Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1978 Oct;127(Pt 2):415–424.

The ultrastructural organization of the contractile peripheral protein layer of the human erythroycte membrane.

A H Timme
PMCID: PMC1235781  PMID: 102628

Abstract

Erythroycte ghosts fixed in glutaraldehyde were dehydrated in (a) alcohol or acetone, (b) propylene glycol followed by Epon and embedded in an epoxy resin. A water-soluble urea/glutaraldehyde mixture was also used. The aim was to study the structure of the peripheral protein layer, which contains spectrin and actin, in the absence of OsO4 induced denaturation changes. Ghost membranes prepared in this way had an asymmetrical quadrilaminar structure. A layer of amorphous peripheral protein +/- 18 nm in width covered the entire inner face of the membrane in the form of a coarse meshwork in both Wash I (haemoglobin-containing) and haemoglobin-free ghosts. Cations (Mg2+ or Ca2+, or Mg2+ plus ATP) had no apparent effect on its fine structure. In contrast, the corresponding layer in OsO4-fixed membranes was represented by scanty, fuzzy material attached to the unit membrane only at irregular intervals. The results demonstrate the superior ability of glutaraldehyde to preserve the peripheral protein layer in thin sections, and afford further support for the view that much of this protein normally exists in an unpolymerized state.

Full text

PDF
415

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker R. F. Ultrastructure of the red blood cell. Fed Proc. 1967 Nov-Dec;26(6):1785–1801. [PubMed] [Google Scholar]
  2. Bramley T. A., Coleman R. Effects of inclusion of Ca 2+ , Mg 2+ , EDTA or EGTA during the preparation of erythrocyte ghosts by hypotonic haemolysis. Biochim Biophys Acta. 1972 Dec 1;290(1):219–228. doi: 10.1016/0005-2736(72)90065-x. [DOI] [PubMed] [Google Scholar]
  3. Bretscher M. S. A major protein which spans the human erythrocyte membrane. J Mol Biol. 1971 Jul 28;59(2):351–357. doi: 10.1016/0022-2836(71)90055-6. [DOI] [PubMed] [Google Scholar]
  4. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  5. Hanahan D. J., Ekholm J., Hildenbrandt G. Biochemical variability of human erythrocyte membrane preparations, as demonstrated by sodium-potassium-magnesium and calcium adenosine triphosphatase activities. Biochemistry. 1973 Mar 27;12(7):1374–1387. doi: 10.1021/bi00731a018. [DOI] [PubMed] [Google Scholar]
  6. Hartwig J. H., Stossel T. P. Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. J Biol Chem. 1975 Jul 25;250(14):5696–5705. [PubMed] [Google Scholar]
  7. Kirkpatrick F. H., Woods G. M., Weed R. I., La Celle P. L. Fractionation of spectrin by differential precipitation with calcium. Arch Biochem Biophys. 1976 Aug;175(2):367–372. doi: 10.1016/0003-9861(76)90523-3. [DOI] [PubMed] [Google Scholar]
  8. Lessin L. S. Membrane ultrastructure of normal, sickled and heinz-body erythrocytes by freeze-etching. Nouv Rev Fr Hematol. 1972 Nov-Dec;12(6):871–888. [PubMed] [Google Scholar]
  9. Lux S. E., John K. M., Karnovsky M. J. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J Clin Invest. 1976 Oct;58(4):955–963. doi: 10.1172/JCI108549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marchesi V. T., Palade G. E. Inactivation of adenosine triphosphatase and disruption of red cell membrances by trypsin: protective effect of adenosine triphosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):991–995. doi: 10.1073/pnas.58.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McMillan P. N., Luftig R. B. Preservation of erythrocyte ghost ultrastructure achieved by various fixatives. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3060–3064. doi: 10.1073/pnas.70.11.3060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palek J., Stewart G., Lionetti F. J. The dependence of shape of human erythrocyte ghosts on calcium, magnesium, and adenosine triphosphate. Blood. 1974 Oct;44(4):583–597. [PubMed] [Google Scholar]
  14. Pease D. C., Peterson R. G. Polymerizable glutaraldehyde-urea mixtures as polar, water-containing embedding media. J Ultrastruct Res. 1972 Oct;41(1):133–159. doi: 10.1016/s0022-5320(72)90043-3. [DOI] [PubMed] [Google Scholar]
  15. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Seeman P., Cheng D., Iles G. H. Structure of membrane holes in osmotic and saponin hemolysis. J Cell Biol. 1973 Feb;56(2):519–527. doi: 10.1083/jcb.56.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Seeman P., Iles G. H. Pits in the freeze-cleavage plane of normal erythrocyte membranes; and ultrastructure of membrane lesions in immune lysis. Nouv Rev Fr Hematol. 1972 Nov-Dec;12(6):889–900. [PubMed] [Google Scholar]
  18. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  19. Sjöstrand F. S., Barajas L. Effect of modifications in conformation of protein molecules on structure of mitochondrial membranes. J Ultrastruct Res. 1968 Oct;25(1):121–155. doi: 10.1016/s0022-5320(68)80065-6. [DOI] [PubMed] [Google Scholar]
  20. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilney L. G. The polymerization of actin. II. How nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes. J Cell Biol. 1976 Apr;69(1):51–72. doi: 10.1083/jcb.69.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]
  23. Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES