

1. Introduction

Lager beer is regarded as one of the most consumed and widely accepted alcoholic beverages worldwide. Its refreshing mouthfeel and balanced malt and hop aromas are favored by consumers. Moderate beer consumption can deliver several functional constituents—malt-derived B-vitamins, silicon, and soluble β-glucans, together with hop and malt polyphenols that exhibit antioxidant and anti-inflammatory activity—collectively linked to improved endothelial function, enhanced bone-mineral density, and a more diverse gut microbiota. These putative benefits, however, depend on responsible intake levels that avoid the well-documented risks of excessive alcohol consumption [1,2,3,4,5]. By 2024, the global beer market value was about USD 804.65 billion. Lager categories—including pale, Vienna, and dark styles—accounted for 86.46% of the total volume, corresponding to roughly USD 695.70 billion, and the amount was projected to rise to USD 898.149 billion by 2030, representing a compound annual growth rate (CAGR) of around 4.85% [1,2]. In preceding years, the beer consumption market was observed to have undergone clear structural differentiation. Contrasting development trends were shown in traditional industrial lager beer and emerging categories, such as craft and low-alcohol products. Although lager still occupied the dominant share of the market, accounting for about 90% of total sales, premium lager was reported to have achieved a rapid growth of 22% (https://www.hangyan.co/charts/3074591479960700641, https://economy.china.com/industrial/11173306/20180109/31933055_1.html, accessed on 29 July 2025), indicating an evident upgrade in consumption. At the same time, the craft beer market was noted to be flourishing. Its consumption in 2025 was projected to reach 2.3 billion liters, with a compound annual growth rate of 17% (https://www.tjkx.com/news/show/1097386, accessed on 29 July 2025). Craft lager was identified as one of the fastest-growing subcategories. Consumption scenarios and consumer groups were found to be significantly diversified. Industrial lager mainly relied on traditional festive social occasions, whereas craft products were better suited to home drinking and night-market settings. Generation Z contributed 65% of craft sales (https://m.163.com/dy/article/K4HFOMMT0522BL6H.html, accessed on 29 July 2025). The market exhibited a transformation towards reduced volume but enhanced quality. On one hand, a low-price strategy accelerated the popularization of craft beer; for example, the price of a 1 L craft pack at Hema was reduced to CNY 13.9 (http://www.itbear.com.cn/html/2025-07/896056.html, accessed on 29 July 2025). On the other hand, differentiated products, such as new Chinese-style craft lager and low-alcohol beverages, whose online sales grew by 28% (https://big5.chinabgao.com/freereport/105082.html, accessed on 29 July 2025), were widely welcomed, driving the industry toward higher quality and greater diversification. As purchasing power increased, a fundamental change in consumer demand for lager beer was observed, with preference shifting from “low price and ample quantity” to “moderate price and superior quality” [3,4].

Accordingly, the enhancement of lager beer quality was regarded as a shared objective within the industry. The abundant CO2 and mild alcohol content acted in concert to provide drinkers with a “constriction-ease” sense of physical and mental relaxation, while sour, sweet, and bitter tastes were fully expressed through interactions among malt, hops, and yeast secondary metabolites [5,6,7]. As investigations into taste dimensions advanced, it was observed that beer, like other foods, contained the fifth basic taste—umami—which was gradually considered an essential component of lager beer quality [8]. Nevertheless, mechanistic elucidation of umami characteristics in lager beer has remained at an early stage, and the molecular basis of this taste in lager beer has yet to be precisely clarified.

Umami in diverse food systems is usually formed by several small molecules, including free amino acids, such as L-glutamic acid, L-aspartic acid, and their sodium salts, 5′-nucleotides (IMP, GMP), organic acids, carboxylic acids, and low-molecular-weight peptides [9,10,11,12,13]. When raw materials undergo fermentation, enzymatic hydrolysis, or thermal processing, these precursors are converted into umami molecules, thereby laying the foundation for the savory taste of soups, sauces, and fermented alcoholic beverages [14]. During saccharification, yeast fermentation, and maturation, beer likewise accumulates these umami-active substances [15]. Such potential “umami factors” offer possibilities for exploring the distinctive refreshing taste of beer [16,17]. Growing evidence demonstrates that proteolysis during malting and fermentation generates a rich pool of short, glutamate- and aspartate-enriched peptides that can contribute directly to savory flavor in alcoholic beverages. An early LC-MS/MS survey catalogued more than 200 low-molecular-weight peptides in commercial barley–malt beers, several bearing acidic motifs compatible with T1R1/T1R3 activation [7]. Building on this, Schmidt et al. [17] showed that beers, wines, and champagnes aged on lees accumulate both free glutamate and small peptides, resulting in markedly higher “umami potential” than freshly fermented counterparts. Most recently, Huang et al. [16] combined high-resolution peptidomics with molecular docking and taste dilution analysis to identify a suite of lager-beer peptides—such as KSTEL and DELIK—that bind T1R1/T1R3 with sub-micromolar affinity and significantly elevate umami intensity. Together, these studies establish fermentation- and malting-driven peptide formation as mechanistic routes to umami enhancement in alcoholic beverages. Among these factors, umami peptides have attracted growing attention because of their low taste thresholds and pronounced umami expression [18,19,20]. These peptides, composed of a few amino acid residues linked by peptide bonds, generally possess molecular weights below 3 kDa and present advantages of natural origin, safety, and high nutritional value. They are key contributors to the “mellow and refreshing” attributes of many foods. Six octapeptides, including AEEHVEAVN, were isolated by Zhang et al. [14] from chicken-breast soup. Their umami thresholds ranged from 0.18 to 0.91 mmol L−1, equivalent to 0.53–0.66 g L−1 monosodium glutamate, and the peptides markedly enhanced the soup’s savory intensity. Yue et al. applied an enzymolysis–membrane separation strategy to identify 52 novel umami peptides and used molecular docking to show that these peptides stably bind sites, such as ASP-30 and MET-342, on the T1R1/T1R3 receptor, thereby revealing the mechanism underlying strong umami perception [21]. Comparative studies have also confirmed that higher peptide contents in enzymatic chicken broths produced more pronounced savory enhancement [22]. Since the discovery of the classical beef octapeptide, more than 300 umami peptides derived from fermented foods have been identified, and some originated from beer and other fermented alcoholic beverages [23]. Recent mass-spectrometry-based flavouromics research has located several novel umami peptides in lager beer and attempted to clarify their binding mechanisms with taste receptors through molecular docking and dynamic simulations, thereby providing theoretical support for targeted brewing [16].

The complex lager–beer matrix poses challenges for researchers’ extraction, isolation, and identification of umami peptides. Researchers’ identification of umami peptides has traditionally relied mainly on gel-filtration chromatography (GFC) and reversed-phase high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). These approaches possess clear limitations—long processing times, high costs, and low throughput—that have severely restricted progress in research on beer-derived umami peptides. To overcome these bottlenecks, computer-assisted peptide-identification techniques have been increasingly regarded as advantageous. Researchers have markedly improved umami-peptide identification efficiency, especially when they combine machine-learning techniques with in silico bioinformatics. Prediction tools such as UMPred-FRL, Umami-MRNN, and Tastepeptides-Meta have been applied to preliminary screening and threshold prediction of umami peptides and have demonstrated high efficiency and accuracy. For example, Qi et al. trained an MLP–RNN dual model on six categories of peptide-sequence features from 499 samples and achieved 90.5% accuracy in independent umami-property prediction tests [8]. In another study, a TPDM (taste peptide docking machine) was used as the core by Cui et al. [24], where residue-contact data from molecular docking, physicochemical descriptors, and Morgan fingerprints were integrated, and an ensemble weighted by an SVM over 19 high-performance sub-classifiers was constructed, enabling rapid and accurate discrimination between umami and bitter peptides. This “rapid screening before optimization” strategy highlighted the overall gain afforded by computer-assisted analysis over traditional methods and ensured the accuracy of subsequent research.

Based on, the polypeptides in lager beer were first screened by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Potential umami peptides were then selected through umami–peptide prediction tools and molecular docking. The stability of peptide–receptor complexes was assessed by molecular dynamics simulations, and key umami peptides were predicted along with their molecular mechanisms and taste-expression characteristics. The threshold-determination and sensory-validation method was finally applied to verify these key peptides and to evaluate their multidimensional effects on beer sensory attributes.

2. Materials and Methods

2.1. Samples and Reagents

The experimental sample was a lager beer with an 8 °P wort concentration, produced from water, malt, rice, and hops, and was stored at −4 °C. Each treatment (control and six peptide-fortified beers) was brewed in three independent 500 L pilot batches (n = 3). The main reagents used in the experiment were acetonitrile (ACN) (Beijing InnoChem Science & Technology Co., Ltd., Beijing, China), formic acid (FA) (≥99%, chromatographic grade, Sigma-Aldrich, St. Louis, MO, USA), and ultrapure water. Six umami peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL—were employed, each with a purity of ≥90% (Nanjing Taopu Biotechnology Co., Ltd., Nanjing, China).

2.2. Experimental Instruments

Major instruments and equipment: Milli-Q ultrapure water system (Milli-Q, Millipore, Billerica, MA, USA); 1000 µL pipette and 10 mL/100 mL volumetric flasks (Sinopharm Chemical Reagent Co., Beijing, China); 2 mL autosampler vials (Santa Clara, CA, USA); Retain-AX SPE cartridges (Waltham, MA, USA); GGC-C separatory–funnel vertical oscillator (Beijing Guohuan Hi-Tech Automation Technology Research Institute, Beijing, China); VM-500S vortex mixer (Joan Lab, Huzhou, Zhejiang, China); RE-52C rotary evaporator (Shanghai Yarong Biochemical Instrument Factory, Shanghai, China); SHB-III circulating-water vacuum pump (Zhengzhou Greatwall Scientific Industrial and Trade Co., Zhengzhou, China); Fresco 17 freeze dryer; UltiMate 3000 HPLC system; and Q Exactive high-resolution mass spectrometer (Thermo Scientific, Waltham, MA, USA).

2.3. Experimental Methods

2.3.1. Preprocessing Method

A 10 mL beer sample was collected before being mixed with 10 mL loading buffer, a 2% acetonitrile aqueous solution containing 0.1% formic acid. Peptides were extracted and enriched by passage through a WCX SPE cartridge. The eluate was centrifugally concentrated and dried in preparation for LC-MS/MS analysis (n = 3).

2.3.2. LC-MS/MS Analytical Conditions

Chromatographic conditions: The polypeptides were separated on a Waters Acquity Peptide C18 column (2.1 mm × 150 mm, 1.7 µm). Mobile phase A was 0.1% formic acid in water, and mobile phase B was 0.1% formic acid in acetonitrile. An injection volume of 20 µL was employed. The column temperature was maintained at 45 °C. Detection was performed at 215 nm and 280 nm. Gradient elution was applied according to the program listed in Table 1.

Table 1.

Liquid chromatography separation conditions.

Time (min) Flow Velocity (mL/min) A% B%
0 0.2 95 5
0.5 0.2 95 5
24 0.2 30 70
24.1 0.2 10 90
27 0.2 10 90
27.1 0.2 95 5
30 0.2 95 5

Mass spectrometry conditions: The samples were analyzed using a Q-Exactive high-resolution mass spectrometer in positive ion detection mode. The mass spectrometer ion source parameters are listed in Table 2. Mass spectrometry data were acquired in data-dependent acquisition (DDA) mode. The MS1 full-scan resolution was set to 70,000 (at m/z 200), with a scan range of 300–1500 m/z, a maximum injection time of 100 ms, and an AGC target value of 3 × 106. In each MS1 acquisition cycle, the 10 strongest precursor ions (charge state 1+~5+) were selected, isolated within a 1.6 m/z window, and fragmented using high-energy collision-induced dissociation (HCD), with a collision energy setting of NCE = 28 eV. The resulting MS2 spectra were recorded at a resolution of 17,500 (m/z 200), with an AGC target value of 2 × 105, a maximum injection time of 50 ms, and a dynamic exclusion time of 4 s to prevent repeated fragmentation of the same precursor ion.

Table 2.

Mass spectrometer ion source parameters.

Mass Spectrometry Ion Source Parameters Set Value
Spray voltage 4.0 kV
Sheath gas flow rate 35 °C
Auxiliary gas flow rate 15 mL/min
Capillary temperature 300 °C
S-lens RF power 30 eV

2.3.3. Qualitative Analysis of Peptides in Beer

The raw MS files were processed, and proteins were identified with PEAKS Studio v8.5 (Bioinformatics Solutions Inc., Waterloo, ON, Canada). Sequence searches were carried out against the protein databases for Triticum aestivum, Komagataella phaffii, and Oryza sativa, downloaded from UniProt. The parameters were set as follows: MS1 mass tolerance, 10 ppm; MS2 mass tolerance, 0.03 Da; digestion mode, none (unspecific); fixed modifications, none; and variable modifications, including protein N-terminal acetylation, deamidation (N/Q), oxidation (M), pyro-glutamate formation from glutamic acid (E) or glutamine (Q), and half disulfide (−1.01 Da). A confidence threshold of −10logP ≥ 15 was applied. To capture peptide segments possibly missing from the databases, the de novo sequencing function in PEAKS was employed to interpret the fragment spectra. The de novo results were evaluated by average local confidence (ALC), and only sequences with ALC ≥ 90% were retained to ensure reliability. These sequences were then used to complement and cross-validate the database search results during subsequent alignment and functional analyses [25,26,27,28,29,30,31,32].

2.3.4. Efficient Screening Method for Potential Umami Peptides Using Machine Learning

UMPred-FRL (http://pmlabstack.pythonanywhere.com/UMPred-FRL, accessed on 29 July 2025) and Tastepeptides-Meta (http://tastepeptides-meta.com/TPDM, accessed on 29 July 2025) were preferentially employed to assess whether the polypeptides possessed umami activity. Probability values for umami activity were output. Thresholds predicted by Umami-MRNN (https://umami-mrnn.herokuapp.com/, accessed on 29 July 2025) were integrated with sensory evaluations to determine experimental thresholds and to support single-factor addition experiments.

2.3.5. Molecular Docking Method

The sequence of the template protein mGluR1 was retrieved from UniProt-KB as a reference for homology modelling. The metabolotropic glutamate receptor (PDB ID: 1EWK, obtained from RCSB PDB, http://www.rcsb.org/, accessed on 29 July 2025) was adopted as the template. The amino acid sequences of umami-receptor subunits T1R1 and T1R3 were combined, and three-dimensional homology models were generated on the SwissModel platform (https://swissmodel.expasy.org/, accessed on 29 July 2025). After modelling, geometric reasonableness was examined with the Ramachandran plot, calculated by SAVES v6.0 (https://saves.mbi.ucla.edu/, accessed on 29 July 2025). The plot displayed φ–ψ dihedral-angle distributions and evaluated structural reliability. After validation, the model was submitted to molecular-docking studies. Before docking, the receptor structure was pre-processed in PyMOL 2.6.0 by removing all solvent molecules, ions, and small ligands. A docking grid was then set to cover the whole protein surface. Peptide ligands were constructed in Discovery Studio 2019 and were assigned CHARMm force-field parameters. Energy minimization was carried out with the Smart Minimizer algorithm (maximum 2000 steps; RMS-gradient threshold 0.01). Potential binding pockets were searched with the same software. After the binding sites had been defined, candidate umami peptides were embedded into the T1R1/T1R3 complex with the CDOCKER semi-flexible protocol. The other parameters were kept at default values, and only the pose with the highest CDOCKER-Energy score was retained. The resulting complex was visualized and analyzed in three dimensions with PyMOL and Discovery Studio to present ligand–receptor interactions intuitively [33,34,35,36,37,38].

2.3.6. Determination Method of Sensory Threshold for Umami Peptides

The TDA taste-dilution analysis method [39,40,41] was applied to determine the peptides’ taste threshold. A stock solution of the target umami peptide was prepared at pH 6.5 and 1 mg mL−1. The stock was serially diluted with deionized water at a 1:1 ratio to create gradient samples. These samples were presented to a panel of twenty trained assessors in ascending concentration order. Each dilution was examined by the three-cup test, which contained two blanks and one sample. The assessors identified the differing cup and its lowest detectable concentration, and the result was confirmed through a repeat evaluation with the same set of samples.

2.3.7. Molecular Dynamics (MDs) and MM/GBSA Binding Free Energy Calculation

The peptide–receptor complex obtained from docking was used as the initial conformation, and an all-atom molecular-dynamics simulation was carried out in AMBER 22 [42,43]. Both peptide chains and protein residues were parameterized with the ff14SB force field [44,45]. Hydrogen atoms were added with the LEaP tool, and a truncated-octahedral TIP3P water box was generated 10 Å from the system boundary [46,47,48], and Na+/Cl ions were introduced to maintain electrical neutrality. Topology and coordinate files were then exported for subsequent calculations. Energy minimization consisted of 2500 steps of steepest descent, followed by 2500 steps of conjugate gradient. The system was heated for 200 ps under constant volume, and the temperature was raised linearly from 0 K to 298.15 K. After temperature stabilization, a 500 ps NVT equilibration was performed to promote uniform solvent distribution. The ensemble was next switched to NPT and pre-equilibrated for another 500 ps. A 100 ns NPT production run was finally executed under periodic boundary conditions. Simulation settings were as follows. The non-bonded interaction cut-off was 10 Å. Long-range electrostatics were treated with the particle-mesh Ewald method [49,50,51]. All bonds involving hydrogen were constrained by SHAKE [52]. The temperature was controlled with Langevin dynamics at a collision frequency of γ = 2 ps−1 [53]. The pressure was kept at 1 atm. The integration time step was 2 fs. Trajectories were saved every 10 ps for later structural and energetic analyses.

Binding free energies between proteins and ligands in all systems were evaluated with the MM/GBSA method [54,55,56,57,58]. Because extended trajectories might reduce MM/GBSA accuracy [55,56], frames from 90–100 ns were adopted for the calculations, as expressed by the following equation:

ΔGbind=ΔGcomplex(ΔGreceptor+ΔGligand)=ΔEinternal+ΔEvDW+ΔEelec+ΔGGB+ΔGSA (1)

In Equation (1), ΔEinternal was defined as the internal energy, ΔEVDW as the van der Waals contribution, and ΔEelec as the electrostatic interaction. The internal energy was composed of bond energy (Ebond), angle energy (Eangle), and torsional energy (Etorsion). ΔGGB and ΔGSA were collectively termed the solvation free energy, where GGB represented the polar contribution and GSA the non-polar contribution. ΔGGB was calculated with the generalized Born model developed by Nguyen et al. [59] (igb = 2). The non-polar solvation free energy (ΔGSA) was obtained by multiplying the surface tension coefficient (γ) by the solvent-accessible surface area (SA), according to ΔGSA=0.0072×ΔSASA (2). The entropy term was neglected because of its high computational cost and limited accuracy [54,57,58].

2.3.8. Sample Sensory Evaluation and Single Addition Variable Method

Twenty milliliters of lager beer were accurately measured for each sample. The original sample was labelled A. Samples prepared by individually adding the umami peptides KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL were labelled A-1, A-2, A-3, A-4, A-5, and A-6, respectively. Each peptide was added at 500 μL of its taste-threshold solution.

Sample A was first subjected to sensory evaluation. The descriptors and 0–9 quantitative standards for thirteen key sensory attributes of lager beer are listed in Table 3, providing criteria for assessing aroma, flavor, and mouthfeel. The same sensory assessment was then applied to samples A-1 through A-6, and changes in the beer body after single additions of each umami peptide were compared.

Table 3.

Sensory dimensions description and scoring.

Sensory Dimension Sensory Description Rating
Aroma intensity The predominant aroma is malt freshness, with weaker hop and byproduct odors, resulting in an overall clean and pure flavor profile, with no off-tastes. 0 (No aroma)–9 (Very strong aroma)
Malt aroma The fragrance includes fresh bread and light caramel sweetness from the malt, with no burnt or harsh aftertastes. 0 (No malt aroma)–9 (Extremely strong malt aroma)
Hop aroma Herbal floral or light citrus notes provide a refreshing and complementary aroma, without any sharp or oxidized odors. 0 (No hops aroma)–9 (Extremely strong hops aroma)
Fermentation-derived (by-product) aroma Low ester fruitiness or light sulfur notes are present, maintaining the “clean” characteristic of lagers, with no phenolic flavors. 0 (Strong by-product flavors that affect sensory perception of the body)–9 (Balanced by-product aroma)
Sweet taste Malt sweetness is accompanied by a hint of honey and biscuit flavors, finishing cleanly. 0 (No malt flavor)–9 (Extremely strong malt flavor)
Bitterness The herbal or floral bitterness is smooth and balanced with malt sweetness, without any harshness. 0 (No hops flavor)–9 (Extremely strong hops flavor)
Umami taste Free amino acids and peptides contribute to a gentle aftertaste and full-bodied sensation, without any umami or MSG-like flavors. 0 (No fresh flavor)–9 (Extremely strong fresh flavor)
Carbonic bite The crisp and stimulating sensation from carbonation is felt as a tingling on the tip of the tongue and a refreshing throat feel. 0 (Completely flat)–9 (Extremely stimulating)
Smoothness The mouthfeel is smooth and refined, with no rough or harsh textures. 0 (Very rough)–9 (Extremely smooth)
Bitterness persistence Post-swallow bitterness is short-lived and refreshing, without any sharpness. 0 (No bitterness)–9 (Extremely strong bitterness)
Malt/hop aftertaste A lingering malt sweetness and floral/herbal aftertaste provide a brief but pleasant finish. 0 (No aftertaste)–9 (Rich and lasting aftertaste)
Residual off-flavor No sour, phenolic, metallic, or cardboard-like off-flavors are present. 0 (Heavy aftertaste of defects)–9 (Long aftertaste)
Overall balance and typicity Malt, hop, freshness, and carbonation are well-balanced, characteristic of a typical pale lager. 0 (Unbalanced and atypical)–9 (Perfectly balanced and highly typical)

A trained panel comprising 20 beer assessors (each with ≥120 h practice using flavor-reference standards) performed the sensory evaluation. Panel consistency was first verified on control batches via an ISO 4120 [60] triangle test; only assessors achieving ≥80% discrimination accuracy proceeded to the main study. Samples (30 mL) were served at 8 ± 1 °C in tulip glasses coded with random three-digit numbers and presented monadically under red light with unsalted crackers and water for palate cleansing. Quantitative descriptive analysis was then conducted, with each sensory attribute rated on a 9 cm unstructured line scale anchored at “not perceptible” (0) and “extremely intense” (9). Hedonic preference was assessed in a separate session using a 9-point hedonic scale (1 = dislike extremely, 9 = like extremely); it affords sufficient discriminatory power for acceptability judgements without imposing undue cognitive load on trained assessors.

Attribute selection adhered to the ISO 11035:1994 [61] two-stage procedure: the candidate descriptors were first compiled from established sources—including the ASBC Beer Flavor Wheel, the BJCP sensory lexicon, and recent lager-description studies—then evaluated in a focus-group session, where the twenty trained assessors tasted control and reference beers, discussed definitions, and anchored intensities with GRAS standard solutions [5,7,16]. Terms cited by at least 30% of panelists and exhibiting non-redundant semantic content were retained, yielding the 15 attributes presented in Table 3.

2.3.9. Statistical Analysis

Origin 2021 software was used to draw radar diagrams and fingerprints; Tbtools was used to draw heatmaps; SPSS 24.0 software was applied for single-factor and correlation analysis; and the R software was used to extract and visualize the results of cluster analysis.

3. Results and Discussion

3.1. Qualitative Identification of Peptides in Lager Beer and Predictive Analysis of Potential Umami Peptides

Applying a confidence threshold of −10logP ≥ 15 for database-matched peptides and retaining only de novo sequences with ALC ≥ 90% secured adequate reliability, which yielded 906 peptides. Their umami activity was predicted with UMPred FRL and Tastepeptides-Meta. The qualitative parameters and predicted umami values for the lager-beer peptides are listed in the attached Table A1. In the machine-learning-identified pool of potential umami peptides, the peptide set showed a strong bias toward short chains: pentapeptides accounted for 48% of all sequences, tetrapeptides for 19%, and together with hexapeptides, these lengths composed about 81% of the total, whereas peptides longer than eight residues were scarce. Leucine-led starters were common—Leu, Thr, and Ala initiated over half of the sequences—and hydrophobic or small residues predominated overall. Leu (14.4%), Val (11.7%), Ala (11.2%), and Pro (9.6%) emerged as the four most frequent amino acids. Acidic side chains were present but less abundant, with Glu and Asp together contributing roughly 9% of all residues, while basic Lys and Arg each remained near 3%. These patterns suggested that umami-active peptides in lager beer had favored compact backbones rich in aliphatic residues.

3.2. Preliminary Screening of Umami Peptides and Molecular Docking Analysis

Potential umami peptides with both UMPred-FRL-Probability and ProUmami scores exceeding 0.7 were selected. A total of seventy-six small peptides were docked to the T1R1/T1R3 umami receptor for further screening. T1R1 and T1R3 formed a heterodimeric receptor whose extracellular Venus fly-trap (VFT) domains captured and fixed umami ligands. In the present work, the dimer was split into two separate subunits. Homology models were then built for each subunit, and their stereochemistry was examined with Ramachandran plots. Figure 1a shows a closed conformation for T1R1, whereas T1R3 remained open, creating a wide cavity capable of accommodating long-chain umami peptides. Although previous studies indicated that peptides mainly bound to T1R3, site-directed mutagenesis and simulations also demonstrated that T1R1 recognized small ligands, such as dipeptides, tripeptides, and amino acids. Both chains were therefore considered indispensable during taste recognition. Reliable structures can usually be obtained when sequence identity between target and template proteins reaches ≥30%. The identities of T1R1 and T1R3 with their templates were 34.34% and 33.55%, respectively, meeting this criterion. Ramachandran statistics (Figure 1b) indicated that 97.7% of residues lay in allowed regions, with 87.7% in the most favored regions, 10.0% in additionally allowed regions, and only 1.8% in generously allowed regions; residues in disallowed regions accounted for less than 0.5%. More than ninety per cent of φ–ψ angles, therefore, fell within a reasonable range, confirming that the models possessed good geometric quality and could serve as a reliable basis for subsequent docking and mechanistic studies.

Figure 1.

Figure 1

Homology modeling results for the taste receptor. (a) The homology modeling structure of the T1R1/T1R3 taste receptor. (b) A Ramachandran plot.

Molecular docking was carried out with the semi-flexible CDOCKER algorithm in Discovery Studio. Other parameters were left at default values. Only the conformation with the lowest docking energy was retained. Fifty-seven peptides were finally docked successfully (Table 4). The group contained six tetrapeptides, thirty-six pentapeptides, eleven hexapeptides, and four heptapeptides. Thirty-one peptides contained aspartic acid (D) or glutamic acid (E). The D/E consensus effect served as an important criterion for selecting umami peptides.

Table 4.

Comparison of binding energy of potential and reported umami peptides with T1R1/T1R3 receptor.

Number Peptide Sequence Peptide Chain Length ΔEdocking (kcal/mol) ΔEinteraction (kcal/mol) ΔEbinding (kcal/mol)
1 DIGISSK 7 −125.028 −107.79 −238.433
2 IEKYSGA 7 −123.489 −105.566 −236.545
3 AAEVIE 6 −115.817 −84.9475 −240.514
4 KSTEL 5 −111.033 −108.351 −501.245
5 AASEGKL 7 −110.848 −102.666 −221.33
6 KVGADK 6 −108.145 −89.6395 −241.495
7 KEELE 5 −107.783 −88.7778 −314.491
8 DVVAI 5 −107.637 −87.5399 −175.456
9 QELQLQ 6 −106.492 −91.267 −149.841
10 DEVR 4 −105.523 −76.4819 −186.616
11 FATPLQ 6 −103.521 −102.69 −326.679
12 DELIK 5 −102.52 −81.7171 −254.719
13 EAAVL 5 −102.002 −81.779 −201.669
14 VEILN 5 −101.716 −96.1308 −282.968
15 DELR 4 −100.336 −88.69 −361.423
16 EVGAL 5 −99.6013 −83.949 −218.184
17 LGGVE 5 −97.9888 −77.7048 −260.41
18 AAEVI 5 −97.3921 −65.5859 −62.5942
19 IAAVE 5 −96.4886 −84.0782 −301.133
20 IGTPGKG 7 −95.8082 −104.236 −333.345
21 VDAGI 5 −94.9971 −80.5047 −191.284
22 TIADV 5 −94.5377 −72.3421 −149.121
23 LGAVD 5 −93.5717 −82.6503 −280.053
24 LAGVE 5 −91.5818 −62.7922 −123.894
25 IGAVD 5 −90.8998 −68.4441 −166.599
26 AAGQY 5 −90.548 −82.4856 −311.285
27 AAEVL 5 −89.9893 −70.3364 −208.152
28 VSVVD 5 −89.9392 −79.0146 −255.595
29 LAAVE 5 −89.1563 −79.0668 −254.727
30 TAEPY 5 −84.7037 −85.4494 −206.263
31 TVSGF 5 −84.16 −73.4952 −171.631
32 TTVSPH 6 −83.9876 −100.04 −365.475
33 KNCQLA 6 −83.945 −82.4215 −222.162
34 TVVSA 5 −82.9071 −76.1503 −204.041
35 IVMQQ 5 −82.6036 −81.4959 −225.551
36 TATVP 5 −77.9485 −79.7372 −298.009
37 TVTVP 5 −77.2092 −87.853 −334.745
38 LPEDA 5 −75.7012 −80.2355 −170.975
39 VLQDR 5 −75.5022 −69.5075 −155.017
40 TVATP 5 −73.8591 −78.7827 −269.535
41 TLPLT 5 −73.7163 −75.0438 −133.258
42 TTVSP 5 −73.4146 −74.2375 −184.347
43 TVTSP 5 −71.5777 −78.5044 −240.692
44 KRTP 4 −70.9232 −85.6676 −294.082
45 LPSLQ 5 −69.9013 −75.7618 −175.372
46 LDLP 4 −69.893 −66.5489 −150.146
47 PVAPLQ 6 −69.867 −87.1519 −260.307
48 TNLP 4 −66.6257 −74.2949 −286.005
49 AVAYDP 6 −65.1639 −71.822 −67.7682
50 LPSNP 5 −61.5173 −73.2008 −231.768
51 PSPNN 5 −58.9083 −77.5908 −230.304
52 AAVLEY 6 −58.487 −62.9721 786.893
53 TVSP 4 −57.4176 −63.4953 −208.571
54 LPTKP 5 −56.7889 −80.1074 −256.268
55 VEVMR 5 −54.8233 −60.8928 −31.4658
56 AIVMQQ 6 −47.7704 −78.7023 −336.775
57 TLPQQP 6 −41.7705 −71.3837 −162.521
56 * PVPL 4 −39.6184 −57.8106 −65.824

Note: *: reported umami peptides [16], ΔEdocking: docking energy, ΔEinteraction: interaction energy, ΔEbinding: binding energy.

Tighter peptide–receptor binding was indicated by lower docking energies. It was shown [9,10,11,13,62,63,64,65,66,67,68,69,70] that the N-terminus of the umami peptides was usually enriched in acidic amino acids (Asp, Glu) or small hydrophilic residues (Gly, Ala, Ser). Through carboxyl or other polar groups, those residues formed hydrogen bonds or electrostatic interactions with key receptor sites, such as Arg151 and His71 in T1R1, thereby activating the signaling pathway. The C-terminus tended to contain hydrophobic amino acids (Leu, Pro, Val) or polar residues (His, Gln). Hydrophobic side chains were inserted into the receptor’s hydrophobic pocket, exemplified by Tyr198 in T1R3, whereas polar residues further stabilized the interface. Umami intensity was markedly enhanced by the cooperative distribution of acidic (D/E) and basic (Arg, Lys) residues, because efficient receptor binding was achieved through charge complementarity between E/D and R/H. The umami peptides generally adopted β-turn-dominated secondary structures, a conformation that favored exposure of active sites.

On the basis of the preceding findings and the binding energies in Table 5, the peptides KSTEL, DELIK, DIGISSK, IEKYSGA, and DEVR were selected as potential umami candidates. PVPL, an atypical D/E-independent peptide enriched in hydrophobic residues (L/P/V), was also chosen. These six peptides were synthesized, their taste thresholds were measured (Table 5), molecular-dynamics simulations were conducted, and single-factor addition experiments were performed. Species–database matching indicated that these six peptides originated from Triticum turgidum, Saccharomyces cerevisiae, and barley, which aligned with lager-beer ingredients. Notably, except for PVPL, the other five peptides were newly identified and showed no matches in the sensory peptides and amino acids database (https://www.uwm.edu.pl/biochemia/index.php/pl/biopep, accessed on 29 July 2025). Their interaction mechanisms with taste receptors were investigated further in subsequent work.

Table 5.

Basic information, taste description, and threshold of selected umami peptides.

Peptide Sequence Peptide Chain Length Mass Peptide Source Taste Description Umami Threshold (mmol/L)
KSTEL 5 576.312  Triticum turgidum, barley Typical umami with a slight hint of saltiness 0.217 
DELIK 5 616.343  Triticum turgidum, barley Umami-salty composite, virtually no bitterness 0.406 
DIGISSK 7 718.386  Saccharomyces cerevisiae, barley Umami with a bready/yeast-like aftertaste 0.696 
IEKYSGA 7 766.386  Saccharomyces cerevisiae Umami accompanied by a mild sweetness 0.326 
DEVR 4 517.250  Triticum turgidum, barley Umami with a subtle salty note 0.121 
PVPL 4 424.540  Oryza, wild rice, durum wheat Mild umami with a touch of sweetness 0.589 

3.3. Analysis of Binding Modes of 6 Types of Umami Peptides with Receptor Proteins

As shown in Figure 2a, the DELIK molecule was embedded in the narrow cleft between the T1R1 (green) and T1R3 (cyan) subunits and bridged their interface. In the 2D interaction map, three main hydrogen bonds were observed. One connected the side-chain nitrogen of Arg255(A) in T1R1 to the ligand backbone. A second linked the carboxyl group of DELIK to Glu178(B) in T1R3. The hydrophobic side chains of the ligand contacted Leu51(A) in T1R1 and Met151(B), Ala176(B), and Ser175(B) in T1R3 through van der Waals forces. The combination of polar and hydrophobic contacts conferred high affinity and stability on the complex.

Figure 2.

Figure 2

Molecular-docking diagrams. The left panel displays an overall view. The ligand is rendered as orange sticks. The T1R1 protein is shown in green, and the T1R3 protein is shown in cyan. The right panel displays a 2D interaction diagram. The dashed lines indicate hydrogen bonds. Chain A represents T1R1, and chain B represents T1R3. (a) The binding mode of T1R1–T1R3/DELIK, obtained by docking. (b) The binding mode of T1R1–T1R3/DEVR, obtained by docking. (c) The binding mode of T1R1–T1R3/DIGISSK, obtained by docking. (d) The binding mode of T1R1–T1R3/IEKYSGA, obtained by docking. (e) The binding mode of T1R1–T1R3/KSTEL, obtained by docking. (f) The binding mode of T1R1–T1R3/PVPL, obtained by docking.

Figure 2b showed DEVR in the same cleft. Four key hydrogen bonds were detected. Bonds formed with Asp219(A), Asp150(A), and Ser248(A) in T1R1. An additional nitrogen–oxygen bond was involved in Arg255(A). The ligand amine also bonded to Lys155(B) in T1R3. Hydrophobic alignment with Leu173(A) and Pro246(A) in T1R1 and Ile180(B) and Gln217(B) in T1R3 reinforced binding.

Figure 2c displays DIGISSK as an orange rod lodged firmly in the cleft. Four hydrogen bonds were present. The N-terminal carboxyl bonded to Asn150(A) in T1R1. Further bonds linked Lys155(B) and Gln217(B) in T1R3 and the backbone nitrogen of Phe247(A) in T1R1. Surrounding hydrophobic residues—Leu51(A) in T1R1 and Ile151(B), Phe180(B), Ile173(B), and Ala176(B) in T1R3—created tight van der Waals packing.

As shown in Figure 2d, IEKYSGA occupied the cleft. Four hydrogen bonds anchored the ligand. Its carboxyl group bonded to Arg255(A) and Ser109(A) in T1R1. A mid-chain carbonyl bonded to Glu178(B) in T1R3. Additional bonds involved Asn150(A) and Ser217(A) in T1R1. Hydrophobic support came from Pro246(A), Thr154(A), and Ala153(A) in T1R1 and Ala176(B), Leu173(B), Met151(B), and Val152(B) in T1R3.

Figure 2e shows KSTEL in the same pocket. Three hydrogen bonds secured the ligand. The carboxyl group bonded to Glu217(B) in T1R3. Additional bonds linked Ser248(A) and Arg255(A) in T1R1. Hydrophobic residues—Leu51, Pro246, Phe247, and Val251 in T1R1, plus Phe180, Ile173, and Ala176 in T1R3—enveloped the peptide.

Figure 2f presents PVPL with two hydrogen bonds. One bonded to Asn150(A) in T1R1, and another to Gln221(B) in T1R3. The hydrophobic side chains were surrounded by Ile51(A) and Arg255(A) in T1R1 and Ile180(B), Leu173(B), and Met151(B) in T1R3.

The docking results for the six peptides indicated that the narrow, open-ended pocket between T1R1 and T1R3 acted as the common binding core. Each peptide bridged the two subunits. One end usually bonded to Arg255(A) in T1R1, while the other anchored to Glu178(B), Lys155(B), or Gln221(B) in T1R3, forming a cross-subunit polar clamp. A sheath of hydrophobic residues—Leu51, Ile/Leu173, Ala176, Met151, and Phe180—provided non-polar support. Longer peptides with richer polar side chains, such as DELIK, DEVR, DIGISSK, and IEKYSGA, formed more hydrogen bonds and showed stronger affinity and stability. Shorter peptides like PVPL relied on tight hydrophobic packing for notable binding. This polar-clamp plus hydrophobic-sheath mechanism, with Arg255(A), Lys155(B), and Glu178(B) as hotspot anchors, appeared to underlie umami–peptide recognition by the T1R1/T1R3 receptor. Molecular-dynamics simulations were subsequently carried out to validate binding strength and stability.

3.4. Molecular Dynamics Simulation Analysis

3.4.1. Stability Analysis

As shown in Figure 3a, the RMSD values of all six complexes rose quickly during the first 10 ns and then reached plateaus. Each complex stabilized at a different level. T1R1–T1R3/DELIK settled at 3.5–4.0 Å and fluctuated least, indicating high conformational stability. T1R1–T1R3/DEVR remained at 3.8–4.5 Å. T1R1–T1R3/KSTEL stabilized near 4.5–5.0 Å, with moderate variation. T1R1–T1R3/IEKYSGA and T1R1–T1R3/PVPL drifted slowly between 5.0 and 6.5 Å, implying some interfacial flexibility. T1R1–T1R3/DIGISSK showed the highest RMSD, 6.5–7.5 Å, and the largest fluctuations, reflecting greater conformational freedom and lower binding rigidity. Overall, DELIK and DEVR were bound more stably than the other peptides, whereas DIGISSK displayed the largest structural changes.

Figure 3.

Figure 3

Stability analysis from molecular-dynamics simulations. (a) The root-mean-square deviation (RMSD) was tracked over time. (b) The radius of gyration (RoG) was monitored during the simulation. (c) The solvent-accessible surface area (SASA) was calculated for each complex.

Figure 3b indicates that the radii of gyration (Rg) rose from an initial ~28.8 Å to equilibrium ranges within the first 10 ns and then became stable. After 10 ns, T1R1–T1R3/DELIK maintained the lowest Rg at ~29.3 Å, revealing the most compact complex. Equilibrium Rg values of ~29.5–29.9 Å with small fluctuations were recorded for T1R1–T1R3/DEVR, IEKYSGA, and KSTEL. PVPL fluctuated between ~29.6 and 30.3 Å, indicating moderate looseness. DIGISSK reached the highest Rg, stabilizing at ~30.8–31.2 Å after 40 ns, which signaled a more extended and flexible conformation. With the exception of DIGISSK, the complexes showed low Rg values at equilibrium and thus retained high structural compactness.

Figure 3c shows that the solvent-accessible surface areas (SASAs) climbed from ~37,000 Å2 to equilibrium ranges within about 10 ns, and then stabilized with ±1000 Å2 fluctuations. The lowest SASA of 40,500–41,500 Å2 was observed for T1R1–T1R3/DELIK, confirming its compact nature in water. IEKYSGA followed at 41,500–42,200 Å2. Intermediate values of ~42,000–43,000 Å2 and ~42,500–43,500 Å2 were recorded for DEVR and DIGISSK. KSTEL and PVPL exhibited the highest exposures, with PVPL reaching ~43,500–45,000 Å2, suggesting more open structures. The SASA ranking agreed with the Rg results: DELIK was most compact, whereas PVPL was most loosely packed.

As illustrated in Figure 4a, the RMSF values were used to reflect protein flexibility during molecular-dynamics simulations. Drug binding usually reduces protein flexibility and thereby stabilizes the protein to support catalytic activity. After binding with the various small molecules, low RMSF values were observed across all proteins except at the two termini, indicating a rigid core.

Figure 4.

Figure 4

Molecular-dynamics simulation. (a) The root-mean-square fluctuation (RMSF) values were calculated from the trajectories. (b) The number of hydrogen bonds between each ligand and the protein was tracked during the simulation.

According to Figure 4b, the number of hydrogen bonds in each complex underwent a rearrangement period during the first 5–10 ns and then reached a relatively stable phase, although clear differences appeared in average counts and stability. The T1R1–T1R3/KSTEL complex maintained the highest level, with about 8–10 hydrogen bonds and minimal fluctuations. T1R1–T1R3/DEVR followed at about 7–9 bonds. Counts for T1R1–T1R3/DELIK and IEKYSGA fell from 10–12 to 5–8 and 4–7, respectively, before showing slight recovery. T1R1–T1R3/DIGISSK dropped rapidly to 3–5 bonds, and later rose modestly to 4–6. T1R1–T1R3/PVPL showed the fewest hydrogen bonds, remaining near zero for the initial 10 ns and then increasing slowly to about 3–5. Overall, the KSTEL and DEVR systems formed the most numerous and stable polar interactions, whereas PVPL exhibited the sparsest hydrogen-bond network, indicating weaker polar contacts at the binding interface.

3.4.2. MM-GBSA Binding Energy Results

Binding energies were calculated by the MM-GBSA method from molecular-dynamics trajectories, and the values more accurately reflected ligand–protein binding patterns. As shown in Table 6 and Figure 5, the binding energies of the T1R1–T1R3/DELIK, T1R1–T1R3/DEVR, T1R1–T1R3/DIGISSK, T1R1–T1R3/IEKYSGA, T1R1–T1R3/KSTEL, and T1R1–T1R3/PVPL complexes were −36.14 ± 3.11, −44.09 ± 5.47, −26.45 ± 4.52, −39.60 ± 4.37, −43.21 ± 3.45, and −39.53 ± 2.52 kcal mol−1, respectively. Negative values indicated binding affinity, and lower values signified stronger interactions. The calculations, therefore, demonstrated appreciable affinity between each ligand and the receptor.

Table 6.

Binding free energies and energy components predicted by MM/GBSA (kcal/mol).

System ΔEvdW ΔEelec ΔGGB ΔGSA ΔGbind
T1R1-T1R3/DELIK −52.83 ± 3.39 −177.59 ± 17.87 202.53 ± 16.15 −8.24 ± 0.24 −36.14 ± 3.11
T1R1-T1R3/DEVR −42.78 ± 3.60 −190.13 ± 26.12 195.58 ± 18.95 −6.76 ± 0.32 −44.09 ± 5.47
T1R1-T1R3/DIGISSK −47.66 ± 4.72 −156.25 ± 41.90 184.41 ± 37.34 −6.96 ± 0.64 −26.45 ± 4.52
T1R1-T1R3/IEKYSGA −54.27 ± 2.13 −196.15 ± 23.49 220.33 ± 20.81 −9.51 ± 0.22 −39.60 ± 4.37
T1R1-T1R3/KSTEL −52.77 ± 3.08 −244.96 ± 18.17 262.45 ± 17.99 −7.93 ± 0.20 −43.21 ± 3.45
T1R1-T1R3/PVPL −45.93 ± 2.03 −42.53 ± 11.04 55.49 ± 10.81 −6.51 ± 0.39 −39.53 ± 2.52

Note: ΔEvdW: van der Waals energy; ΔEelec: electrostatic energy; ΔGGB: electrostatic contribution to solvation; ΔGSA: non-polar contribution to solvation; ΔGbind: binding free energy.

Figure 5.

Figure 5

The MM-GBSA binding energies and energy decomposition were displayed.

3.5. The Validation Experiment Performed with the Single-Factor Addition Method

3.5.1. Sensory-Enhancement Effects of Umami Peptides and Analysis of Their Structure–Function Relationships

As illustrated in Figure 6a and Table A2, increases in umami sensory scores were observed in every sample after single-peptide addition, and the magnitudes were systematically associated with binding free energies and taste thresholds. For DELIK (A-2), an umami score of 7.7 + 1.78 was recorded, about 22% higher than that of sample A (p < 0.05). The lowest binding free energy (−44.09 kcal mol−1) was also calculated, indicating the strongest affinity for the T1R1/T1R3 receptor. For DEVR (A-5), a comparable free energy (−43.21 kcal mol−1) and a low threshold (0.121 mmol L−1) were measured; consequently, the highest per-unit sensory efficiency was achieved and the score reached 7.35 + 1.6 (p < 0.05). KSTEL (A-1) yielded a high score (7.65 + 1.9) and a low threshold (0.217 mmol L−1), confirming pronounced enhancement (p < 0.05). PVPL (A-6) showed moderate values: a score of 7 + 2.71, a free energy of −39.53 kcal mol−1, and a relatively high threshold (0.589 mmol L−1), suggesting limited efficiency. For IEKYSGA (A-4), the umami score was increased by under 2%. A moderately negative binding free energy (−39.60 kcal mol−1) was recorded, but an unfavorable taste threshold offset this advantage, so only a slight net benefit was observed. DIGISSK (A-3) performed the worst: the score reached only 6.45 + 1.67 (p < 0.05), the least negative free energy (−26.45 kcal mol−1) was obtained, and the highest threshold (0.696 mmol L−1) was recorded, reflecting weak affinity and minimal efficiency.

Figure 6.

Figure 6

Figure 6

Multidimensional effects of the single-factor addition experiments on the beer-body sensory attributes. (a) The overall sensory scores of the beer samples. (b) The beer-body sensory attributes of the KSTEL-enriched sample were compared with those of the original beer. (c) The beer-body sensory attributes of the DELIK-enriched sample were compared with those of the original beer. (d) The beer-body sensory attributes of the DIGISSK-enriched sample were compared with those of the original beer. (e) The beer-body sensory attributes of the IEKYSGA-enriched sample were compared with those of the original beer. (f) The beer-body sensory attributes of the DEVR-enriched sample were compared with those of the original beer. (g) The beer-body sensory attributes of the PVPL-enriched sample were compared with those of the original beer.

The structural analysis revealed shared residue patterns among the top-performing peptides—DELIK, DEVR, and KSTEL. Acidic residues, such as Asp and Glu, were enriched at the N-terminus and were able to form stable electrostatic interactions with positively charged sites in the receptor binding domain. Basic or hydrophobic residues, such as Lys, Arg, Leu, and Val, were located at the C-terminus and further stabilized the complex through hydrogen bonding or hydrophobic contacts. The chain lengths were confined to four or five residues, thereby reducing conformational-entropy penalties and facilitating insertion into the receptor pocket. These features collectively resulted in lower binding free energies, higher sensory scores, and favorable thresholds, providing clear guidance for the rational design of future umami peptides.

3.5.2. Multidimensional Effects of Single Umami Peptide Addition on Beer-Body Sensory Attributes

As Figure 6a indicates, an overall sensory improvement was observed for sample A-1 in comparison with sample A. Aroma intensity, malt aroma, and hop aroma were raised by about 3–4%, whereas fermentation-by-product aroma was reduced by roughly 1%. Sweetness and umami were enhanced by approximately 15% and 20%, and bitterness was lifted by about 6%, giving a more layered taste. Carbonic bite increased by nearly 14%, and smoothness also rose by close to 6%. Bitter aftertaste and overall balance were improved by around 4–5%. Malt/hop after-flavor fell by about 5%, while off-flavors climbed by roughly 17%.

In Figure 6c, comprehensive enhancement with local attenuation was recorded for sample A-2. Aroma intensity rose by about 7%. Hop aroma was lifted by nearly 3%, but malt aroma dropped by roughly 4%, indicating a slight masking of malt notes by the hops. Fermentation-by-product aroma climbed by about 6%. Umami increased the most (≈22%); bitterness grew by ≈12%; and sweetness changed little, rising by only about 1%. Carbonic bite and smoothness were raised by roughly 6% and 8%, respectively, creating a brisker and finer mouthfeel. Bitter aftertaste declined by about 5%. Off-flavors expanded by nearly 18%. Overall balance and typicality rose by less than 1%.

As shown in Figure 6d, most sensory attributes declined for sample A-3. Aroma parameters dropped by more than 10%, with malt aroma down by almost 20%, and hop aroma and fermentation-by-product aroma lower by about 20% and 17%. Sweetness and bitterness fell by roughly 15% and 10%. Carbonic bite and smoothness each decreased by over 10%. Malt/hop after-flavor shortened by nearly 20%, bitter aftertaste lessened by about 15%, and overall balance decreased by close to 20%. Umami rose by roughly 2%, and off-flavors fell by about 16%. The DIGISSK peptide, therefore, slightly intensified umami but produced marked negative effects on aroma fullness, mouthfeel smoothness, and flavor harmony.

Figure 6e demonstrated that almost all thirteen indicators declined for sample A-4. Malt aroma and fermentation-by-product aroma dropped by about 25% and 16%, while aroma intensity and hop aroma decreased by roughly 15% and 11%. Sweetness and bitterness were reduced by about 12% and 11%. Umami was the sole positive parameter, but the rise was only around 2%, insufficient to offset the overall flavor loss. Carbonic bite and smoothness fell by roughly 9% and 14%. Bitter aftertaste and malt/hop after-flavor were shortened by about 20% and 19%. Off-flavors fell by roughly 11%. Overall balance and typicality declined by about 22%, indicating that this peptide weakened aroma richness and flavor harmony under the present formulation.

For sample A-5 (Figure 6f), aroma intensity increased by about 10%, hop aroma rose by nearly 6%, and malt aroma fell by roughly 5%. Umami was enhanced by about 17%, and bitterness and sweetness climbed by approximately 12% and 9%. Carbonic bite was elevated by around 14% and smoothness by about 2%. Bitter aftertaste and malt/hop after-flavor decreased by roughly 5% and 1%. Off-flavors gained about 9%. Overall balance remained unchanged.

As Figure 6g shows, aroma intensity for sample A-6 increased by about 2.1%. Malt aroma and hop aroma dropped by roughly 5.4% and 2.9%, while fermentation-by-product aroma rose by about 0.7%. Umami was elevated by about 11.1%. Sweetness shifted by −0.7%, and bitterness declined by about 9.2%. The most pronounced negative effects occurred in mouthfeel, where carbonic bite and smoothness decreased by roughly 10.7% and 15.1%. Bitter aftertaste and malt/hop after-flavor were lowered by about 4.7% and 12.2%. Off-flavors fell by roughly 5.7%, suggesting a partial masking of negative notes. Overall balance and typicality declined by about 3.3%, showing that enhanced umami did not compensate for weakened aroma and mouthfeel.

A cross-comparison of the three datasets confirmed that computational predictions, threshold measurements, and sensory outcomes were largely coherent. The peptides showing the most negative binding free energies—DELIK, DEVR, and KSTEL—also exhibited the lowest taste thresholds and delivered the highest increases in umami, sweetness, and mouthfeel during sensory validation, supporting the reliability of the molecular-modeling workflow. DIGISSK and IEKYSGA, whose free energies were least negative and thresholds highest, provided only marginal sensory gains, again matching expectations. Minor inconsistencies, notably the moderate sensory impact of PVPL despite a mid-range free energy, were attributed to complex matrix interactions in beer, where synergistic or masking effects among volatiles, polyphenols, and carbonation could attenuate the direct contribution of a single peptide. Overall, single additions of short-chain umami peptides strengthened the “umami–sweetness–mouthfeel” framework, but the same additions tended to elevate off-flavors. Future optimization should therefore retain peptides with favorable computed affinity and low thresholds while adjusting fermentation and antioxidant conditions to limit by-product formation, thereby delivering a balanced, umami-oriented lager profile.

3.6. Discussion

Comparison with previously reported umami peptides highlights the exceptional potency of the sequences isolated here. Classical di- and tripeptides, such as Glu-Asp, Ala-Glu-Ala, and EY, exhibited taste threshold ranges of 0.5–2.2 mmol L−1, while the beefy meaty octapeptide Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala, long regarded as a benchmark, showed a threshold around 0.8 mmol L−1 [69,70,71]. By contrast, the beer-derived tetrapeptide DEVR (Asp-Glu-Val-Arg) and pentapeptide KSTEL (Lys-Ser-Thr-Glu-Leu) recorded markedly lower thresholds of 0.121 and 0.217 mmol L−1, respectively, and exhibited stronger receptor affinities (ΔGbind ≤ −44 kcal mol−1) than the −31 kcal mol−1 reported for glutamyl dipeptides in silico [72]. A sequence motif analysis further shows that, consistent with the acidic “XXE/EDX” signatures common to known umami peptides, all the top-performing beer peptides contained terminal Asp or Glu residues that anchor within the T1R1 SB pocket. Collectively, these data position DEVR and KSTEL among the most potent umami peptides reported to date and confirm that malting and fermentation-driven proteolysis can generate highly active taste molecules in lager beer.

Sequence mapping against the barley proteome showed that our most potent peptides—for example, DEVR and KSTEL—display ≥ 80% identity to internal motifs of B and γ hordeins, while PVPL aligns with a C-terminal fragment of lipid transfer protein 1 [73]. Such acidic, Lys/Arg adjacent cleavage patterns are characteristic of endoprotease B and cathepsin-like enzymes that become highly active during germination and hot mashing, releasing hundreds of short peptides into wort. Subsequent yeast autolysis and secretion of vacuolar proteinase A (Pep4p) during late fermentation and conditioning further truncates these fragments to the 4–6 residue length optimal for umami activity. Collectively, these malt- and yeast-driven proteolytic events provide a plausible biosynthetic route for the generation of highly active umami peptides in lager beer, consistent with recent petidomic surveys that have detected comparable hordein-derived sequences across diverse beer styles [73,74,75].

Several limitations warrant consideration before the conclusions are drawn. First, the peptide identification and affinity predictions were based on pilot-scale brews and in silico docking to the T1R1/T1R3 ectodomain. The potential matrix effects, post-packaging degradation, and contributions from other taste receptors (e.g., mGluR4) were not explored. Second, the sensory validation relied on a relatively small, trained panel, which—although sufficient for discriminative testing—may not capture broader consumer heterogeneity. Third, this study focused on a single pale-lager recipe brewed under controlled laboratory conditions. The results may differ across malt varieties, hop schedules, or commercial production environments. Finally, the single-addition design did not investigate synergistic or antagonistic interactions among peptides and endogenous beer components. These constraints highlight the need for follow-up work encompassing larger consumer datasets, multiple beer matrices, and comprehensive receptor profiling to confirm the generality and practical applicability of the present findings.

4. Conclusions

LC-MS/MS combined with de novo sequencing and database searching was first employed to identify 906 peptides in lager beer, and 76 potential umami peptides were predicted with UMPred-FRL, TastePeptides-Meta, and Umami-MRNN. Integrated molecular docking, molecular-dynamics simulation, and MM/GBSA calculations were then used to select six representative umami peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL. DEVR, KSTEL, and DELIK showed the lowest binding free energies (ΔGbind ≈ −44.09, −43.21, and −36.14 kcal mol−1) and formed compact hydrogen-bond networks in the T1R1/T1R3 interface, indicating the strongest receptor affinity and conformational stability, whereas DIGISSK bound most weakly and remained the most flexible.

Computational screening identified short-chain peptides rich in Asp/Glu at the N-terminus and Lys/Arg or hydrophobic residues at the C-terminus as the most promising ligands. Their low binding free energies (≈−44 to −36 kcal mol−1) coincided with sub-millimolar taste thresholds (≈0.12–0.40 mmol L−1) and the largest sensory gains, confirming the efficiency and accuracy of the in silico workflow. Sensory validation showed that these peptides strengthened the “umami–sweetness–mouthfeel” dimension, whereas peptides with weaker affinities and higher thresholds produced minimal or negative effects. The matrix interactions in beer occasionally dampened the expected impact, highlighting that, although calculation-guided selection accelerated discovery, formulation optimization remained necessary to balance flavor enhancement against potential off-flavors.

In conclusion, KSTEL, DELIK, and DEVR emerged as core umami peptides for an “umami-oriented” lager, combining high affinity, low thresholds, and pronounced sensory enhancement. Because umami reinforcement correlated positively with off-flavors, fermentation and antioxidant strategies should be optimized to suppress by-products and oxidation products, thereby achieving both umami enhancement and flavor harmony. The present “structure–receptor–sensory” workflow supplied clear guidance and key parameters for designing high-quality umami peptides and applying them in beer.

Appendix A

Table A1.

Qualitative parameters of peptides in lager beer and predicted umami values.

Number Peptide Chain −10lgP Mass m/z RT ALC (%) Class UMPred-FRL-Probability ProUmami
1 VEILN 15.200  586.333  587.342  8.880    Umami 0.992 0.98
2 AAEVLE 15.660  630.322  631.331  6.800    Umami 0.988 0.98
3 IGAVD 16.980  473.249  474.257  5.630    Umami 0.982 0.989
4 KEELE 16.740  646.317  647.326  2.740    Umami 0.98 0.977
5 TATVP 17.220  487.264  488.273  6.020    Umami 0.979 0.983
6 LVAP   398.253  399.261  7.260  98 Umami 0.977 0.008
7 IEKYSGA 16.020  766.386  384.201  3.420    Umami 0.977 0.977
8 EGAVP 15.890  471.233  472.242  5.070    Umami 0.977 0.968
9 EAAVI 15.270  501.280  502.289  7.440    Umami 0.975 0.939
10 AAVLEY 17.470  664.343  665.353  8.730    Umami 0.975 0.983
11 IAAVE 16.450  501.280  502.288  7.590    Umami 0.974 0.981
12 VEVMR   632.332  317.174  5.090  98 Umami 0.973 0.89
13 NLFDVNRP 18.930  973.498  487.758  8.430    Umami 0.972 0.984
14 TPLQP 15.560  554.306  555.315  6.800  94 Umami 0.97 0.253
15 LAGVE 16.220  487.264  488.273  6.560    Umami 0.969 0.983
16 AFTPLQ   675.359  676.369  8.710  96 Umami 0.968 0.992
17 FATPLQ   675.359  676.369  8.800  97 Umami 0.966 0.991
18 TTVSPH 16.900  640.318  641.328  2.510    Umami 0.962 0.982
19 TVTVP 15.090  515.296  516.305  7.620    Umami 0.961 0.974
20 PVAPLQ   623.364  624.373  7.580  91 Umami 0.961 0.982
21 LGAVD 16.470  473.249  474.257  5.630    Umami 0.961 0.987
22 EGGVL 16.700  473.249  474.257  7.180    Umami 0.961 0.969
23 TAAVV 16.140  459.269  460.277  3.040    Umami 0.96 0.305
24 AAEVIE 15.660  630.322  631.331  6.800    Umami 0.96 0.981
25 TAEPY   579.254  580.263  5.270  90 Umami 0.959 0.979
26 VPMP   442.225  443.234  7.860  97 Umami 0.955 0.011
27 LGGVE 16.110  473.249  474.258  5.830    Umami 0.953 0.982
28 FAVP   432.237  433.246  9.200  96 Umami 0.953 0.021
29 TLPLT 18.050  543.327  544.336  8.960    Umami 0.949 0.974
30 TVSGF 18.850  509.249  510.257  7.120  94 Umami 0.945 0.985
31 LSVGI 15.230  487.301  488.310  8.990    Umami 0.943 0.08
32 TTVSP 20.430  503.259  504.267  4.460  90 Umami 0.94 0.981
33 AAEVI 15.190  501.280  502.289  7.440    Umami 0.938 0.985
34 MFADHLA 15.440  803.364  804.366  2.850    Umami 0.936 0.978
35 DVAGI 15.070  473.249  474.257  6.990    Umami 0.934 0.984
36 ERLP   513.291  514.299  4.540  95 Umami 0.932 0.881
37 TVQVELTTEK   1147.597  574.808  7.570  91 Umami 0.931 0.978
38 LDLP   456.258  457.267  7.920  90 Umami 0.929 0.731
39 VPVP   410.253  411.261  7.520  98 Umami 0.928 0.01
40 LVTGGDSGIGRA 15.250  1101.578  551.798  6.450    Umami 0.928 0.978
41 LPSLQ 15.170  556.322  557.331  8.160  95 Umami 0.927 0.975
42 AAADDEEMKL 23.340  1091.481  546.749  7.380  93 Umami 0.925 0.978
43 DVAGL 15.070  473.249  474.257  6.990    Umami 0.918 0.985
44 LVGL   400.269  401.277  9.510  98 Umami 0.915 0.008
45 TVTSP 18.670  503.259  504.269  4.940  90 Umami 0.906 0.98
46 VDAGI 15.250  473.249  474.257  6.990    Umami 0.903 0.987
47 LAAVE 16.450  501.280  502.288  7.590    Umami 0.902 0.983
48 DEVR   517.250  518.259  2.510  91 Umami 0.898 0.978
49 VVLPSTE 21.060  743.407  744.417  7.960  95 Umami 0.889 0.977
50 LEKYSGA   766.386  384.201  3.420  97 Umami 0.889 0.975
51 AAGQY   508.228  509.237  2.870  93 Umami 0.887 0.974
52 EAAVL 15.270  501.280  502.289  7.440    Umami 0.886 0.966
53 WFRSHT 15.130  832.398  833.397  7.800    Umami 0.884 0.922
54 LVALP 16.500  511.337  512.347  11.790  98 Umami 0.883 0.033
55 FVTP   462.248  463.257  7.820  97 Umami 0.883 0.122
56 TVSP   402.211  403.220  3.780  92 Umami 0.881 0.928
57 KNCQLA 17.540  675.337  676.344  6.300    Umami 0.881 0.987
58 FVRLL   646.417  324.216  9.530  97 Umami 0.88 0.017
59 DVVAI 15.060  515.296  516.305  8.020    Umami 0.88 0.983
60 GDKLIVHA 17.200  851.487  852.496  7.690    Umami 0.879 0.936
61 LPEDA   543.254  544.262  5.550  98 Umami 0.877 0.976
62 LPSNP 17.960  526.275  527.283  5.590  99 Umami 0.875 0.982
63 FVDVVP 17.090  674.364  675.375  11.810    Umami 0.875 0.987
64 PPPVHDTD 25.290  876.398  439.208  3.360    Umami 0.873 0.965
65 LSVGL 15.230  487.301  488.310  8.990    Umami 0.867 0.586
66 ISVGL 15.230  487.301  488.310  8.990    Umami 0.865 0.059
67 KVGADK   658.365  659.374  2.910  94 Umami 0.862 0.988
68 IVATPLL 18.490  725.469  726.479  11.950    Umami 0.862 0.965
69 VPAP   382.222  383.229  5.610  99 Umami 0.861 0.017
70 TTGGMRPP 18.370  815.396  408.706  5.500  95 Umami 0.849 0.974
71 KRTP   542.318  543.328  2.510  96 Umami 0.849 0.894
72 LSLAL 16.100  515.332  516.341  10.360    Umami 0.848 0.314
73 LALSL 15.390  515.332  516.341  11.090  92 Umami 0.848 0.917
74 AAEVL 15.190  501.280  502.289  7.440    Umami 0.843 0.984
75 AAKMAK   660.363  331.190  3.040  97 Umami 0.843 0.094
76 AGEQAFHRG 25.320  1013.468  507.742  5.610    Umami 0.842 0.986
77 LPTKP   554.343  555.351  4.390  93 Umami 0.837 0.843
78 DELR   531.265  532.275  3.920  96 Umami 0.835 0.978
79 KVVVP   540.364  541.372  6.900  92 Umami 0.825 0.014
80 DIGISSKA 19.120  789.423  790.434  6.420    Umami 0.825 0.978
81 LAAP   370.222  371.230  5.910  94 Umami 0.814 0.04
82 LSGAL 18.080  459.269  460.279  9.310    Umami 0.81 0.275
83 VLTSNVGANR 15.940  1030.541  516.280  6.110    Umami 0.806 0.971
84 AIVMQQ 16.760  688.358  689.367  6.890    Umami 0.806 0.984
85 IGTPGKG 17.770  628.354  315.185  2.860    Umami 0.805 0.973
86 VLQDR   629.350  315.684  2.700  90 Umami 0.801 0.98
87 TLPIT 16.980  543.327  544.336  8.960    Umami 0.8 0.959
88 DELIK 16.300  616.343  617.352  6.020    Umami 0.797 0.977
89 TPLP   426.248  427.256  7.430  98 Umami 0.796 0.057
90 TVATP 15.370  487.264  488.272  5.240    Umami 0.792 0.978
91 AGEQAFH 21.710  800.345  801.355  6.600    Umami 0.791 0.988
92 ALLSL 19.520  515.332  516.341  11.090    Umami 0.79 0.142
93 VSVVD 17.390  517.275  518.284  6.220    Umami 0.785 0.984
94 QQPLP 17.730  581.317  582.327  7.000    Umami 0.785 0.074
95 AASEGKL 25.540  674.360  675.369  3.100    Umami 0.777 0.979
96 AVAYDP 15.340  634.296  635.305  6.010    Umami 0.772 0.983
97 KSTEL   576.312  577.321  3.080  92 Umami 0.771 0.978
98 TVVSA 19.430  475.264  476.273  6.510    Umami 0.765 0.967
99 IVTGGDSGIGRA 16.000  1101.578  551.798  6.450    Umami 0.763 0.978
100 FSVF   498.248  499.256  11.110  97 Umami 0.761 0.174
101 GVQMK 15.230  561.294  562.304  2.710    Umami 0.76 0.582
102 VGLP   384.237  385.246  8.220  93 Umami 0.759 0.197
103 DIGISSK 18.030  718.386  719.397  5.910    Umami 0.755 0.978
104 NFVLR   648.360  649.369  9.310  97 Umami 0.752 0.044
105 VDVSVVD 17.810  731.370  732.380  8.150    Umami 0.751 0.976
106 LALRTLP   782.501  392.259  8.920  92 Umami 0.747 0.981
107 QELQLQ 16.270  757.397  758.408  6.170    Umami 0.745 0.98
108 PSPNN 17.800  527.234  528.242  1.100    Umami 0.745 0.982
109 AIVMQQQ 16.720  816.416  817.425  6.640    Umami 0.739 0.971
110 VATLFPL 16.330  759.453  760.462  13.980    Umami 0.736 0.963
111 TNLP   443.238  444.247  6.320  93 Umami 0.734 0.968
112 MPLE   488.231  489.238  7.230  99 Umami 0.734 0.546
113 TIADV 15.910  517.275  518.284  6.320    Umami 0.73 0.982
114 ERFQPM 19.200  822.369  412.194  4.990    Umami 0.729 0.965
115 LLVP   440.300  441.308  9.640  95 Umami 0.725 0.009
116 LTLP   442.279  443.288  9.600  94 Umami 0.723 0.007
117 EVGAL 17.250  487.264  488.272  7.210    Umami 0.717 0.984
118 TLPQQP   682.365  683.375  6.230  90 Umami 0.714 0.97
119 IVMQQ 15.400  617.321  618.331  6.010    Umami 0.71 0.987
120 QELQIQ 17.280  757.397  758.408  6.170    Umami 0.701 0.979
121 VGSAI 19.110  445.254  446.261  6.730    Umami 0.7 0.597
122 SLVLRTLP 17.260  897.565  449.791  10.030    Umami 0.698 0.977
123 TPVF   462.248  463.257  8.630  91 Umami 0.697 0.147
124 VAGLP 16.130  455.274  456.283  8.330    Umami 0.695 0.358
125 SLVGI 20.410  487.301  488.310  9.070    Umami 0.693 0.015
126 ANLPDR   684.356  343.186  4.080  95 Umami 0.689 0.984
127 LVMQQ 16.160  617.321  618.331  6.010  93 Umami 0.686 0.984
128 LFSVP 15.940  561.316  562.326  10.150    Umami 0.678 0.51
129 TLSTM   567.257  568.266  3.670  92 Umami 0.671 0.978
130 LEAVP 15.980  527.296  528.305  8.600  98 Umami 0.666 0.971
131 GSLLL 18.680  501.316  502.325  11.050    Umami 0.664 0.038
132 ALAR   429.270  430.279  2.660  96 Umami 0.663 0.046
133 TVSSVP 15.600  588.312  589.321  7.500    Umami 0.659 0.981
134 LGALSG 16.460  516.291  517.300  6.540    Umami 0.659 0.966
135 DTVR   489.255  490.266  2.140  94 Umami 0.655 0.981
136 LPEW   543.269  544.278  9.850  98 Umami 0.65 0.047
137 KGAP   371.217  372.225  1.770  98 Umami 0.648 0.077
138 DEILK 16.300  616.343  617.352  6.020    Umami 0.641 0.977
139 KSSL   475.264  476.274  7.980  95 Umami 0.639 0.988
140 AILSL 19.520  515.332  516.341  11.090    Umami 0.637 0.039
141 KPSVYP 21.150  689.375  690.386  6.050    Umami 0.636 0.268
142 SIALRTLP 21.060  869.533  870.544  9.240    Umami 0.635 0.979
143 LSLP   428.264  429.272  9.420  96 Umami 0.635 0.06
144 LLVTP 15.510  541.348  542.357  9.160    Umami 0.626 0.013
145 QHIAQLE 16.950  837.434  419.726  6.330    Umami 0.62 0.981
146 LVLP   440.300  441.309  10.400  94 Umami 0.616 0.01
147 TVASP 15.000  473.249  474.257  5.740    Umami 0.611 0.97
148 LSIAL 16.100  515.332  516.341  10.360    Umami 0.605 0.042
149 INGNK 16.040  544.297  545.307  2.970    Umami 0.605 0.99
150 GLSSL 18.870  475.264  476.274  7.880    Umami 0.599 0.985
151 AGEQAFHRGG 25.390  1070.489  536.253  5.550    Umami 0.599 0.985
152 RTTPVG 17.590  629.350  630.358  3.120    Umami 0.596 0.974
153 GASLI 20.160  459.269  460.279  8.090    Umami 0.593 0.576
154 VGGH   368.181  369.188  1.800  95 Umami 0.583 0.06
155 LPVD   442.243  443.252  6.520  90 Umami 0.57 0.975
156 ERFQP 16.230  675.334  676.344  5.420    Umami 0.566 0.983
157 VLFSVP 16.580  660.385  661.394  10.950  90 Umami 0.561 0.914
158 QQQLP 15.700  612.323  613.334  6.150    Umami 0.556 0.984
159 IVATP 15.240  499.301  500.309  6.580    Umami 0.549 0.247
160 EAGAVRP 15.880  698.371  699.381  6.240    Umami 0.547 0.983
161 QLPHT   594.313  595.322  5.480  90 Umami 0.543 0.956
162 KSLVGY 18.370  665.375  666.382  4.500    Umami 0.539 0.897
163 GASLL 20.160  459.269  460.279  8.090    Umami 0.539 0.782
164 AADESTGTIGK 27.150  1048.504  525.262  3.770    Umami 0.538 0.978
165 ADESTGTIGK 19.200  977.467  489.742  3.400    Umami 0.534 0.978
166 DLER   531.265  532.275  2.600  95 Umami 0.531 0.976
167 LSLAI 16.100  515.332  516.341  10.360    Umami 0.527 0.024
168 LPQQ   484.265  485.273  3.650  95 Umami 0.527 0.971
169 NARLD   588.287  589.297  4.880  91 Umami 0.522 0.98
170 DELLK 16.300  616.343  617.352  6.020    Umami 0.522 0.977
171 TSLALRTLP   970.581  486.299  9.380  91 Umami 0.521 0.977
172 FPVG   418.222  419.231  7.950  90 Umami 0.519 0.019
173 TIPLT 18.050  543.327  544.336  8.960    Umami 0.517 0.917
174 KSSSG 19.230  464.223  465.231  1.540    Umami 0.514 0.986
175 KASTP 15.820  502.275  503.283  1.960    Umami 0.513 0.977
176 SLVGL 20.410  487.301  488.310  9.070    Umami 0.509 0.013
177 ANTARQAFQ 16.730  1005.499  503.758  4.200    Umami 0.508 0.981
178 QPLPQP 18.020  678.370  679.379  7.450    Non-umami 0.5 0.042
179 KTGF   493.254  494.263  7.710  95 Non-umami 0.5 0.191
180 ILQAA 15.480  514.312  515.320  6.450    Non-umami 0.5 0.016
181 ALLSI 19.520  515.332  516.341  11.090    Non-umami 0.5 0.146
182 GASIL 20.160  459.269  460.279  8.090    Non-umami 0.488 0.192
183 LPVP   424.269  425.277  8.920  98 Non-umami 0.486 0.01
184 TVLGA 15.410  459.269  460.278  6.970    Non-umami 0.483 0.259
185 IAHGGVLPNIN 30.170  1103.609  552.814  8.600    Non-umami 0.482 0.964
186 EVVR   501.291  502.300  2.470  96 Non-umami 0.482 0.865
187 KSTSP 16.420  518.270  519.278  1.990    Non-umami 0.481 0.979
188 DEIIK 16.300  616.343  617.352  6.020    Non-umami 0.478 0.975
189 ILVTP 15.510  541.348  542.357  9.160    Non-umami 0.476 0.022
190 VELLN 15.200  586.333  587.342  8.880    Non-umami 0.466 0.981
191 IVALP 16.500  511.337  512.347  11.790    Non-umami 0.463 0.041
192 AASEIGK 15.930  674.360  675.369  3.190    Non-umami 0.458 0.98
193 GSLIL 18.680  501.316  502.325  11.050    Non-umami 0.457 0.032
194 APALP 15.170  467.274  468.283  7.420    Non-umami 0.454 0.072
195 LPQQP 18.010  581.317  582.325  5.570    Non-umami 0.453 0.95
196 LALSI 15.390  515.332  516.341  11.090    Non-umami 0.453 0.122
197 TAALL 18.200  487.301  488.309  6.100    Non-umami 0.45 0.104
198 FTPQQP 20.770  716.349  717.356  7.140    Non-umami 0.449 0.981
199 LPVQP   552.327  553.335  7.330  91 Non-umami 0.447 0.059
200 GELAK 15.670  516.291  517.300  2.380    Non-umami 0.444 0.981
201 ADLPGVK 15.990  698.396  350.207  6.490  97 Non-umami 0.444 0.986
202 IVTGGDSGIGR 16.650  1030.541  516.280  6.110    Non-umami 0.439 0.979
203 VPLLQ 15.110  568.358  569.368  9.390  92 Non-umami 0.435 0.201
204 LPENA   542.270  543.279  5.200  98 Non-umami 0.429 0.981
205 TVGIL 16.800  501.316  502.324  10.950    Non-umami 0.428 0.061
206 LSGAI 18.080  459.269  460.279  9.310    Non-umami 0.425 0.077
207 KVGF   449.264  450.272  5.630  99 Non-umami 0.423 0.02
208 TPGKG 17.080  458.249  459.256  1.840  95 Non-umami 0.419 0.065
209 ASSLKVA 15.950  674.396  675.407  5.790    Non-umami 0.416 0.986
210 AHVF   472.243  473.251  5.530  94 Non-umami 0.415 0.018
211 AFEPIRS 15.120  818.429  410.223  6.940    Non-umami 0.415 0.983
212 LPRSGP 15.160  625.355  313.685  3.970  98 Non-umami 0.412 0.986
213 LGTF   436.232  437.242  8.060  93 Non-umami 0.412 0.359
214 ALISL 19.520  515.332  516.341  11.090    Non-umami 0.411 0.039
215 YPEQP   632.281  633.290  5.720  90 Non-umami 0.409 0.979
216 TSIALRTLP 30.640  970.581  486.299  9.380    Non-umami 0.405 0.977
217 ESTLHLVLR 15.260  1066.614  356.546  8.540    Non-umami 0.404 0.977
218 LASGAL 16.810  530.306  531.314  7.210    Non-umami 0.403 0.966
219 HQPQPQ 15.040  733.351  734.361  2.230    Non-umami 0.403 0.809
220 EVGAI 17.250  487.264  488.272  7.210    Non-umami 0.403 0.939
221 DVVR   487.275  488.285  2.740  92 Non-umami 0.402 0.982
222 TVVGL 15.200  487.301  488.310  8.920  93 Non-umami 0.4 0.06
223 LIVTP 15.510  541.348  542.357  9.160    Non-umami 0.39 0.008
224 KVLVTP 15.230  655.427  656.436  6.890  92 Non-umami 0.39 0.897
225 EKVVVLAG 15.530  813.496  814.506  10.010    Non-umami 0.385 0.964
226 QQPQIP 18.750  709.376  710.385  5.280    Non-umami 0.383 0.857
227 SIVGI 20.410  487.301  488.310  9.070    Non-umami 0.382 0.015
228 KNVQ   487.276  488.280  5.570  93 Non-umami 0.382 0.989
229 QALEVLR   827.487  414.752  7.410  91 Non-umami 0.381 0.982
230 QLPQQP 19.750  709.376  710.385  5.750    Non-umami 0.38 0.971
231 GLSAIQ 16.360  587.328  588.339  8.460    Non-umami 0.375 0.984
232 IASGAI 17.190  530.306  531.314  7.210    Non-umami 0.373 0.979
233 PTAYNTLLR   1047.571  524.796  8.040  97 Non-umami 0.371 0.977
234 SVAAV 16.450  445.254  446.262  5.770    Non-umami 0.366 0.253
235 AVGVE 15.700  473.249  474.258  5.830    Non-umami 0.362 0.982
236 TVATPVL 15.140  699.417  700.426  9.850    Non-umami 0.361 0.982
237 VVVP   412.269  413.278  7.830  99 Non-umami 0.359 0.01
238 QAGLK 17.160  515.307  516.316  2.590    Non-umami 0.359 0.1
239 SASLK 18.270  504.291  505.300  2.310  98 Non-umami 0.355 0.95
240 DESTGTIGK 18.780  906.429  454.223  3.570    Non-umami 0.355 0.978
241 LGGLSS 17.300  532.286  533.295  6.450    Non-umami 0.354 0.985
242 GLSSI 18.870  475.264  476.274  7.880    Non-umami 0.354 0.984
243 FPEAP 15.090  559.264  560.274  7.730  93 Non-umami 0.353 0.149
244 VAGL   358.222  359.230  6.920  97 Non-umami 0.352 0.071
245 TVAGL 15.430  459.269  460.278  7.740    Non-umami 0.352 0.915
246 VGSVG 15.840  417.222  418.230  1.760    Non-umami 0.351 0.848
247 QHASGR 15.680  654.320  655.327  1.510    Non-umami 0.345 0.981
248 ISLAL 16.100  515.332  516.341  10.360    Non-umami 0.344 0.036
249 TLAGL 20.990  473.285  474.293  7.160  93 Non-umami 0.343 0.856
250 SVGVS 15.550  447.233  448.239  1.820    Non-umami 0.342 0.984
251 PTAYNTILR 25.740  1047.571  524.796  8.040    Non-umami 0.339 0.974
252 ALGAL 17.130  443.274  444.283  7.600    Non-umami 0.339 0.1
253 QQQIP 15.700  612.323  613.334  6.150    Non-umami 0.337 0.966
254 PEYQP 15.280  632.281  633.289  5.620  92 Non-umami 0.337 0.985
255 AVATPVFL 20.510  816.475  817.484  12.540    Non-umami 0.336 0.99
256 GSLLI 18.680  501.316  502.325  11.050    Non-umami 0.319 0.05
257 VALSL 18.620  501.316  502.325  10.340    Non-umami 0.317 0.955
258 VGAASIP 19.260  613.344  614.353  7.930    Non-umami 0.315 0.988
259 QYPQQP 15.090  759.355  760.366  4.800    Non-umami 0.314 0.977
260 LSGAVGL 15.010  615.359  616.369  9.290    Non-umami 0.314 0.983
261 VGFP   418.222  419.231  8.700  96 Non-umami 0.312 0.027
262 LAVATPVF 17.000  816.475  817.485  11.950    Non-umami 0.312 0.989
263 TLALGP   570.338  571.347  8.070  94 Non-umami 0.309 0.31
264 TITSR 16.560  576.323  577.334  2.240    Non-umami 0.308 0.98
265 ITTSR 15.120  576.323  577.334  2.240    Non-umami 0.308 0.979
266 LAISL 15.390  515.332  516.341  11.090    Non-umami 0.306 0.136
267 GISSL 18.870  475.264  476.274  7.880    Non-umami 0.305 0.986
268 LTGMAFRVP 20.670  990.532  496.275  10.450  98 Non-umami 0.303 0.968
269 AAAFP 17.480  475.243  476.253  7.990    Non-umami 0.303 0.043
270 LGSV   374.217  375.224  5.610  90 Non-umami 0.302 0.443
271 LMLP   472.272  473.278  10.460  94 Non-umami 0.3 0.01
272 VGSAL 19.110  445.254  446.261  6.730    Non-umami 0.298 0.966
273 AFTPIQ 20.330  675.359  676.369  8.710    Non-umami 0.296 0.993
274 TVGLI 16.800  501.316  502.324  10.950    Non-umami 0.293 0.06
275 PNGDLH 18.220  651.298  652.307  2.750    Non-umami 0.293 0.983
276 LQPQNP 15.230  695.360  696.371  5.180    Non-umami 0.289 0.973
277 VIASI 18.280  501.316  502.326  8.750    Non-umami 0.288 0.106
278 LQPQP   581.317  582.327  5.720  95 Non-umami 0.286 0.477
279 TPIQP 15.560  554.306  555.315  6.800    Non-umami 0.284 0.008
280 TADLPSKKG 20.580  915.503  458.761  2.720    Non-umami 0.282 0.976
281 IALSI 15.390  515.332  516.341  11.090    Non-umami 0.281 0.096
282 VAVRATP 16.360  712.423  713.433  5.290    Non-umami 0.279 0.985
283 LPSIQ 15.170  556.322  557.331  8.160    Non-umami 0.278 0.949
284 VAGSI 16.600  445.254  446.261  6.640    Non-umami 0.272 0.701
285 TVGGI 16.090  445.254  446.262  5.770    Non-umami 0.272 0.207
286 IIQAA 15.480  514.312  515.320  6.450    Non-umami 0.272 0.023
287 VALSI 18.620  501.316  502.325  10.340    Non-umami 0.269 0.235
288 PVSQP 15.600  526.275  527.283  4.270    Non-umami 0.269 0.987
289 ALTVA 18.180  473.285  474.295  8.110    Non-umami 0.268 0.831
290 DRLQ   530.281  531.291  2.270  99 Non-umami 0.267 0.982
291 TPTVG 15.080  473.249  474.258  4.970    Non-umami 0.266 0.955
292 PQQFPQQ 17.350  871.419  872.430  5.910    Non-umami 0.265 0.989
293 LGALP 15.170  469.290  470.299  8.870    Non-umami 0.264 0.053
294 QPQYPQ 16.490  759.355  760.367  4.730    Non-umami 0.261 0.962
295 PLVNP   538.312  539.321  7.750  98 Non-umami 0.259 0.529
296 YPRTP   632.328  317.172  4.340  95 Non-umami 0.256 0.981
297 SIVGL 20.410  487.301  488.310  9.070    Non-umami 0.256 0.011
298 LPHT   466.254  467.262  5.530  94 Non-umami 0.256 0.94
299 LGVD   402.211  403.220  5.930  92 Non-umami 0.256 0.982
300 GISSI 18.870  475.264  476.274  7.880    Non-umami 0.255 0.989
301 VGGPSVG   571.297  572.306  6.190  96 Non-umami 0.25 0.989
302 VELIN 15.200  586.333  587.342  8.880    Non-umami 0.246 0.98
303 FVAGL 15.070  505.290  506.298  9.890    Non-umami 0.246 0.015
304 AILSI 19.520  515.332  516.341  11.090    Non-umami 0.246 0.05
305 ADRHGEGGVA 16.620  1009.458  505.737  3.460    Non-umami 0.246 0.977
306 KGGVD 15.570  474.244  475.251  1.780    Non-umami 0.245 0.99
307 VTALRTIP 21.020  869.533  870.544  9.240    Non-umami 0.244 0.979
308 VVVSPP   596.353  597.364  7.970  97 Non-umami 0.242 0.07
309 ISGAL 18.080  459.269  460.279  9.310    Non-umami 0.241 0.066
310 TAALI 18.200  487.301  488.309  6.100    Non-umami 0.24 0.068
311 TAGLP 18.740  457.254  458.261  6.710    Non-umami 0.239 0.185
312 IAHGGVIPNIN 30.620  1103.609  552.814  8.600    Non-umami 0.238 0.458
313 VTVGL 20.000  487.301  488.310  8.990    Non-umami 0.237 0.967
314 IPSLQ 15.170  556.322  557.331  8.160    Non-umami 0.237 0.95
315 HGAQIP 15.610  621.323  622.333  4.350    Non-umami 0.236 0.156
316 LLQAA 15.980  514.312  515.320  6.450    Non-umami 0.233 0.015
317 FQPQQP 17.680  743.360  744.370  6.200    Non-umami 0.233 0.991
318 ALGAI 17.130  443.274  444.283  7.600    Non-umami 0.224 0.027
319 TVAAL 15.960  473.285  474.293  7.550    Non-umami 0.222 0.831
320 LPLGAP   566.343  567.352  8.990  94 Non-umami 0.222 0.052
321 LPTH   466.254  467.262  5.620  98 Non-umami 0.219 0.743
322 YTNP   493.217  494.225  3.990  98 Non-umami 0.218 0.98
323 TLGAP   457.254  458.263  5.900  92 Non-umami 0.217 0.138
324 LPAGV 17.920  455.274  456.283  7.550  97 Non-umami 0.212 0.048
325 KFTSS 18.390  568.286  569.294  2.360  96 Non-umami 0.212 0.986
326 VVTGVG 16.000  530.306  531.316  5.900    Non-umami 0.211 0.972
327 KVLP   455.311  456.319  5.660  96 Non-umami 0.211 0.012
328 EALR   487.275  488.285  2.360  98 Non-umami 0.211 0.939
329 VPVE   442.243  443.252  5.110  92 Non-umami 0.208 0.936
330 TLLL   458.310  459.320  11.280  92 Non-umami 0.208 0.012
331 TLGGLP 15.270  556.322  557.332  8.600    Non-umami 0.208 0.164
332 GSILL 18.680  501.316  502.325  11.050    Non-umami 0.208 0.031
333 GLVGE 15.370  473.249  474.258  6.100    Non-umami 0.208 0.981
334 LSIAI 16.100  515.332  516.341  10.360    Non-umami 0.204 0.041
335 PQQIPPQ 20.400  806.429  807.439  6.260    Non-umami 0.202 0.059
336 FDLR   549.291  550.302  8.340  94 Non-umami 0.201 0.993
337 PQQVPPQ 22.680  792.413  793.420  5.560    Non-umami 0.2 0.947
338 LGGISS 17.300  532.286  533.295  6.450    Non-umami 0.2 0.987
339 LLVAP 17.980  511.337  512.346  9.830    Non-umami 0.199 0.008
340 LEPL   470.274  471.283  8.950  92 Non-umami 0.198 0.286
341 ALTGL 16.280  473.285  474.294  7.640    Non-umami 0.198 0.965
342 MPLEGQ   673.311  674.320  6.840  94 Non-umami 0.197 0.977
343 LVATP 15.240  499.301  500.309  6.580    Non-umami 0.196 0.392
344 VLASL 18.280  501.316  502.326  8.750    Non-umami 0.195 0.476
345 WMPLE   716.320  717.334  10.150  99 Non-umami 0.193 0.097
346 VMLP   458.256  459.265  9.640  90 Non-umami 0.192 0.01
347 LTAVFP   646.369  647.379  11.540  91 Non-umami 0.192 0.111
348 GVSAL 17.270  445.254  446.261  6.730    Non-umami 0.192 0.966
349 VAGIP 16.130  455.274  456.283  8.330    Non-umami 0.191 0.047
350 VAAGVLP 15.060  625.380  626.390  9.230    Non-umami 0.191 0.184
351 FVAGI 15.030  505.290  506.298  9.890    Non-umami 0.189 0.014
352 TLFPLNL   816.475  817.485  14.360  90 Non-umami 0.188 0.984
353 TAAIL 18.200  487.301  488.309  6.100    Non-umami 0.188 0.038
354 LVAIP 16.500  511.337  512.347  11.790    Non-umami 0.188 0.042
355 VAISL 18.620  501.316  502.325  10.340    Non-umami 0.187 0.261
356 LAGAL 20.000  443.274  444.283  7.600    Non-umami 0.186 0.116
357 LALAL 16.900  499.337  500.346  11.530  95 Non-umami 0.185 0.059
358 LGAPL 15.160  469.290  470.299  8.220    Non-umami 0.183 0.024
359 AITVA 18.180  473.285  474.295  8.110    Non-umami 0.183 0.427
360 LTTSR 15.120  576.323  577.334  2.240    Non-umami 0.181 0.98
361 LGVP   384.237  385.246  7.970  95 Non-umami 0.181 0.029
362 VPSQP 17.590  526.275  527.283  4.270  99 Non-umami 0.18 0.967
363 TVLVP 16.140  527.332  528.341  8.590    Non-umami 0.178 0.015
364 TLAGI 18.800  473.285  474.293  7.160    Non-umami 0.178 0.083
365 AVLSL 19.770  501.316  502.325  10.260    Non-umami 0.178 0.546
366 QPYPQQP 22.510  856.408  857.419  6.030    Non-umami 0.177 0.96
367 LSVQ   445.254  446.262  5.500  91 Non-umami 0.174 0.971
368 TVGLL 16.800  501.316  502.324  10.950    Non-umami 0.171 0.221
369 VATLFPLGGL 17.730  986.580  494.298  15.000    Non-umami 0.169 0.974
370 ATGAL 15.910  431.238  432.246  4.650    Non-umami 0.167 0.939
371 LPLQP   566.343  567.352  8.600  93 Non-umami 0.166 0.096
372 LSLE   460.253  461.262  7.120  90 Non-umami 0.165 0.978
373 INDIFEKLA 19.570  1061.576  531.797  10.610    Non-umami 0.165 0.978
374 VPQQRP   723.403  362.710  2.750  94 Non-umami 0.164 0.983
375 FSPVLVP 17.670  757.437  758.447  12.120    Non-umami 0.162 0.179
376 LTVAGP   556.322  557.331  7.610  96 Non-umami 0.158 0.976
377 ISAVF 15.670  535.301  536.310  10.630    Non-umami 0.158 0.102
378 VIASL 18.280  501.316  502.326  8.750    Non-umami 0.157 0.07
379 AIGAL 16.630  443.274  444.283  7.600    Non-umami 0.157 0.039
380 VVPP   410.253  411.262  6.100  96 Non-umami 0.156 0.009
381 QVGAL 15.490  487.264  488.272  7.210    Non-umami 0.156 0.173
382 FPGAS 15.750  477.222  478.233  5.330  93 Non-umami 0.155 0.845
383 HPGQQ 16.420  565.261  566.268  1.890    Non-umami 0.151 0.987
384 FGKEP   576.291  577.300  9.230  93 Non-umami 0.151 0.289
385 HQPGQ   565.261  566.269  1.990  93 Non-umami 0.15 0.991
386 LFSPV 15.750  561.316  562.326  10.070  93 Non-umami 0.149 0.654
387 ALLP   412.269  413.277  9.340  98 Non-umami 0.149 0.008
388 IGGLSS 17.300  532.286  533.295  6.450    Non-umami 0.148 0.986
389 LPEDAKVE 19.470  899.460  450.739  5.960  98 Non-umami 0.147 0.976
390 LLPQQ   597.349  598.357  5.850  96 Non-umami 0.146 0.983
391 FPQQQP 15.450  743.360  744.371  6.130    Non-umami 0.146 0.994
392 AFTPIQY 24.470  838.423  839.433  10.130    Non-umami 0.145 0.847
393 LLPHT   579.338  580.346  7.100  94 Non-umami 0.144 0.73
394 TAAII 15.060  487.301  488.309  6.100    Non-umami 0.143 0.029
395 AGALL 15.040  443.274  444.283  8.510    Non-umami 0.143 0.021
396 TGLP   386.217  387.225  6.560  95 Non-umami 0.141 0.119
397 PTGSMGGE 15.540  734.291  735.300  3.380    Non-umami 0.138 0.978
398 PSGQVQW 17.860  800.382  801.392  8.040    Non-umami 0.138 0.989
399 AGALI 15.040  443.274  444.283  8.510    Non-umami 0.136 0.032
400 TVVGI 15.750  487.301  488.310  8.920    Non-umami 0.135 0.073
401 ISGAI 15.210  459.269  460.279  9.310    Non-umami 0.135 0.106
402 PFLGSGLAGL 16.320  930.518  466.268  12.780    Non-umami 0.134 0.967
403 LALP   412.269  413.277  9.430  98 Non-umami 0.134 0.041
404 KLSL   501.316  502.325  10.260  95 Non-umami 0.134 0.953
405 ILVAG 16.500  471.306  472.315  8.310    Non-umami 0.133 0.025
406 AVATP 16.400  457.254  458.262  5.200    Non-umami 0.133 0.974
407 GSLII 18.680  501.316  502.325  11.050    Non-umami 0.132 0.044
408 SPVLVPAA 19.670  752.443  753.453  9.680    Non-umami 0.131 0.029
409 FSGAP 17.110  477.222  478.232  5.460    Non-umami 0.131 0.362
410 QPQVPP 17.890  664.354  665.362  5.610    Non-umami 0.129 0.053
411 AIISL 19.520  515.332  516.341  11.090    Non-umami 0.129 0.066
412 MPMP   474.197  475.206  8.310  97 Non-umami 0.128 0.008
413 EIQTSVR 15.830  831.445  416.731  5.010    Non-umami 0.127 0.975
414 ISLAI 16.100  515.332  516.341  10.360    Non-umami 0.125 0.034
415 ELGGI 15.930  487.264  488.273  7.060    Non-umami 0.125 0.872
416 TVAAI 15.960  473.285  474.293  7.550    Non-umami 0.124 0.099
417 TFPQQP 17.790  716.349  717.356  7.140    Non-umami 0.124 0.983
418 GAHVTMH 17.880  751.344  752.348  5.230    Non-umami 0.124 0.986
419 ALISI 19.520  515.332  516.341  11.090    Non-umami 0.124 0.051
420 TLFPL 15.270  589.348  590.356  13.090    Non-umami 0.123 0.105
421 KATPVF   703.390  704.400  10.250  91 Non-umami 0.123 0.948
422 PMAP   430.189  431.197  3.370  98 Non-umami 0.121 0.042
423 AAGGIGQP 17.120  669.345  670.355  5.920    Non-umami 0.121 0.921
424 ALTGI 16.280  473.285  474.294  7.640    Non-umami 0.12 0.684
425 AAEGSIL 16.830  659.349  660.359  8.500    Non-umami 0.12 0.978
426 YVVLP 16.420  589.348  590.357  10.520    Non-umami 0.119 0.012
427 QPFQQP 16.280  743.360  744.367  6.650    Non-umami 0.117 0.996
428 LLPFT   589.348  590.357  11.600  90 Non-umami 0.117 0.242
429 IAGAL 20.000  443.274  444.283  7.600    Non-umami 0.117 0.033
430 LVQVP   554.343  555.352  9.340  91 Non-umami 0.116 0.049
431 LATGL 18.190  473.285  474.294  8.200    Non-umami 0.116 0.961
432 FGGSP 18.970  463.207  464.216  5.310    Non-umami 0.116 0.384
433 VVGL   386.253  387.261  8.220  98 Non-umami 0.115 0.008
434 VAGVP 16.180  441.259  442.267  7.080  97 Non-umami 0.115 0.447
435 TGALAI 15.780  544.322  545.332  7.960    Non-umami 0.115 0.767
436 LVVPAAL   681.443  682.453  11.570  91 Non-umami 0.115 0.019
437 LAGALE 15.120  572.317  573.325  6.670    Non-umami 0.115 0.983
438 ISIAL 16.100  515.332  516.341  10.360    Non-umami 0.115 0.039
439 VAGSL 18.800  445.254  446.261  6.640    Non-umami 0.114 0.957
440 LTLGM   549.283  550.291  7.300  97 Non-umami 0.114 0.854
441 LSGAV 19.220  445.254  446.262  6.540  93 Non-umami 0.114 0.43
442 YPQQP 16.800  631.297  632.306  5.440    Non-umami 0.113 0.982
443 TVGGL 16.090  445.254  446.262  5.770    Non-umami 0.113 0.681
444 TPVSF 16.370  549.280  550.290  8.730    Non-umami 0.112 0.991
445 LLPTH   579.338  580.346  7.200  96 Non-umami 0.112 0.784
446 GMGLPSNP 17.010  771.359  772.368  8.350    Non-umami 0.111 0.981
447 LSGV   374.217  375.225  5.870  94 Non-umami 0.109 0.101
448 YPQNP 18.710  617.281  618.291  4.860    Non-umami 0.108 0.98
449 TVIGA 15.410  459.269  460.278  6.970    Non-umami 0.108 0.062
450 SAVVGL 15.520  544.322  545.332  9.070    Non-umami 0.108 0.574
451 LTGL   402.248  403.257  7.900  98 Non-umami 0.108 0.884
452 AVISL 19.770  501.316  502.325  10.260    Non-umami 0.108 0.099
453 TIVVAP 18.130  598.369  599.379  8.710    Non-umami 0.107 0.046
454 IVVAP 15.100  497.321  498.331  8.550    Non-umami 0.107 0.011
455 TLAGP 16.830  457.254  458.263  5.810  93 Non-umami 0.106 0.238
456 QSHP   467.213  468.222  1.960  91 Non-umami 0.106 0.96
457 PVFSF   595.301  596.310  11.600  91 Non-umami 0.106 0.164
458 GSILI 15.460  501.316  502.325  11.050    Non-umami 0.104 0.041
459 FQAGP   518.249  519.257  5.570  97 Non-umami 0.104 0.037
460 TLTSR 16.560  576.323  577.334  2.240    Non-umami 0.103 0.979
461 SGAPVYL 21.690  705.370  706.380  9.680    Non-umami 0.103 0.456
462 VLFSP 17.510  561.316  562.326  9.790    Non-umami 0.102 0.249
463 PTVSF   549.280  550.290  8.730  99 Non-umami 0.102 0.989
464 DLSK   461.249  462.256  2.120  94 Non-umami 0.102 0.982
465 QPFPQQ 16.230  743.360  744.370  6.430    Non-umami 0.1 0.993
466 LSGLL 17.220  501.316  502.324  10.950    Non-umami 0.099 0.138
467 IPQQP 18.010  581.317  582.325  5.570    Non-umami 0.099 0.681
468 LVSGAVIP 16.070  754.459  755.469  10.070    Non-umami 0.098 0.961
469 LIVGV 16.290  499.337  500.345  10.820    Non-umami 0.098 0.01
470 LGGDGVFKQLQR   1316.720  439.916  7.890  90 Non-umami 0.098 0.984
471 AVISI 17.620  501.316  502.325  10.260    Non-umami 0.098 0.212
472 QPYPQ 15.990  631.297  632.307  5.130    Non-umami 0.097 0.935
473 LLGAN 15.430  486.280  487.288  6.650  90 Non-umami 0.097 0.976
474 ITGAP 15.400  457.254  458.263  5.980    Non-umami 0.097 0.013
475 AGAIL 15.040  443.274  444.283  8.510    Non-umami 0.097 0.038
476 LALAI 16.900  499.337  500.346  11.530    Non-umami 0.096 0.022
477 IAHGGVIP 15.340  762.439  382.228  7.380    Non-umami 0.096 0.065
478 LLVGV 16.290  499.337  500.345  10.820    Non-umami 0.095 0.007
479 LAIAL 16.900  499.337  500.346  11.530    Non-umami 0.094 0.033
480 AVLSI 19.770  501.316  502.325  10.260    Non-umami 0.094 0.283
481 VLASI 18.280  501.316  502.326  8.750    Non-umami 0.093 0.287
482 VLVPAAL 16.990  681.443  682.453  11.570    Non-umami 0.092 0.015
483 TVAGAL 15.670  530.306  531.315  7.410    Non-umami 0.092 0.974
484 LLPQQP   694.401  695.410  7.170  96 Non-umami 0.092 0.882
485 VIVAP 15.120  497.321  498.330  8.280    Non-umami 0.091 0.011
486 PFLGSGLAGLL 15.330  1043.601  522.810  14.830    Non-umami 0.091 0.93
487 LLVAG 16.500  471.306  472.315  8.310    Non-umami 0.091 0.018
488 ALGLP 16.890  469.290  470.299  9.730    Non-umami 0.091 0.022
489 VGVVF 15.490  519.306  520.315  10.760    Non-umami 0.09 0.017
490 SVGV   360.201  361.209  5.490  98 Non-umami 0.09 0.447
491 IFSPV 15.460  561.316  562.326  10.070    Non-umami 0.089 0.205
492 ERFQPMF 17.520  953.443  477.730  9.620    Non-umami 0.089 0.851
493 AIGGLTQL 15.990  771.449  772.459  10.760    Non-umami 0.089 0.974
494 PLLQP   566.343  567.353  8.690  96 Non-umami 0.088 0.048
495 ELGGL 15.930  487.264  488.273  7.060    Non-umami 0.088 0.954
496 PSGQVQWP 15.120  897.434  898.446  9.240    Non-umami 0.087 0.65
497 AAGGL 17.380  387.212  388.219  4.550    Non-umami 0.087 0.071
498 TLFPLGGL 18.140  816.475  817.485  14.360    Non-umami 0.086 0.352
499 TLAAGP   528.291  529.301  6.180  92 Non-umami 0.086 0.4
500 LQNGP   527.270  528.280  5.780  91 Non-umami 0.086 0.981
501 VLPPVEP 15.130  749.432  750.442  9.520    Non-umami 0.085 0.018
502 IEAVP 15.980  527.296  528.305  8.600    Non-umami 0.085 0.932
503 FPQQ   518.249  519.257  5.200  98 Non-umami 0.085 0.704
504 VVLP   426.284  427.293  9.160  96 Non-umami 0.084 0.01
505 LPQQPP 23.030  678.370  679.381  6.390    Non-umami 0.084 0.376
506 LPPQQP 17.540  678.370  679.381  6.080    Non-umami 0.084 0.766
507 LPAGL 15.730  469.290  470.299  9.170    Non-umami 0.084 0.039
508 ASVVGL 15.910  544.322  545.331  9.170    Non-umami 0.084 0.973
509 VLAVP   497.321  498.331  9.200  97 Non-umami 0.083 0.028
510 TVAGI 15.430  459.269  460.278  7.740    Non-umami 0.082 0.351
511 LTGAP 15.400  457.254  458.263  5.980    Non-umami 0.082 0.254
512 LLLKVN   698.469  350.243  8.540  91 Non-umami 0.082 0.971
513 LIVAP 17.160  511.337  512.346  9.830    Non-umami 0.082 0.01
514 LAGAP 16.830  427.243  428.251  5.660  98 Non-umami 0.082 0.12
515 VLEGK   544.322  545.331  2.610  92 Non-umami 0.081 0.977
516 ISGAV 19.220  445.254  446.262  6.540    Non-umami 0.081 0.061
517 YPQP   503.238  504.247  5.920  93 Non-umami 0.078 0.038
518 TSPHQP 16.350  665.313  666.323  2.190    Non-umami 0.078 0.968
519 TLGGIP 15.460  556.322  557.332  8.600    Non-umami 0.078 0.031
520 QQPIP 17.730  581.317  582.327  7.000    Non-umami 0.078 0.034
521 GVAFP 16.120  489.259  490.267  9.540    Non-umami 0.078 0.023
522 FPFP   506.253  507.262  11.870  95 Non-umami 0.078 0.019
523 VEIIN 15.200  586.333  587.342  8.880    Non-umami 0.077 0.979
524 TLPTM   577.278  578.287  5.760  93 Non-umami 0.077 0.883
525 LGPF   432.237  433.246  9.830  94 Non-umami 0.077 0.019
526 GVSAI 17.270  445.254  446.261  6.730    Non-umami 0.077 0.593
527 VLVPAAI 16.990  681.443  682.453  11.570    Non-umami 0.076 0.018
528 LQYVHP   755.397  378.706  6.600  96 Non-umami 0.076 0.746
529 ILGAN 15.430  486.280  487.288  6.650    Non-umami 0.076 0.964
530 FGPF   466.222  467.231  10.550  97 Non-umami 0.076 0.02
531 AITGI 16.280  473.285  474.294  7.640    Non-umami 0.076 0.298
532 VAAK   387.248  388.256  1.930  97 Non-umami 0.075 0.028
533 SKYNN 16.700  624.287  625.292  1.780    Non-umami 0.075 0.982
534 VGGPSVGV   670.365  671.375  8.140  95 Non-umami 0.074 0.99
535 FVVVP 15.970  559.337  560.345  10.970    Non-umami 0.074 0.019
536 AITGL 16.280  473.285  474.294  7.640    Non-umami 0.074 0.449
537 ALLGF 16.650  519.306  520.315  11.760    Non-umami 0.073 0.014
538 LGPFL   545.321  546.330  12.130  96 Non-umami 0.072 0.017
539 TIAAGL 16.550  544.322  545.332  8.580    Non-umami 0.071 0.871
540 LPFP   472.269  473.277  10.890  97 Non-umami 0.071 0.019
541 AGPK   371.217  372.224  1.670  95 Non-umami 0.071 0.03
542 AAAIT 19.980  445.254  446.262  5.960    Non-umami 0.071 0.973
543 AAAAFP 19.760  546.280  547.290  8.320  90 Non-umami 0.071 0.061
544 TGAFP 15.080  491.238  492.247  7.330    Non-umami 0.07 0.128
545 IVKVTP 16.010  655.427  656.436  6.890    Non-umami 0.07 0.941
546 VLLGP 15.170  497.321  498.331  9.110  92 Non-umami 0.069 0.008
547 LVLSGL 17.170  600.385  601.394  11.240    Non-umami 0.069 0.885
548 ISNLQ 16.370  573.312  574.322  6.550    Non-umami 0.069 0.982
549 VLLSGL 16.230  600.385  601.394  11.330  96 Non-umami 0.068 0.855
550 AHGPGQW 15.320  751.340  752.350  5.140    Non-umami 0.068 0.985
551 LLFP   488.300  489.309  11.810  95 Non-umami 0.067 0.017
552 FPGGL   489.259  490.268  9.300  95 Non-umami 0.067 0.02
553 FGFP   466.222  467.232  10.650  94 Non-umami 0.067 0.02
554 VIFSP 17.510  561.316  562.326  9.790    Non-umami 0.066 0.18
555 LGFP   432.237  433.245  9.930  96 Non-umami 0.066 0.021
556 GAAGL 15.170  387.212  388.219  4.550    Non-umami 0.066 0.069
557 ALGL   372.237  373.246  8.930  92 Non-umami 0.066 0.042
558 NLALQTL 15.020  771.449  772.459  10.680    Non-umami 0.065 0.976
559 LPGVL 18.790  497.321  498.330  10.340  99 Non-umami 0.065 0.008
560 LGGL   358.222  359.230  7.650  98 Non-umami 0.065 0.055
561 LAGAI 20.000  443.274  444.283  7.600    Non-umami 0.065 0.039
562 TIAGL 18.280  473.285  474.293  7.160    Non-umami 0.064 0.087
563 IALAL 16.900  499.337  500.346  11.530    Non-umami 0.064 0.02
564 FLPFP   619.337  620.346  13.340  98 Non-umami 0.064 0.019
565 ALLL   428.300  429.308  10.570  91 Non-umami 0.064 0.006
566 PQQLPP 19.780  678.370  679.380  6.480    Non-umami 0.063 0.588
567 INDIFEKL 15.200  990.539  496.277  10.610    Non-umami 0.063 0.978
568 IGALP 15.340  469.290  470.299  8.870    Non-umami 0.063 0.04
569 AAEGSII 20.380  659.349  660.359  8.500    Non-umami 0.063 0.978
570 VSVSH 15.960  527.270  528.279  2.420    Non-umami 0.062 0.99
571 TIAGI 18.800  473.285  474.293  7.160    Non-umami 0.062 0.047
572 ILPQQP 17.010  694.401  695.410  7.170    Non-umami 0.062 0.856
573 VLSGL 18.730  487.301  488.310  8.730    Non-umami 0.061 0.575
574 LVVAP 15.100  497.321  498.331  8.550  92 Non-umami 0.061 0.011
575 LLGGL 19.970  471.306  472.314  10.180  95 Non-umami 0.061 0.134
576 LGGLL 17.670  471.306  472.315  10.440    Non-umami 0.061 0.035
577 IVAIP 16.500  511.337  512.347  11.790    Non-umami 0.061 0.045
578 FPPQ   487.243  488.253  6.430  96 Non-umami 0.061 0.01
579 FPPP   456.237  457.249  7.460  94 Non-umami 0.061 0.019
580 WMLP   587.278  588.289  10.970  99 Non-umami 0.06 0.018
581 SGAPVY 19.600  592.286  593.295  6.400    Non-umami 0.06 0.738
582 PVGPTPP 22.090  663.359  664.368  7.390    Non-umami 0.06 0.272
583 PVGPPTP 23.430  663.359  664.368  7.390    Non-umami 0.06 0.274
584 VQPP   439.243  440.252  5.370  93 Non-umami 0.059 0.061
585 SPAGAGFP 15.330  702.334  703.343  6.450    Non-umami 0.059 0.184
586 LLNP   455.274  456.283  7.220  98 Non-umami 0.059 0.081
587 KLAP   427.279  428.288  3.890  93 Non-umami 0.059 0.015
588 IPGGL 19.010  455.274  456.284  8.830    Non-umami 0.059 0.012
589 PFRPP   612.338  613.348  6.930  98 Non-umami 0.058 0.02
590 LNDLFEKI 15.200  990.539  496.277  10.610    Non-umami 0.058 0.978
591 LLLAG 16.550  485.321  486.330  9.270    Non-umami 0.058 0.015
592 LFALP 15.090  559.337  560.346  11.880    Non-umami 0.058 0.014
593 LALGF   519.306  520.315  11.760  94 Non-umami 0.058 0.048
594 IAGAP 17.570  427.243  428.251  5.660    Non-umami 0.058 0.045
595 LVGGL 19.340  457.290  458.299  8.920  91 Non-umami 0.057 0.06
596 LLGF   448.269  449.278  11.300  99 Non-umami 0.057 0.016
597 PIGGL 17.310  455.274  456.284  8.580    Non-umami 0.056 0.017
598 TIFPI 15.270  589.348  590.356  13.090    Non-umami 0.055 0.14
599 LIVAG 16.500  471.306  472.315  8.310    Non-umami 0.055 0.033
600 LGLGL 18.240  471.306  472.315  11.800    Non-umami 0.055 0.173
601 LAGL   372.237  373.245  7.240  94 Non-umami 0.055 0.049
602 GLLAL 15.360  485.321  486.331  10.400    Non-umami 0.055 0.017
603 GLALL 15.250  485.321  486.330  10.210    Non-umami 0.055 0.017
604 AIISI 19.520  515.332  516.341  11.090    Non-umami 0.055 0.137
605 AAANVP 15.510  541.286  542.296  6.940    Non-umami 0.055 0.982
606 AAALT 19.980  445.254  446.262  5.960    Non-umami 0.055 0.981
607 VLVAP 15.120  497.321  498.330  8.280    Non-umami 0.054 0.011
608 TIFPL 15.270  589.348  590.356  13.090    Non-umami 0.054 0.133
609 LVGGI 19.340  457.290  458.299  8.920    Non-umami 0.054 0.026
610 LLWP   527.311  528.321  11.770  93 Non-umami 0.054 0.017
611 LGLL   414.284  415.292  10.800  97 Non-umami 0.054 0.008
612 FRLP   531.317  532.326  8.720  98 Non-umami 0.054 0.018
613 LLIPP 16.900  551.368  552.378  10.500    Non-umami 0.053 0.01
614 IPGGI 19.010  455.274  456.284  8.830    Non-umami 0.053 0.013
615 FPWQ   576.270  577.279  10.090  99 Non-umami 0.053 0.014
616 FPSQQP 16.800  702.334  703.344  6.220    Non-umami 0.053 0.988
617 FPRPP   612.338  307.177  6.980  98 Non-umami 0.053 0.02
618 VLSGI 18.730  487.301  488.310  8.730    Non-umami 0.052 0.56
619 VILGP 15.170  497.321  498.331  9.110    Non-umami 0.052 0.01
620 LIIPP 16.900  551.368  552.378  10.500    Non-umami 0.052 0.012
621 LFPL   488.300  489.309  12.310  93 Non-umami 0.052 0.019
622 IATGL 18.190  473.285  474.294  8.200    Non-umami 0.052 0.409
623 AFEPLSR   818.429  410.223  7.020  92 Non-umami 0.052 0.973
624 VLPP   424.269  425.277  6.970  96 Non-umami 0.051 0.009
625 LELGS 16.380  517.275  518.283  6.750    Non-umami 0.051 0.979
626 IIIPP 16.900  551.368  552.378  10.500    Non-umami 0.051 0.012
627 IATGI 18.190  473.285  474.294  8.200    Non-umami 0.051 0.413
628 ALAASVVG 15.970  686.396  687.407  8.110    Non-umami 0.051 0.982
629 VLLPP 15.080  537.353  538.362  9.790  91 Non-umami 0.05 0.008
630 VILSGI 16.230  600.385  601.394  11.330    Non-umami 0.05 0.858
631 LLLPP 16.900  551.368  552.378  10.500    Non-umami 0.05 0.008
632 FLLIP 18.130  601.384  602.392  13.950    Non-umami 0.05 0.017
633 VLLP   440.300  441.308  10.640  98 Non-umami 0.049 0.009
634 PFTQPQ 15.280  716.349  717.360  7.030    Non-umami 0.049 0.987
635 LVLGP 16.410  497.321  498.331  9.110    Non-umami 0.049 0.008
636 LSGLI 17.220  501.316  502.324  10.950    Non-umami 0.049 0.043
637 FPSQP 17.360  574.275  575.285  6.850  96 Non-umami 0.049 0.99
638 FGPTGL 15.780  590.306  591.316  9.550  99 Non-umami 0.049 0.72
639 VVPFQ 18.720  630.338  631.347  12.560    Non-umami 0.048 0.042
640 PIGGI 19.700  455.274  456.284  8.580    Non-umami 0.048 0.018
641 LATGI 18.190  473.285  474.294  8.200    Non-umami 0.048 0.647
642 IPGVL 15.270  497.321  498.330  10.340    Non-umami 0.048 0.008
643 IPGVI 15.270  497.321  498.330  10.340    Non-umami 0.048 0.01
644 IGGLL 17.670  471.306  472.315  10.440    Non-umami 0.048 0.013
645 IGGLI 17.670  471.306  472.315  10.440    Non-umami 0.048 0.011
646 VPILQ 15.110  568.358  569.368  9.390    Non-umami 0.047 0.056
647 VFPL   474.284  475.294  11.460  95 Non-umami 0.047 0.019
648 QIIPQQP 15.110  822.460  823.470  8.180    Non-umami 0.047 0.483
649 LLAGP 15.960  469.290  470.299  7.540  95 Non-umami 0.047 0.026
650 ISGLL 17.220  501.316  502.324  10.950    Non-umami 0.047 0.038
651 IIGGL 19.970  471.306  472.314  10.180    Non-umami 0.047 0.011
652 GPALF 17.130  503.274  504.282  9.910    Non-umami 0.047 0.05
653 FPWQP 16.130  673.322  674.331  10.810  98 Non-umami 0.047 0.014
654 FLAGP 15.110  503.274  504.283  8.330    Non-umami 0.047 0.057
655 VVTGVGGQ   715.386  716.396  5.680  97 Non-umami 0.046 0.968
656 LVVAAP   568.358  569.368  8.750  91 Non-umami 0.046 0.043
657 LPYVHP   724.391  363.204  7.840  97 Non-umami 0.046 0.01
658 YPSQ   493.217  494.225  4.080  98 Non-umami 0.045 0.982
659 LGGLI 17.670  471.306  472.315  10.440    Non-umami 0.045 0.012
660 LFLIP 18.290  601.384  602.392  13.950    Non-umami 0.045 0.017
661 KAPP   411.248  412.257  2.100  98 Non-umami 0.045 0.014
662 ILGGL 19.970  471.306  472.314  10.180    Non-umami 0.045 0.011
663 IAGAI 20.000  443.274  444.283  7.600    Non-umami 0.045 0.044
664 FPLQ   503.274  504.284  8.820  98 Non-umami 0.045 0.018
665 FLLLP 18.130  601.384  602.392  13.950    Non-umami 0.045 0.017
666 AGAII 15.040  443.274  444.283  8.510    Non-umami 0.045 0.047
667 LGGAV 15.990  415.243  416.251  6.610  91 Non-umami 0.044 0.06
668 GPLW   471.248  472.258  9.750  96 Non-umami 0.044 0.016
669 FPQP   487.243  488.252  7.500  95 Non-umami 0.044 0.014
670 FGLP   432.237  433.246  10.180  96 Non-umami 0.044 0.02
671 APPPP 23.460  477.259  478.268  4.810  99 Non-umami 0.044 0.012
672 VFLP   474.284  475.293  11.390  97 Non-umami 0.043 0.018
673 LPGVI 17.370  497.321  498.330  10.340    Non-umami 0.043 0.009
674 LPGGL 17.160  455.274  456.284  8.830  98 Non-umami 0.043 0.044
675 LLGGI 19.970  471.306  472.314  10.180    Non-umami 0.043 0.012
676 IIVAG 16.500  471.306  472.315  8.310    Non-umami 0.043 0.039
677 TLGGL 19.510  459.269  460.278  8.680    Non-umami 0.042 0.858
678 LIGGL 19.970  471.306  472.314  10.180    Non-umami 0.042 0.013
679 LAAGP 15.080  427.243  428.251  5.260    Non-umami 0.042 0.12
680 IPGLP 15.500  495.306  496.315  10.170    Non-umami 0.042 0.01
681 IAIAL 16.900  499.337  500.346  11.530    Non-umami 0.042 0.034
682 SLGGL 20.400  445.254  446.262  7.030    Non-umami 0.041 0.154
683 LSNLQ 16.370  573.312  574.322  6.550    Non-umami 0.041 0.982
684 LPGGI 19.010  455.274  456.284  8.830    Non-umami 0.041 0.012
685 LLQP   469.290  470.298  6.910  90 Non-umami 0.041 0.051
686 LLLP   454.316  455.324  11.270  97 Non-umami 0.041 0.008
687 KIQPFP 16.590  728.422  729.432  8.370    Non-umami 0.041 0.012
688 IGGAV 16.360  415.243  416.251  6.610    Non-umami 0.041 0.039
689 FLIIP 18.130  601.384  602.392  13.950    Non-umami 0.041 0.017
690 FALAGP 15.100  574.312  575.322  9.300    Non-umami 0.041 0.054
691 SYPQPP 20.280  687.323  688.332  6.930    Non-umami 0.04 0.023
692 PLGGL 19.700  455.274  456.284  8.580  99 Non-umami 0.04 0.078
693 LQGGGP   527.270  528.279  5.670  92 Non-umami 0.04 0.714
694 LPAGLP 15.410  566.343  567.352  9.750  96 Non-umami 0.04 0.079
695 LGLP   398.253  399.261  8.260  94 Non-umami 0.04 0.016
696 ILLPP 16.960  551.368  552.378  10.500    Non-umami 0.04 0.009
697 ILGGI 18.120  471.306  472.314  10.180    Non-umami 0.04 0.011
698 FPLQPP   697.380  698.389  10.590  90 Non-umami 0.04 0.013
699 FPAGP   487.243  488.253  7.730  98 Non-umami 0.04 0.024
700 AAGGI 17.380  387.212  388.219  4.550    Non-umami 0.04 0.053
701 WQWN   632.271  633.281  9.070  90 Non-umami 0.039 0.038
702 LSGGP 15.300  429.222  430.230  4.520    Non-umami 0.039 0.085
703 LPPEPP   648.348  649.358  7.350  99 Non-umami 0.039 0.04
704 LPAGI 15.730  469.290  470.299  9.170    Non-umami 0.039 0.032
705 LLPQAGP   694.401  695.410  7.320  97 Non-umami 0.039 0.072
706 LIAGP 15.960  469.290  470.299  7.540    Non-umami 0.039 0.042
707 LFLLP 18.290  601.384  602.392  13.950    Non-umami 0.039 0.017
708 KLLP   511.337  512.346  10.780  90 Non-umami 0.039 0.01
709 FIIIP 18.130  601.384  602.392  13.950    Non-umami 0.039 0.019
710 TVGAGL 16.500  516.291  517.299  7.340    Non-umami 0.038 0.946
711 PPPVDH   660.323  331.170  3.460  97 Non-umami 0.038 0.981
712 PAAPFP 17.400  598.312  599.321  8.170  96 Non-umami 0.038 0.014
713 LAGSPVS   629.338  630.348  6.260  94 Non-umami 0.038 0.985
714 IGLGI 18.240  471.306  472.315  11.800    Non-umami 0.038 0.01
715 GLLAI 15.360  485.321  486.331  10.400    Non-umami 0.038 0.022
716 TLGGI 19.510  459.269  460.278  8.680    Non-umami 0.037 0.136
717 LPPP   422.253  423.262  6.240  99 Non-umami 0.037 0.01
718 LGTGP 15.460  443.238  444.248  4.960    Non-umami 0.037 0.82
719 LGLGI 18.240  471.306  472.315  11.800    Non-umami 0.037 0.012
720 LGAIP 15.340  469.290  470.299  8.870    Non-umami 0.037 0.044
721 IPAGV 17.920  455.274  456.283  7.550    Non-umami 0.037 0.034
722 IGIGL 18.240  471.306  472.315  11.800    Non-umami 0.037 0.011
723 ALGIP 16.890  469.290  470.299  9.730    Non-umami 0.037 0.01
724 AIGAI 17.130  443.274  444.283  7.600    Non-umami 0.037 0.049
725 LVLLP 15.050  553.384  554.394  12.630  97 Non-umami 0.036 0.009
726 LIGGI 19.970  471.306  472.314  10.180    Non-umami 0.036 0.012
727 LGGGL 20.350  415.243  416.251  6.950  98 Non-umami 0.036 0.116
728 IPLLP 16.050  551.368  552.378  11.970    Non-umami 0.036 0.009
729 IIGGI 19.970  471.306  472.314  10.180    Non-umami 0.036 0.012
730 IGGII 15.860  471.306  472.315  10.440    Non-umami 0.036 0.012
731 IALAI 18.520  499.337  500.346  11.530    Non-umami 0.036 0.023
732 FPLQP   600.327  601.336  9.880  99 Non-umami 0.036 0.015
733 FIPQIP 18.960  713.411  714.421  11.930    Non-umami 0.036 0.015
734 LPGQ   413.227  414.236  4.060  97 Non-umami 0.035 0.732
735 LLVPV 15.090  539.368  540.377  12.800    Non-umami 0.035 0.007
736 LIGAN 15.430  486.280  487.288  6.650    Non-umami 0.035 0.968
737 LGAGL 16.620  429.259  430.267  8.560    Non-umami 0.035 0.087
738 ISGLI 17.220  501.316  502.324  10.950    Non-umami 0.035 0.054
739 IPAGL 15.730  469.290  470.299  9.170    Non-umami 0.035 0.032
740 IGGIL 17.670  471.306  472.315  10.440    Non-umami 0.035 0.012
741 IFLLP 18.290  601.384  602.392  13.950    Non-umami 0.035 0.017
742 GPPYIA 22.560  616.322  617.333  8.560    Non-umami 0.035 0.008
743 FPPQLP   697.380  698.389  10.910  95 Non-umami 0.035 0.012
744 AVLGL 17.090  471.306  472.315  11.800    Non-umami 0.035 0.009
745 PAPPP 18.310  477.259  478.267  4.620    Non-umami 0.034 0.015
746 LLGGGM   546.284  547.292  8.150  99 Non-umami 0.034 0.081
747 LGAP   356.206  357.213  4.440  98 Non-umami 0.034 0.047
748 LFSGF   569.285  570.295  10.420  93 Non-umami 0.034 0.159
749 LFAIP 15.090  559.337  560.346  11.880    Non-umami 0.034 0.015
750 IPAGLP 15.410  566.343  567.352  9.750    Non-umami 0.034 0.043
751 IGAPI 15.160  469.290  470.299  8.220    Non-umami 0.034 0.01
752 EIGGL 15.930  487.264  488.273  7.060    Non-umami 0.034 0.897
753 AILGF 16.650  519.306  520.315  11.760    Non-umami 0.034 0.016
754 VISGI 16.460  487.301  488.310  8.730    Non-umami 0.033 0.179
755 SLGGI 20.400  445.254  446.262  7.030    Non-umami 0.033 0.028
756 LQPP   453.259  454.268  6.470  93 Non-umami 0.033 0.061
757 LPGIP 15.500  495.306  496.315  10.170    Non-umami 0.033 0.01
758 LLIAG 16.550  485.321  486.330  9.270    Non-umami 0.033 0.02
759 LGIGL 18.240  471.306  472.315  11.800    Non-umami 0.033 0.014
760 IVIIP 15.050  553.384  554.394  12.630    Non-umami 0.033 0.013
761 IVGGL 19.340  457.290  458.299  8.920    Non-umami 0.033 0.021
762 IPAGI 15.730  469.290  470.299  9.170    Non-umami 0.033 0.036
763 IGGGL 20.350  415.243  416.251  6.950    Non-umami 0.033 0.02
764 GSIII 18.680  501.316  502.325  11.050    Non-umami 0.033 0.08
765 GLALI 15.250  485.321  486.330  10.210    Non-umami 0.033 0.025
766 FPQGAP   615.302  616.312  6.510  98 Non-umami 0.033 0.017
767 ALIGF 16.650  519.306  520.315  11.760    Non-umami 0.033 0.016
768 VISGL 18.730  487.301  488.310  8.730    Non-umami 0.032 0.114
769 QPFRP   643.344  322.681  5.790  90 Non-umami 0.032 0.02
770 LILPP 16.900  551.368  552.378  10.500    Non-umami 0.032 0.011
771 IVLIP 15.050  553.384  554.394  12.630    Non-umami 0.032 0.011
772 IGGGI 20.350  415.243  416.251  6.950    Non-umami 0.032 0.028
773 GPPYLA   616.322  617.332  8.460  96 Non-umami 0.032 0.005
774 GIALL 15.250  485.321  486.330  10.210    Non-umami 0.032 0.024
775 FPFQEH   803.360  402.689  8.070  98 Non-umami 0.032 0.173
776 ASAVVGI 15.180  615.359  616.369  9.290    Non-umami 0.032 0.985
777 VPIIQ 15.110  568.358  569.368  9.390    Non-umami 0.031 0.114
778 LAIGF 17.420  519.306  520.315  11.760    Non-umami 0.031 0.014
779 KLPPP   550.348  551.356  5.240  94 Non-umami 0.031 0.012
780 IVLLP 16.080  553.384  554.394  12.630    Non-umami 0.031 0.01
781 IPAGIP 15.410  566.343  567.352  9.750    Non-umami 0.031 0.044
782 GVAPGPIW 16.720  795.428  796.438  11.350    Non-umami 0.031 0.014
783 GLIAL 15.360  485.321  486.331  10.400    Non-umami 0.031 0.025
784 GLAIL 15.250  485.321  486.330  10.210    Non-umami 0.031 0.025
785 AIIGF 16.650  519.306  520.315  11.760    Non-umami 0.031 0.018
786 LSGII 17.220  501.316  502.324  10.950    Non-umami 0.03 0.042
787 LGGGV   401.227  402.236  5.420  96 Non-umami 0.03 0.085
788 ISGIL 17.220  501.316  502.324  10.950    Non-umami 0.03 0.054
789 FPQPQP 15.450  712.354  713.365  7.740  96 Non-umami 0.03 0.009
790 AVATPVF 24.140  703.390  704.401  10.320    Non-umami 0.03 0.993
791 AIGIP 16.890  469.290  470.299  9.730    Non-umami 0.03 0.012
792 PQQIPP 19.780  678.370  679.380  6.480    Non-umami 0.029 0.139
793 LILAG 16.550  485.321  486.330  9.270    Non-umami 0.029 0.02
794 LGIGI 18.240  471.306  472.315  11.800    Non-umami 0.029 0.012
795 LGGV   344.206  345.215  5.910  97 Non-umami 0.029 0.071
796 LGGGI 20.350  415.243  416.251  6.950    Non-umami 0.029 0.026
797 LAIAI 16.900  499.337  500.346  11.530    Non-umami 0.029 0.035
798 ISGII 17.220  501.316  502.324  10.950    Non-umami 0.029 0.056
799 GPIWTP 17.040  669.349  670.359  10.420    Non-umami 0.029 0.125
800 FVVPPGHP 21.390  848.455  425.237  8.070    Non-umami 0.029 0.019
801 FPQHP   624.302  625.310  5.430  95 Non-umami 0.029 0.016
802 VLGGF 15.900  491.274  492.283  9.280    Non-umami 0.028 0.017
803 VGAGGVT 15.160  559.297  560.307  5.190    Non-umami 0.028 0.984
804 LPYP   488.264  489.273  8.520  98 Non-umami 0.028 0.012
805 LPLLP 16.050  551.368  552.378  11.970    Non-umami 0.028 0.008
806 LPLIP 16.050  551.368  552.378  11.970    Non-umami 0.028 0.009
807 LPIIP 16.050  551.368  552.378  11.970    Non-umami 0.028 0.011
808 LLEP   470.274  471.282  7.450  98 Non-umami 0.028 0.014
809 IPILP 16.050  551.368  552.378  11.970    Non-umami 0.028 0.011
810 ILVPV 15.110  539.368  540.377  12.800    Non-umami 0.028 0.009
811 IIGAN 15.430  486.280  487.288  6.650    Non-umami 0.028 0.952
812 GILAL 15.360  485.321  486.331  10.400    Non-umami 0.028 0.024
813 AGGLL 16.550  429.259  430.267  8.260    Non-umami 0.028 0.056
814 VIISGI 16.230  600.385  601.394  11.330    Non-umami 0.027 0.726
815 VIGGF 15.900  491.274  492.283  9.280    Non-umami 0.027 0.018
816 TLVVAP   598.369  599.379  8.800  97 Non-umami 0.027 0.086
817 TGGLY 15.680  509.249  510.258  5.060    Non-umami 0.027 0.773
818 PIVNP 15.520  538.312  539.321  7.750    Non-umami 0.027 0.396
819 LPGLP 15.500  495.306  496.315  10.170  98 Non-umami 0.027 0.014
820 LGAPP   453.259  454.267  6.580  96 Non-umami 0.027 0.014
821 ISGGP 15.300  429.222  430.230  4.520    Non-umami 0.027 0.038
822 FPPHT   597.291  598.299  7.230  94 Non-umami 0.027 0.186
823 PWLPP 16.860  608.332  609.342  11.640    Non-umami 0.026 0.019
824 LDVK   473.285  474.293  4.110  96 Non-umami 0.026 0.985
825 IGAIP 15.340  469.290  470.299  8.870    Non-umami 0.026 0.048
826 FGTGP   477.222  478.230  6.040  95 Non-umami 0.026 0.614
827 SIGGL 18.520  445.254  446.262  7.030    Non-umami 0.025 0.026
828 RGLP   441.270  442.278  3.570  93 Non-umami 0.025 0.03
829 LYPQQP 16.260  744.381  745.391  7.020    Non-umami 0.025 0.953
830 LGAGI 16.620  429.259  430.267  8.560    Non-umami 0.025 0.052
831 HPSLL   565.322  566.332  7.040  91 Non-umami 0.025 0.353
832 AAAVP 15.780  427.243  428.252  5.750    Non-umami 0.025 0.466
833 TIGGL 19.510  459.269  460.278  8.680    Non-umami 0.024 0.092
834 TFPHQP 20.390  725.350  363.683  5.840    Non-umami 0.024 0.188
835 QGGLL 15.000  486.280  487.289  8.300    Non-umami 0.024 0.262
836 PGAYPGAP 18.280  728.349  729.359  6.250    Non-umami 0.024 0.054
837 LPLP   438.284  439.293  10.000  98 Non-umami 0.024 0.01
838 IAAGP 15.080  427.243  428.251  5.260    Non-umami 0.024 0.045
839 FLPQLP 16.410  713.411  714.421  11.930  96 Non-umami 0.024 0.01
840 AASL   360.201  361.209  4.620  92 Non-umami 0.024 0.835
841 VPGGL 17.030  441.259  442.267  7.360  99 Non-umami 0.023 0.277
842 VLGGL 17.100  457.290  458.299  8.920    Non-umami 0.023 0.056
843 PFLQPHQP 16.830  962.497  482.258  7.930    Non-umami 0.023 0.028
844 LPYPQP 21.350  713.375  714.385  8.580  91 Non-umami 0.023 0.02
845 LIPTH 15.720  579.338  580.346  7.200    Non-umami 0.023 0.057
846 LGGAP   413.227  414.236  4.160  92 Non-umami 0.023 0.129
847 IVILP 15.050  553.384  554.394  12.630    Non-umami 0.023 0.012
848 IAIAI 16.900  499.337  500.346  11.530    Non-umami 0.023 0.04
849 GPAYP 15.520  503.238  504.247  5.700    Non-umami 0.023 0.039
850 GLIAI 15.360  485.321  486.331  10.400    Non-umami 0.023 0.027
851 GIIAI 15.360  485.321  486.331  10.400    Non-umami 0.023 0.044
852 GIAII 15.250  485.321  486.330  10.210    Non-umami 0.023 0.044
853 FLPQIP 16.410  713.411  714.421  11.930    Non-umami 0.023 0.013
854 YPAGP   503.238  504.247  5.850  98 Non-umami 0.022 0.056
855 YGGAP 15.710  463.207  464.215  3.390  98 Non-umami 0.022 0.072
856 VIGGL 16.850  457.290  458.299  8.920    Non-umami 0.022 0.021
857 PRPP   465.270  466.279  6.950  96 Non-umami 0.022 0.014
858 LVLIP 16.080  553.384  554.394  12.630    Non-umami 0.022 0.01
859 LVIIP 16.080  553.384  554.394  12.630    Non-umami 0.022 0.012
860 FVHP   498.259  499.267  5.530  97 Non-umami 0.022 0.019
861 VPGGI 16.970  441.259  442.267  7.360    Non-umami 0.021 0.012
862 PGAYP 15.200  503.238  504.247  5.700    Non-umami 0.021 0.041
863 LPQPP   550.312  551.321  7.710  97 Non-umami 0.021 0.036
864 LPILP 16.050  551.368  552.378  11.970    Non-umami 0.021 0.01
865 LIIAG 16.550  485.321  486.330  9.270    Non-umami 0.021 0.035
866 ILIAG 16.550  485.321  486.330  9.270    Non-umami 0.021 0.023
867 GILAI 15.360  485.321  486.331  10.400    Non-umami 0.021 0.027
868 FPQQP 15.710  615.302  616.310  6.600  95 Non-umami 0.021 0.972
869 ERVW   588.302  589.312  6.150  97 Non-umami 0.021 0.04
870 AVLGI 17.090  471.306  472.315  11.800    Non-umami 0.021 0.011
871 AVIGL 17.090  471.306  472.315  11.800    Non-umami 0.021 0.011
872 TGGHFP 16.640  614.281  615.291  5.920    Non-umami 0.02 0.149
873 SIGGI 20.400  445.254  446.262  7.030    Non-umami 0.02 0.037
874 QPQFPP 16.550  712.354  713.363  7.230    Non-umami 0.02 0.053
875 QGGLI 15.000  486.280  487.289  8.300    Non-umami 0.02 0.108
876 LPQFPHPQ 16.110  962.497  482.258  7.930    Non-umami 0.02 0.055
877 VIGGI 17.100  457.290  458.299  8.920    Non-umami 0.019 0.027
878 PQFPQPP 15.480  809.407  810.419  8.940    Non-umami 0.019 0.02
879 PFLQPHQ 19.130  865.445  433.731  7.600    Non-umami 0.019 0.993
880 LVILP 16.080  553.384  554.394  12.630    Non-umami 0.019 0.011
881 GIIAL 15.360  485.321  486.331  10.400    Non-umami 0.019 0.041
882 GIALI 15.250  485.321  486.330  10.210    Non-umami 0.019 0.027
883 GIAIL 15.250  485.321  486.330  10.210    Non-umami 0.019 0.038
884 FPQQPP 18.860  712.354  713.363  7.150    Non-umami 0.019 0.273
885 FPPQQP 20.980  712.354  713.363  6.970    Non-umami 0.019 0.261
886 EIGGI 15.930  487.264  488.273  7.060    Non-umami 0.019 0.861
887 AVIGI 17.090  471.306  472.315  11.800    Non-umami 0.019 0.012
888 VLGGI 17.100  457.290  458.299  8.920    Non-umami 0.018 0.02
889 TIGGI 17.870  459.269  460.278  8.680    Non-umami 0.018 0.047
890 QGGII 15.000  486.280  487.289  8.300    Non-umami 0.018 0.11
891 LIVPV 15.090  539.368  540.377  12.800    Non-umami 0.018 0.01
892 LGVL   400.269  401.277  9.600  93 Non-umami 0.018 0.008
893 IIPQQP 17.010  694.401  695.410  7.170    Non-umami 0.018 0.045
894 YYQPPR   822.402  412.210  5.220  97 Non-umami 0.017 0.945
895 VVLF   476.300  477.309  11.610  91 Non-umami 0.017 0.015
896 QLGL   429.259  430.267  9.170  94 Non-umami 0.017 0.352
897 ALGW   445.233  446.241  9.470  90 Non-umami 0.017 0.016
898 AGGIL 16.550  429.259  430.267  8.260    Non-umami 0.017 0.021
899 YPQQPIP 17.460  841.433  842.443  9.410    Non-umami 0.016 0.027
900 TGGIY 16.400  509.249  510.258  5.060    Non-umami 0.016 0.307
901 QGGIL 15.000  486.280  487.289  8.300    Non-umami 0.016 0.103
902 VVPPGHP 24.980  701.386  351.701  5.410  92 Non-umami 0.015 0.01
903 KLGL   471.306  472.315  11.800  95 Non-umami 0.015 0.018
904 IGAGL 16.620  429.259  430.267  8.560    Non-umami 0.015 0.043
905 FPTH   500.238  501.247  6.760  92 Non-umami 0.015 0.279
906 IGAGI 16.620 429.259 430.267 8.560   Non-umami 0.014 0.058

Table A2.

Multi-dimensional sensory evaluation of lager beer.

Different Samples Aroma
Intensity b
Malt Aroma c Hop Aroma a Fermentation-Derived
(By-Product) Aroma a
Sweet Taste e Bitterness i Umami Taste h Carbonic Bite f Smoothness f Bitterness Persistence c Malt/Hop Aftertaste b Residual Off-Flavour g Overall Balance and Typicity d
Aa 7.05 + 1.79 7.45 + 1.93 7.00 + 2.13 7.05 + 1.70 6.95 + 1.9 6.50 + 2.06 6.30 + 2.03 7.00 + 1.86 7.30 + 1.75 7.50 + 2.35 7.40 + 1.98 7.05 + 2.33 7.50 + 1.50
A-1c 7.30 + 1.66 7.75 + 1.62 7.25 + 1.74 6.95 + 1.32 8.05 + 1.9 6.90 + 1.48 7.65 + 1.90 8.00 + 1.72 7.70 + 1.84 7.80 + 1.70 7.00 + 1.52 8.25 + 1.62 7.85 + 1.84
A-2b 7.55 + 1.76 7.15 + 1.63 7.20 + 1.77 7.50 + 1.82 7.05 + 1.85 7.30 + 1.81 7.70 + 1.78 7.40 + 2.06 7.90 + 1.74 7.10 + 1.55 7.45 + 1.64 8.35 + 1.69 7.55 + 1.32
A-3d 6.25 + 0.79 5.90 + 0.85 5.65 + 0.67 5.85 + 0.81 5.95 + 0.94 5.80 + 0.89 6.45 + 1.67 6.00 + 0.79 6.05 + 0.83 6.40 + 0.82 6.00 + 0.86 5.90 + 0.91 6.15 + 0.88
A-4d 6.00 + 0.65 5.60 + 0.75 6.20 + 0.77 5.90 + 0.79 6.10 + 0.97 5.80 + 0.89 6.40 + 1.27 6.40 + 0.68 6.30 + 0.8 6.00 + 0.86 6.00 + 0.86 6.25 + 0.79 5.80 + 0.77
A-5b 7.75 + 1.52 7.05 + 1.67 7.40 + 1.85 7.30 + 2.00 7.55 + 1.70 7.30 + 1.87 7.35 + 1.60 7.95 + 1.43 7.45 + 1.64 7.10 + 1.65 7.30 + 1.56 7.70 + 1.81 7.50 + 1.70
A-6a 7.20 + 1.77 7.05 + 2.39 6.80 + 2.31 7.10 + 1.92 6.90 + 1.71 5.90 + 1.74 7.00 + 2.71 6.25 + 2.29 6.20 + 1.74 7.15 + 2.06 6.50 + 1.61 6.65 + 1.98 7.25 + 1.89

Note: Symbols such as a, b, and c represent the significance between different samples and sensory dimensions.

Author Contributions

Conceptualization, Y.W. and D.Z.; methodology, Y.W., M.H. (Mingtao Huang), Y.R., X.Z., and R.Y.; software, Y.W., R.Y., and J.L.; validation, Y.W. and R.Y.; formal analysis, Y.W. and R.Y.; investigation, Y.W. and Y.R.; resources, R.Y., Y.W., Y.S., L.G., X.H., M.H. (Mingtao Huang), J.L., J.S., M.H. (Mingquan Huang), and B.S.; data curation, M.L., X.Z., Y.S., and X.H.; writing—original draft preparation, Y.W. and D.Z.; writing—review and editing, Y.W., L.G., and D.Z.; visualization, M.H. (Mingtao Huang) and Y.W.; supervision, D.Z. and B.S. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Our study did not require further ethics committee approval as it did not involve animal or human clinical trials and was not unethical. In accordance with the ethical principles outlined in the Declaration of Helsinki, all participants provided informed consent before participating in the study. The anonymity and confidentiality of the participants were guaranteed, and participation was completely voluntary.

Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Conflicts of Interest

Authors Ruiyang Yin, Liyun Guo, Yumei Song, Xiuli He and Mingquan Huang were employed by the Technology Center of Beijing Yanjing Beer Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding Statement

This research was supported by the Beijing Elite Scientist Sponsorship Program by Bast (No. BYESA.2023055) and the National Key Research and Development Program [2022YFD2101205].

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Source M.I. Beer Market Research on Size, Share, Trends, Segments, Regions & Competition Source. [(accessed on 29 July 2025)]. Available online: https://www.mordorintelligence.com/industry-reports/beer-market.
  • 2.Insights F.B. Beer Market Size, Share & Industry Analysis, By Type (Lager, Ale, Stouts, and Others), By Packaging (Glass Bottle and Metal Can), By Distribution Channel (On-trade and Off-trade), By Production (Macro brewery and Microbrewery), By Category (Standard and Premium), and Regional Forecast, 2025–2032. [(accessed on 29 July 2025)]. Available online: https://www.fortunebusinessinsights.com/beer-market-102489.
  • 3.Imarc Lager Market Size, Share, Trends and Forecast by Product, Distribution Channel, and Region, 2025–2033. [(accessed on 29 July 2025)]. Available online: https://www.imarcgroup.com/prefeasibility-report-lager-manufacturing-plant.
  • 4.Research G.V. Premium Lager Market Size, Share & Trends Analysis Report By Product (Conventional, Craft), By Distribution Channel (Off-trade, On-trade), By Region, And Segment Forecasts, 2025–2030. [(accessed on 29 July 2025)]. Available online: https://www.grandviewresearch.com/industry-analysis/premium-lager-market.
  • 5.Kaczynski P., Iwaniuk P., Hrynko I., Luniewski S., Lozowicka B. The effect of the multi-stage process of wheat beer brewing on the behavior of pesticides according to their physicochemical properties. Food Control. 2024;160:110356. doi: 10.1016/j.foodcont.2024.110356. [DOI] [Google Scholar]
  • 6.Zhao H., Li H., Sun G., Yang B., Zhao M. Assessment of endogenous antioxidative compounds and antioxidant activities of lager beers. J. Sci. Food Agric. 2013;93:910–917. doi: 10.1002/jsfa.5824. [DOI] [PubMed] [Google Scholar]
  • 7.Picariello G., Bonomi F., Iametti S., Rasmussen P., Pepe C., Lilla S., Ferranti P. Proteomic and peptidomic characterisation of beer: Immunological and technological implications. Food Chem. 2011;124:1718–1726. doi: 10.1016/j.foodchem.2010.07.111. [DOI] [Google Scholar]
  • 8.Qi L., Du J., Sun Y., Xiong Y., Zhao X., Pan D., Zhi Y., Dang Y., Gao X. Umami-MRNN: Deep learning-based prediction of umami peptide using RNN and MLP. Food Chem. 2023;405:134935. doi: 10.1016/j.foodchem.2022.134935. [DOI] [Google Scholar]
  • 9.Zhang J., Sun-Waterhouse D., Su G., Zhao M. New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: A review. Trends Food Sci. Technol. 2019;88:429–438. doi: 10.1016/j.tifs.2019.04.008. [DOI] [Google Scholar]
  • 10.Ma F., Li Y., Zhang Y., Zhang Q., Li X., Cao Q., Ma H., Xie D., Zhang B., Yu J., et al. Effects of umami substances as taste enhancers on salt reduction in meat products: A review. Food Res. Int. 2024;185:114248. doi: 10.1016/j.foodres.2024.114248. [DOI] [PubMed] [Google Scholar]
  • 11.Wang Y., Zhang Z., Sheng Y., Chi C., Wang B. A systematic review on marine umami peptides: Biological sources, preparation methods, structure-umami relationship, mechanism of action and biological activities. Food Biosci. 2024;57:103637. doi: 10.1016/j.fbio.2024.103637. [DOI] [Google Scholar]
  • 12.Wang W., Zhou X., Liu Y. Characterization and evaluation of umami taste: A review. Trac-Trends Anal. Chem. 2020;127:115876. doi: 10.1016/j.trac.2020.115876. [DOI] [Google Scholar]
  • 13.Zhao C.J., Schieber A., Gaenzle M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016;89:39–47. doi: 10.1016/j.foodres.2016.08.042. [DOI] [PubMed] [Google Scholar]
  • 14.Zhang L., Pu D., Zhang J., Hao Z., Zhao X., Sun B., Zhang Y. Identification of Novel Umami Peptides in Chicken Breast Soup through a Sensory-Guided Approach and Molecular Docking to the T1R1/T1R3 Taste Receptor. J. Agric. Food Chem. 2023;71:7803–7811. doi: 10.1021/acs.jafc.3c01251. [DOI] [PubMed] [Google Scholar]
  • 15.Zhang H., Zou G., Liu W., Zhou Z. Beer Taste Detection Based on Electronic Tongue. Sens. Mater. 2020;32:2949–2958. doi: 10.18494/SAM.2020.2710. [DOI] [Google Scholar]
  • 16.Huang H., Chen Y., Hong J., Yuan X., Tian W., Zhao D., Sun B., Sun J., Wu J., Huang M., et al. Exploration of the flavor mechanism of novel umami peptides from lager beer: HPLC-Q-TOF-MS combined with flavor perception, molecular docking and molecular dynamics simulation. J. Food Compos. Anal. 2025;141:107338. doi: 10.1016/j.jfca.2025.107338. [DOI] [Google Scholar]
  • 17.Schmidt C.V., Olsen K., Mouritsen O.G. Umami potential of fermented beverages: Sake, wine, champagne, and beer. Food Chem. 2021;360:128971. doi: 10.1016/j.foodchem.2020.128971. [DOI] [PubMed] [Google Scholar]
  • 18.Habschied K., Kosir I.J., Krstanovic V., Kumric G., Mastanjevic K. Beer Polyphenols-Bitterness, Astringency, and Off-Flavors. Beverages. 2021;7:38. doi: 10.3390/beverages7020038. [DOI] [Google Scholar]
  • 19.Gribkova I.N., Eliseev M.N., Belkin Y.D., Zakharov M.A., Kosareva O.A. The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules. 2022;12:24. doi: 10.3390/biom12010024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Olaniran A.O., Hiralal L., Mokoena M.P., Pillay B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017;123:13–23. doi: 10.1002/jib.389. [DOI] [Google Scholar]
  • 21.Yue Z., Lai J., Li Q., Yu Q., He Y., Liu J., Zhu Y. Enhancement of nutritional, organoleptic, and umami qualities of chicken soup induced by enzymatic pre-treatment of chicken. Food Chem.-X. 2024;24:101914. doi: 10.1016/j.fochx.2024.101914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Kong Y., Yang X., Ding Q., Zhang Y., Sun B., Chen H., Sun Y. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate. Food Res. Int. 2017;102:559–566. doi: 10.1016/j.foodres.2017.09.038. [DOI] [PubMed] [Google Scholar]
  • 23.Chang R., Zhou Z., Dong Y., Xu Y., Ji Z., Liu S., Mao J. Sensory-Guided Isolation, Identification, and Active Site Calculation of Novel Umami Peptides from Ethanol Precipitation Fractions of Fermented Grain Wine (Huangjiu) Foods. 2023;12:3398. doi: 10.3390/foods12183398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Cui Z., Zhou T., Wang S., Blank I., Gu J., Zhang D., Yu Y., Zhang Z., Wang W., Liu Y. TastePeptides-Meta: A One-Stop Platform for Taste Peptides and Their Structural Derivatives, Including Taste Properties, Interactions, and Prediction Models. J. Agric. Food Chem. 2025;73:9817–9826. doi: 10.1021/acs.jafc.4c12922. [DOI] [PubMed] [Google Scholar]
  • 25.Tarasova I.A., Masselon C.D., Gorshkov A.V., Gorshkov M.V. Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Analyst. 2016;141:4816–4832. doi: 10.1039/C6AN00919K. [DOI] [PubMed] [Google Scholar]
  • 26.Kafka A.P., Kleffmann T., Rades T., McDowell A. The application of Maldi Tof Ms in biopharmaceutical research. Int. J. Pharm. 2011;417:70–82. doi: 10.1016/j.ijpharm.2010.12.010. [DOI] [PubMed] [Google Scholar]
  • 27.Ferguson P.L., Smith R.D. Proteome analysis by mass spectrometry. Annu. Rev. Biophys. Biomol. Struct. 2003;32:399–424. doi: 10.1146/annurev.biophys.32.110601.141854. [DOI] [PubMed] [Google Scholar]
  • 28.Page J.S., Masselon C.D., Smith R.D. FTICR mass spectrometry for qualitative and quantitative bioanalyses. Curr. Opin. Biotechnol. 2004;15:3–11. doi: 10.1016/j.copbio.2004.01.002. [DOI] [PubMed] [Google Scholar]
  • 29.Medzihradszky K.F., Chalkley R.J. Lessons In De Novo Peptide Sequencing By Tandem Mass Spectrometry. Mass Spectrom. Rev. 2015;34:43–63. doi: 10.1002/mas.21406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Qu M., An B., Shen S., Zhang M., Shen X., Duan X., Balthasar J.P., Qu J. Qualitative And Quantitative Characterization Of Protein Biotherapeutics With Liquid Chromatography Mass Spectrometry. Mass Spectrom. Rev. 2017;36:734–754. doi: 10.1002/mas.21500. [DOI] [PubMed] [Google Scholar]
  • 31.Mamone G., Picariello G., Caira S., Addeo F., Ferranti P. Analysis of food proteins and peptides by mass spectrometry-based techniques. J. Chromatogr. A. 2009;1216:7130–7142. doi: 10.1016/j.chroma.2009.07.052. [DOI] [PubMed] [Google Scholar]
  • 32.Guerrera I.C., Kleiner O. Application of mass spectrometry in proteomics. Biosci. Rep. 2005;25:71–93. doi: 10.1007/s10540-005-2849-x. [DOI] [PubMed] [Google Scholar]
  • 33.Zoete V., Grosdidier A., Michielin O. Docking, virtual high throughput screening and in silico fragment-based drug design. J. Cell. Mol. Med. 2009;13:238–248. doi: 10.1111/j.1582-4934.2008.00665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Naqvi A.A.T., Mohammad T., Hasan G.M., Hassan M.I. Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure–function Relationships. Curr. Top. Med. Chem. 2018;18:1755–1768. doi: 10.2174/1568026618666181025114157. [DOI] [PubMed] [Google Scholar]
  • 35.Wang T., Wu M., Chen Z., Chen H., Lin J., Yang L. Fragment-Based Drug Discovery and Molecular Docking in Drug Design. Curr. Pharm. Biotechnol. 2015;16:11–25. doi: 10.2174/1389201015666141122204532. [DOI] [PubMed] [Google Scholar]
  • 36.Feng Y., Yan Y., He J., Tao H., Wu Q., Huang S. Docking and scoring for nucleic acid-ligand interactions: Principles and current status. Drug Discov. Today. 2022;27:838–847. doi: 10.1016/j.drudis.2021.10.013. [DOI] [PubMed] [Google Scholar]
  • 37.Cummings M.D., Gibbs A.C., DesJarlais R.L. Processing of small molecule databases for automated docking. Med. Chem. 2007;3:107–113. doi: 10.2174/157340607779317481. [DOI] [PubMed] [Google Scholar]
  • 38.Bassani D., Pavan M., Moro S. Evaluating AutoGrow4-an open-source toolkit for semi-automated computer-aided drug discovery. Expert Opin. Drug Discov. 2025;20:711–720. doi: 10.1080/17460441.2025.2499122. [DOI] [PubMed] [Google Scholar]
  • 39.Seo W.H., Lee H.G., Baek H.H. Evaluation of bitterness in enzymatic hydrolysates of soy protein isolate by taste dilution analysis. J. Food Sci. 2008;73:S41–S46. doi: 10.1111/j.1750-3841.2007.00610.x. [DOI] [PubMed] [Google Scholar]
  • 40.He F., Xiao P., Yang S., Li H., Li Y., Li H., Zeng X., Gao W., Sun J., Wang B., et al. Separation and characterization of sweet compounds in Baijiu by molecular distillation combined with molecular sensory science. Food Chem. 2025;465:142124. doi: 10.1016/j.foodchem.2024.142124. [DOI] [PubMed] [Google Scholar]
  • 41.Lopez R., Mateo-Vivaracho L., Cacho J., Ferreira V. Optimization and validation of a taste dilution analysis to characterize wine taste. J. Food Sci. 2007;72:S345–S351. doi: 10.1111/j.1750-3841.2007.00424.x. [DOI] [PubMed] [Google Scholar]
  • 42.Salomon-Ferrer R., Case D.A., Walker R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2013;3:198–210. doi: 10.1002/wcms.1121. [DOI] [Google Scholar]
  • 43.Lee T., Allen B.K., Giese T.J., Guo Z., Li P., Lin C., McGee T.D., Jr., Pearlman D.A., Radak B.K., Tao Y., et al. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. J. Chem. Inf. Model. 2020;60:5595–5623. doi: 10.1021/acs.jcim.0c00613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Tian C., Kasavajhala K., Belfon K.A.A., Raguette L., Huang H., Migues A.N., Bickel J., Wang Y., Pincay J., Wu Q., et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. [DOI] [PubMed] [Google Scholar]
  • 46.Linse J., Hub J.S. Three- and four-site models for heavy water: SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW. J. Chem. Phys. 2021;154:194501. doi: 10.1063/5.0050841. [DOI] [PubMed] [Google Scholar]
  • 47.Mark P., Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A. 2001;105:9954–9960. doi: 10.1021/jp003020w. [DOI] [Google Scholar]
  • 48.Ichiye T., Tan M.L. Soft sticky dipole-quadrupole-octupole potential energy function for liquid water: An approximate moment expansion. J. Chem. Phys. 2006;124:13. doi: 10.1063/1.2161201. [DOI] [PubMed] [Google Scholar]
  • 49.Sagui C., Darden T.A. Molecular dynamics simulations of biomolecules: Long-range electrostatic effects. Annu. Rev. Biophys. Biomol. Struct. 1999;28:155–179. doi: 10.1146/annurev.biophys.28.1.155. [DOI] [PubMed] [Google Scholar]
  • 50.Stenhammar J., Karlstrom G., Linse P. Structural Anisotropy in Polar Fluids Subjected to Periodic Boundary Conditions. J. Chem. Theory Comput. 2011;7:4165–4174. doi: 10.1021/ct200592k. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Song G., Yang W. NepoIP/MM: Toward Accurate Biomolecular Simulation with a Machine Learning/Molecular Mechanics Model Incorporating Polarization Effects. J. Chem. Theory Comput. 2025;21:5588–5598. doi: 10.1021/acs.jctc.5c00372. [DOI] [PubMed] [Google Scholar]
  • 52.Kräutler V., Van Gunsteren W.F., Hünenberger P.H. A fast SHAKE: Algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001;22:501–508. doi: 10.1002/1096-987X(20010415)22:5&#x0003c;501::AID-JCC1021&#x0003e;3.0.CO;2-V. [DOI] [Google Scholar]
  • 53.Larini L., Mannella R., Leporini D. Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. J. Chem. Phys. 2007;126:10. doi: 10.1063/1.2464095. [DOI] [PubMed] [Google Scholar]
  • 54.Chen Y., Zheng Y., Fong P., Mao S., Wang Q. The application of the MM/GBSA method in the binding pose prediction of FGFR inhibitors. Phys. Chem. Chem. Phys. 2020;22:9656–9663. doi: 10.1039/D0CP00831A. [DOI] [PubMed] [Google Scholar]
  • 55.Hou T., Wang J., Li Y., Wang W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011;51:69–82. doi: 10.1021/ci100275a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Wang E., Weng G., Sun H., Du H., Zhu F., Chen F., Wang Z., Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 10. Impacts of enhanced sampling and variable dielectric model on protein-protein Interactions. Phys. Chem. Chem. Phys. 2019;21:18958–18969. doi: 10.1039/C9CP04096J. [DOI] [PubMed] [Google Scholar]
  • 57.Chen F., Liu H., Sun H., Pan P., Li Y., Li D., Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys. Chem. Chem. Phys. 2016;18:22129–22139. doi: 10.1039/C6CP03670H. [DOI] [PubMed] [Google Scholar]
  • 58.Wang J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. J. Chem. Inf. Model. 2020;60:3277–3286. doi: 10.1021/acs.jcim.0c00179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Nguyen H., Roe D.R., Simmerling C. Improved Generalized Born Solvent Model Parameters for Protein Simulations. J. Chem. Theory Comput. 2013;9:2020–2034. doi: 10.1021/ct3010485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Sensory Analysis—Methodology—Triangle Test. International Organization for Standardization; Geneva, Switzerland: 2021. [Google Scholar]
  • 61.Sensory Analysis—Identification and Selection of Descriptors for Establishing a Sensory Profile by a Multidimensional Approach. International Organization for Standardization; Geneva, Switzerland: 1994. [Google Scholar]
  • 62.Sun L., Zhang Z., Xin G., Sun B., Bao X., Wei Y., Zhao X., Xu H. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci. Technol. 2020;96:176–187. doi: 10.1016/j.tifs.2019.12.018. [DOI] [Google Scholar]
  • 63.Diez-Simon C., Eichelsheim C., Mumm R., Hall R.D. Chemical and Sensory Characteristics of Soy Sauce: A Review. J. Agric. Food Chem. 2020;68:11612–11630. doi: 10.1021/acs.jafc.0c04274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Roper S.D., Chaudhari N. Taste buds: Cells, signals and synapses. Nat. Rev. Neurosci. 2017;18:485–497. doi: 10.1038/nrn.2017.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Gu Y., Zhang J., Niu Y., Sun B., Liu Z., Mao X., Zhang Y. Screening and Characterization of novel umami peptides in Cheddar cheese using peptidomics and bioinformatics approaches. Lwt-Food Sci. Technol. 2024;194:115780. doi: 10.1016/j.lwt.2024.115780. [DOI] [Google Scholar]
  • 66.Meng H., Cui Z., Yu Y., Li Y., Jiang S., Liu Y. From Molecular Dynamics to Taste Sensory Perception: A Comprehensive Study on the Interaction of Umami Peptides with the T1R1/T1R3-VFT Receptor. J. Agric. Food Chem. 2024;72:6533–6543. doi: 10.1021/acs.jafc.3c09598. [DOI] [PubMed] [Google Scholar]
  • 67.Zhang L., Zhang L., Perez-Moreno J., Bin L., Zhang F., Yu F. Novel umami peptides from two Termitomyces mushrooms and molecular docking to the taste receptor T1R1/T1R3. Food Sci. Hum. Wellness. 2024;13:1055–1064. doi: 10.26599/FSHW.2022.9250091. [DOI] [Google Scholar]
  • 68.Liang L., Zhou C., Zhang J., Huang Y., Zhao J., Sun B., Zhang Y. Characteristics of umami peptides identified from porcine bone soup and molecular docking to the taste receptor T1R1/T1R3. Food Chem. 2022;387:132870. doi: 10.1016/j.foodchem.2022.132870. [DOI] [PubMed] [Google Scholar]
  • 69.Fu B., Wu D., Cheng S., Xu X., Zhang L., Wang L., El-Seedi H.R., Liu H., Du M. Three novel umami peptides derived from the alcohol extract of the Pacific oyster (Crassostrea gigas): Identification, characterizations and interactions with T1R1/T1R3 taste receptors. Food Sci. Hum. Wellness. 2024;13:146–153. doi: 10.26599/FSHW.2022.9250012. [DOI] [Google Scholar]
  • 70.Wang Y., Luan J., Tang X., Zhu W., Xu Y., Bu Y., Li J., Cui F., Li X. Identification of umami peptides based on virtual screening and molecular docking from Atlantic cod (Gadus morhua) Food Funct. 2023;14:1510–1519. doi: 10.1039/D2FO03776A. [DOI] [PubMed] [Google Scholar]
  • 71.Yin Z., Chandrasekar V., Zhongli P., Wenlong L., Liming Z. Novel umami ingredients: Umami peptides and their taste. J. Food Sci. 2017;82:16–23. doi: 10.1111/1750-3841.13576. [DOI] [PubMed] [Google Scholar]
  • 72.Zheng Y., Cao M., Liu D. Identification of umami peptides and mechanism of the interaction with umami receptors T1R1/T1R3 in pigeon meat. Anim. Biosci. 2025;38:739–751. doi: 10.5713/ab.24.0425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Colgrave M.L., Goswami H., Howitt C.A., Tanner G.J. What is in a Beer? Proteomic Characterization and Relative Quantification of Hordein (Gluten) in Beer. J. Proteome Res. 2012;11:386–396. doi: 10.1021/pr2008434. [DOI] [PubMed] [Google Scholar]
  • 74.Hu J., Yu L., Shu Q., Chen Q. Identification of Down-Regulated Proteome in Saccharomyces cerevisiae with the Deletion of Yeast Cathepsin D in Response to Nitrogen Stress. Microorganisms. 2019;7:214. doi: 10.3390/microorganisms7080214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Spada V., Di Stasio L., Picascia S., Messina B., Gianfrani C., Mamone G., Picariello G. Immunogenic Potential of Beer Types Brewed With Hordeum and Triticum spp. Malt Disclosed by Proteomics. Front. Nutr. 2020;7:98. doi: 10.3389/fnut.2020.00098. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.


Articles from Foods are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES