Abstract
The postnatal development and differentiation of the submandibular salivary gland has been examined in sixteen groups of young opossums. At birth the glandular elements, dispersed in loose connective tissue, consist only of ducts that are immature in appearance and of irregular secretory end-pieces. Development occurs in two phases, the first from birth to approximately 31 days postnatum, and the second thereafter. During the first phase the ductular elements show separation into intercalated and intralobular ducts, and attain structural maturity. The larger ducts are concentrated centrally within each lobule and lie in a markedly vascular connective tissue. The secretory end-pieces, initially acinar in form, are lined by proacinar cells which exhibit intercellular canaliculi at the lateral cell membranes and a few dense granules in the apical cytoplasm. During the second phase of development extensive changes occur within the secretory end-pieces, which elongate to form a system of branching tubules. Component cells show an increased granular content, and those in the main body of the tubules differentiate into mucous cells. By 34 cm postnatum the proacinar cells in the bulbous endings of the tubules are replaced by special serous cells possessing intercellular canaliculi and secretory granules which are either electron-lucent or electron-dense. The sequence of changes that occur during postnatal development is discussed and related to possible functional activities. The early development of the ducts may be correlated with their role in homeostasis, while the later development of secretory tubules and the differentiation of secretory cell types may be related to the onset of weaning, and may possibly be induced by this major change in dietary habit.
Full text
PDF






















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BUEKER E. D., WEIS P., SCHENKEIN I. SEXUAL DIMORPHISM OF MOUSE SUBMAXILLARY GLANDS AND ITS RELATIONSHIP TO NERVE GROWTH STIMULATING PROTEIN. Proc Soc Exp Biol Med. 1965 Jan;118:204–207. doi: 10.3181/00379727-118-29798. [DOI] [PubMed] [Google Scholar]
- Borghese E., Laj M., Di Caterino B. Acinar ultrastructure of the submandibular gland of Mus musculus during embryonic development. Cell Tissue Res. 1974;150(4):425–442. doi: 10.1007/BF00225967. [DOI] [PubMed] [Google Scholar]
- Cutts J. H., Leeson C. R., Krause W. J. The postnatal development of the liver in a marsupial, Didelphis virginiana. 1. Light microscopy. J Anat. 1973 Sep;115(Pt 3):327–346. [PMC free article] [PubMed] [Google Scholar]
- GABE M. Action de la splenectomie sur le poumon de quelques rongeurs. C R Seances Soc Biol Fil. 1950 Oct;144(19-20):1315–1317. [PubMed] [Google Scholar]
- Gresik E. W. The postnatal development of the sexually dimorphic duct system and of amylase activity in the submandibular glands of mice. Cell Tissue Res. 1975;157(3):411–422. doi: 10.1007/BF00225529. [DOI] [PubMed] [Google Scholar]
- HIGGINBOTHAM A. C., KOON W. E. Temperature regulation in the Virginia opossum. Am J Physiol. 1955 Apr;181(1):69–71. doi: 10.1152/ajplegacy.1955.181.1.69. [DOI] [PubMed] [Google Scholar]
- Hoshino K., Lin C. D. Lethal factor released from submandibular grafts in mice. Can J Physiol Pharmacol. 1969 Apr;47(4):329–334. doi: 10.1139/y69-059. [DOI] [PubMed] [Google Scholar]
- JACOBY F., LEESON C. R. The postnatal development of the rat submaxillary gland. J Anat. 1959 Apr;93(2):201–216. [PMC free article] [PubMed] [Google Scholar]
- Koppang H. S., Getty R. Histomorphological studies of the porcine parotid gland as related to age: birth to early adulthood. Growth. 1970 Sep;34(3):321–340. [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., Leeson C. R. The postnatal development of the alimentary canal in the opossum. II. Stomach. J Anat. 1976 Dec;122(Pt 3):499–519. [PMC free article] [PubMed] [Google Scholar]
- Krause W. J., Cutts J. H., Leeson C. R. The postnatal development of the alimentary canal in the opossum. III. Small intestine and colon. J Anat. 1977 Feb;123(Pt 1):21–45. [PMC free article] [PubMed] [Google Scholar]
- Kumegawa M., Cattoni M., Rose G. G. An unusual droplet in submandibular gland of new born mice. J Cell Biol. 1967 Jun;33(3):720–723. doi: 10.1083/jcb.33.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEESON C. R., JACOBY F. An electron microscopic study of the rat submaxillary gland during its post-natal development and in the adult. J Anat. 1959 Jul;93:287–295. [PMC free article] [PubMed] [Google Scholar]
- PEASE D. C. Infolded basal plasma membranes found in epithelia noted for their water transport. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):203–208. doi: 10.1083/jcb.2.4.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinkstaff C. A. Carbohydrate histochemistry of the opossum submandibular and major sublingual glands. Am J Anat. 1975 Aug;143(4):501–512. doi: 10.1002/aja.1001430407. [DOI] [PubMed] [Google Scholar]
- Redman R. S., Sreebny L. M. Morphologic and biochemical observations on the development of the rat parotid gland. Dev Biol. 1971 Jun;25(2):248–279. doi: 10.1016/0012-1606(71)90030-3. [DOI] [PubMed] [Google Scholar]
- Redman R. S., Sreebny L. M. The prenatal phase of the morphosis of the rat parotid gland. Anat Rec. 1970 Oct;168(2):127–137. doi: 10.1002/ar.1091680201. [DOI] [PubMed] [Google Scholar]
- SCHNEIDER R. M., PERSON P. Aerobic oxidative metabolism of salivary glands. Ann N Y Acad Sci. 1960 Mar 29;85:201–207. doi: 10.1111/j.1749-6632.1960.tb49958.x. [DOI] [PubMed] [Google Scholar]
- SCHNEIDER R. M., PERSON P. The isolation of submaxillary gland acini and duct segments. Exp Cell Res. 1960 Sep;20:627–629. doi: 10.1016/0014-4827(60)90142-7. [DOI] [PubMed] [Google Scholar]
- Shackleford J. M., Wilborn W. H. Structural and histochemical diversity in mammalian salivary glands. Ala J Med Sci. 1968 Apr;5(2):180–203. [PubMed] [Google Scholar]
- Smith R. J., Frommer J., Schiff R. Localization and onset of amylase activity in mouse salivary glands determined by a substrate film method. J Histochem Cytochem. 1971 May;19(5):310–319. doi: 10.1177/19.5.310. [DOI] [PubMed] [Google Scholar]
- Tamarin A., Sreebny L. M. The rat submaxillary salivary gland. A correlative study by light and electron microscopy. J Morphol. 1965 Nov;117(3):295–352. doi: 10.1002/jmor.1051170303. [DOI] [PubMed] [Google Scholar]
- Tandler B. Electron microscopical observations on early sialoliths in a human submaxillary gland. Arch Oral Biol. 1965 May-Jun;10(3):509–522. doi: 10.1016/0003-9969(65)90117-2. [DOI] [PubMed] [Google Scholar]
- Tandler B., Erlandson R. A. Ultrastructure of baboon parotid gland. Anat Rec. 1976 Jan;184(1):115–131. doi: 10.1002/ar.1091840110. [DOI] [PubMed] [Google Scholar]
- Tandler B., Poulsen J. H. Ultrastructure of the cat sublingual gland. Anat Rec. 1977 Feb;187(2):153–171. doi: 10.1002/ar.1091870204. [DOI] [PubMed] [Google Scholar]
- Tandler B., Poulsen J. H. Ultrastructure of the main excretory duct of the cat submandibular gland. J Morphol. 1976 Jun;149(2):183–197. doi: 10.1002/jmor.1051490204. [DOI] [PubMed] [Google Scholar]
- Wilborn W. H., Shackleford J. M. The cytology of submandibular glands of the opossum. J Morphol. 1969 May;128(1):1–33. doi: 10.1002/jmor.1051280102. [DOI] [PubMed] [Google Scholar]
- Yamashina S., Barka T. Localization of peroxidase activity in the developing submandibular gland of normal and isoproterenol-treated rats. J Histochem Cytochem. 1972 Nov;20(11):855–872. doi: 10.1177/20.11.855. [DOI] [PubMed] [Google Scholar]
- Yohro T. Development of secretory units of mouse submandibular gland. Z Zellforsch Mikrosk Anat. 1970;110(2):173–184. doi: 10.1007/BF00335523. [DOI] [PubMed] [Google Scholar]




































